UNIVERSITY OF LEEDS

This is a repository copy of Outcomes of adolescent males with extracranial metastatic germ cell tumors: A report from the Malignant Germ Cell Tumor International Consortium.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/165854/

Version: Accepted Version

Article:

Shaikh, F, Stark, D orcid.org/0000-0002-6172-733X, Fonseca, A et al. (12 more authors) (2021) Outcomes of adolescent males with extracranial metastatic germ cell tumors: A report from the Malignant Germ Cell Tumor International Consortium. Cancer, 127 (2). pp. 193-202. ISSN 0008-543X

https://doi.org/10.1002/cncr.33273

© 2020 American Cancer Society. This is the peer reviewed version of the following article: Shaikh, F, Stark, D, Fonseca, A et al. (12 more authors) (2021) Outcomes of adolescent males with extracranial metastatic germ cell tumors: A report from the Malignant Germ Cell Tumor International Consortium. Cancer, 127 (2). pp. 193-202. ISSN 0008-543X, which has been published in final form at http://doi.org/10.1002/cncr.33273. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be **Replace**.

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Outcomes of Adolescent Males with Extracranial Metastatic Germ Cell Tumors. A Report from the Malignant Germ Cell Tumor International Consortium.

Journal:	Cancer
Manuscript ID	CNCR-20-1273.R1
Wiley - Manuscript type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Shaikh, Furqan; Hospital for Sick Children, Division of Hematology/Oncology Stark, Daniel; Leeds Institute of Oncology, Fonseca, Adriana; The Hospital for Sick Children, Division of Haematology/Oncology Dang, Ha; Children's Oncology Group, Xia, Caihong; Keck School of Medicine, Univ Southern California, Preventive Medicine Krailo, Mark; Children's Oncology Group, Group Operations Center Pashankar, Farzana; Yale University School of Medicine, Rodriguez-Galindo, Carlos; St. Jude Children's Research Hospital, Department of Global Pediatric Medicine; Olson, Thomas; Emory University, Pediatric Hematology/Oncology Nicholson, James; Cambridge University Murray, Matthew; University of Cambridge, Department of Pathology Amatruda, James; Children's Hospital of Los Angeles Billmire, Deborah; Riley Hospital for Children, Stoneham, Sara; University College London Frazier, A.; Dana-Farber Cancer Institute, Pediatric Oncology
Keywords:	AYA, Outcomes, Adolescent males, Germ cell tumors, Testicular GCT

SCHOLARONE[™] Manuscripts

Page 1 of 57

Cancer

1 2						
- 3 4	1	Title: Outcomes of Adolescent Males with Extracranial Metastatic Germ Cell Tumors: A Report				
5 6 7 8 9	2	from the Malignant Germ Cell Tumor International Consortium.				
	3	Authors:				
10 11	4	Furqan Shaikh ¹ , Daniel Stark ² , Adriana Fonseca ¹ , Ha Dang ³ , Caihong Xia ³ , Mark Krailo ³ , Farzana				
$\begin{array}{c} 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \end{array}$	5	Pashankar ⁴ , Carlos Rodriguez-Galindo ⁵ , Thomas A. Olson ⁶ , James C. Nicholson ⁷ , Matthew J.				
	6	Murray ⁷ , James F. Amatruda ⁸ , Deborah Billmire ⁹ , Sara Stoneham ¹⁰ , A. Lindsay Frazier ¹¹ .				
	7	Running Title: Germ Cell Tumors in Adolescent Males				
	8	Authors Degrees and Affiliations:				
	9	Furqan Shaikh MD MSc. The Hospital for Sick Children, University of Toronto				
	10	Daniel Stark MD. The Institute for Medical Research, University of Leeds				
	11	Adriana Fonseca MD. The Hospital for Sick Children, University of Toronto				
	12	Ha Dang PhD. Children's Oncology Group				
	13	Caihong Xia PhD. Children's Oncology Group				
	14	Mark Krailo PhD. Children's Oncology Group				
	15	Farzana Pashankar MD. Yale Cancer Center				
	16	Carlos Rodriguez-Galindo MD. St. Jude Children's Research Hospital				
	17	Thomas Olson MD. Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta,				
	18	Emory University				
	19	James C. Nichols MD. Cambridge University Hospitals NHS Foundation Trust, Hills Road,				
	20	Cambridge, CB2 0QQ, UK				
	21	Mathew J. Murray MD PhD. Cambridge University Hospitals NHS Foundation Trust, Hills Road,				
	22	Cambridge, CB2 0QQ, UK				
53 54	23	James F. Amatruda MD, PhD. Children's Hospital Los Angeles.; University of Southern California.				
55 56 57 58 59 60		1				

3	
4	
5	
5	
4 5 7 8 9 10	
/	
8	
9	
10	
11	
12	
13	
14	
15	
12	
10	
17	
18	
 11 12 13 14 15 16 17 18 19 	
19 20 21 22 23 24 25 26 27	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34 35 36 37 38 39	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
48 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

1 2

24	Deborah Billmire MD.	Riley Hospital for Children
----	----------------------	-----------------------------

25 Sara Stoneham MD. Children's and Young Persons Cancer Services, University College London

2

- 26 Hospital Trusts, 250 Euston Road, London NW1 2PG.
- 27 A. Lindsay Frazier MD MSc. Dana-Farber Cancer Institute and Boston Children's Hospital

29 **Corresponding Author:**

- 30 Dr. Adriana Fonseca,
- 31 Division of Hematology/Oncology, The Hospital for Sick Children
- 32 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
- 33 adriana.fonseca@sickkids.ca
- 34 Phone: 1-416-813-7703
 - 35 Fax: 1-416-813-5327
- 36

28

37 **Financial support:**

- 38 This work was supported by:
- 39 St. Baldrick's Foundation Consortium Grant
- 40 Bridging the Gap Fund, Dana Farber Cancer Institute
- 41 Katie Walker Cancer Trust
- 42 Teenage Cancer Trust
- 43 William Guy Forbeck Foundation
 - 44 The Franklin Foundation

59 60 45

Page 3 of 57

Cancer

1 2 3	47	
4 5	47	Conflict of Interest Statement:
5 6 7	48	Furqan Shaikh, Daniel Stark, Adriana Fonseca, Ha Dang, Caihong Xia, Mark Krailo, Farzana
8 9	49	Pashankar, Thomas Olson, James C. Nichols, Mathew J. Murray, James F. Amatruda, Deborah
10 11 12	50	Billmire & Sara Stoneham: No Conflict to declare
13 14 15	51	Carlos Rodriguez-Galindo: Advisory board Novimmune; A. Lindsay Frazier: Clinical Advisory
15 16 17	52	board for Decibel Therapeutics.
18 19	53	
20 21 22	54	Author Contribution Statement:
23 24	55	Furqan Shaikh: Conceptualization, methodology, data curation, formal analysis, original draft,
25 26 27 28 29	56	writing- review and editing.
	57	Daniel Stark: Conceptualization, methodology, data acquisition writing - review and editing.
30 31 32	58	Adriana Fonseca: Data curation, formal analysis, original draft, and writing- review and editing.
33 34	59	Ha Dang: Data curation, methodology, formal analysis, writing- review and editing.
35 36 37	60	Caihong Xia: Data curation, methodology, formal analysis, writing- review and editing.
38 39	61	Mark Krailo: Conceptualization, methodology, data curation, formal analysis, writing- review
40 41 42	62	and editing.
43 44	63	Farzana Pashankar: Conceptualization, methodology, data acquisition writing - review and editing.
45 46 47	64	Carlos Rodriguez-Galindo: Conceptualization, funding acquisition, methodology, writing - review
48 49	65	and editing.
50 51 52	66	Thomas Olson: Conceptualization, methodology, data acquisition writing - review and editing.
52 53 54	67	James C. Nichols: Conceptualization, methodology, data acquisition writing - review and editing.
55 56	68	Mathew J. Murray: Conceptualization, methodology, data acquisition writing - review and editing.
57 58 59 60		3

James F. Amatruda: Conceptualization, funding acquisition, methodology, writing - review andediting.

Deborah Billmire: Conceptualization, funding acquisition, methodology, writing - review and
 editing.

73 Sara Stoneham: Conceptualization, methodology, data acquisition writing - review and editing.

A. Lindsay Frazier: Conceptualization, funding acquisition, methodology, writing - review andediting.

All authors have made meaningful contributions, approved the final version of the manuscript and
 are accountable for all aspects of the work.

79 Lay Summary:

Adolescent males with metastatic germ cell tumors are frequently treated with regimens developed for children. In this study, we built a large dataset of male patients with metastatic germ cell tumors across different age groups to understand the outcomes of adolescent patients when compared with children and young adults. Our results suggest that adolescent males with metastatic germ cell tumors have worse results than children and are more similar to young adults with germ cell tumors. Therefore, the treatment of adolescents with germ cell tumors, should resemble young adult therapeutic approaches.

Précis for Table of Contents:

EFS for adolescent patients with metastatic germ cell tumors was similar to young adults but
significantly worse than for children. This finding highlights the importance of coordinating
initiatives across clinical trial organizations to improve outcomes for adolescents and young adults.

Cancer

92 Abstract:
93 PURPOSE: Adolescents with extracranial metastatic germ cell tumors (GCTs) are often treated on

94 regimens developed for children, but more closely resemble the clinical characteristics of young
95 adult patients. We sought to determine event-free survival (EFS) for adolescents with GCTs and
96 compared children and young adults.

97 PATIENTS AND METHODS: We assembled an individual patient database of eleven GCT trials:
98 eight conducted by pediatric cooperative groups and three by an adult group. We included male
99 patients aged 0-30 years with metastatic, non-seminomatous malignant GCTs of the testis,
100 retroperitoneum, or mediastinum, treated with platinum-based chemotherapy. We categorized age101 group as children (0 to <11 years), adolescents (11 to <18 years), or young adults (18 to <30 years
102 old). We compared EFS and adjusted for risk-group using Cox proportional hazards analysis.

103 RESULTS: From a total of 2,024 individual records, 593 patients met inclusion criteria, of whom 104 90 were children, 109 were adolescents, and 394 were young adults. The 5-year EFS for 105 adolescents [72 %; 95% confidence-interval (CI)=62-79%] was lower than for children (90%; 106 CI=81-95%, p=0.003) or young adults (88%; CI=84-91%, p=0.0002). International Germ Cell 107 Cancer Collaborative Group (IGCCCG) risk-group was associated with EFS in the adolescent age-108 group (p=0.0257). After adjusting for risk-group, the difference in EFS between adolescents and 109 children remained significant (HR=0.30, p=0.001).

⁺ 110

111 CONCLUSION: EFS for adolescent patients with metastatic GCTs was similar to young adults
112 but significantly worse than for children. This finding highlights the importance of coordinating
113 initiatives across clinical trial organizations to improve outcomes for adolescents and young adults.
114 Keywords: Germ cell tumors, adolescent males, outcomes, AYA, Testicular GCT.

1 2		
2 3 4	115	
5 6	116	Total numbers:
7 8 9	117	Text pages: 24
10 11	118	Tables: 3
12 13	119	Figures: 3
14 15	120	Supplemental material: 1 table
16 17 18	121	Previous presentations:
19 20	122	ASCO 2019 Annual meeting
21 22	123	International Extracranial Germ Cell Tumor Conference 2019
23 24 25	124	
26	105	
27 28	125	
29		
30 31		
32		
33		
34		
35 36		
37		
38		
39		
40 41		
41		
43		
44		
45 46		
47		
48		
49 50		
50 51		
52		
53		
54 55		
55 56		
57		
58		6
59 60		

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45 46
47
48
49
50
51
52
53
54
55
56
57
58
59
72

126 Background

127 Adolescents and young adults (AYAs) with cancer are a unique group of patients with special characteristics.¹⁻⁴ AYAs develop a specific spectrum of cancers.⁵ require age-appropriate 128 129 psychosocial support, and often inhabit a medical 'no man's land'⁶ where they are neither the 130 specific focus of pediatric or adult worlds of oncology.⁷ This results in their care being under-131 researched, trials under-accrued, and optimal management disputed.⁸ AYAs may sometimes be 132 subject to professional competition for patient 'ownership' or an individual clinical conviction that the management used for one age-group is right for another.^{9, 10} But specific attention to the needs 133 134 of AYA cancer patients has yielded progress. In acute lymphoblastic leukemia, management has 135 evolved based upon pooling of data from different treatment approaches, with greatly improved 136 AYA outcomes in recent trials.¹¹ Similarly, Ewing sarcoma outcomes for AYAs were inferior to those seen in children, until collaborative protocols overcame this difference.^{12, 13} In osteosarcoma, 137 138 outcomes for AYAs are also inferior to those observed in children, and pooling of clinical trial 139 data has hypothesised tractable reasons for these differences related to pharmacologic or clinical 140 factors.¹⁴ We believe similar advances can be made for AYA patients with GCTs through 141 collaborative, investigative efforts.

142

60

Extracranial germ cell tumors (GCTs) account for approximately 3-4% of cancers in children, 14% of cancers in adolescents aged 15-19 years, and 18% of cancers in young adults aged 20-30 years.^{15, 16} Thus, GCTs are among the few malignancies that are encountered relatively commonly by both pediatric and medical oncologists. However, treatment regimens have evolved separately within pediatric and adult oncology collaborative groups. The two groups use different

staging and risk stratification systems, different numbers of cycles, and different cumulative doses
of chemotherapy.^{17, 18}

> Historically, patients under the age of 15-18 years in North America or under 16 years in the United Kingdom (UK) have been treated on pediatric regimens, and most adolescents within these ages have been treated with the approaches developed for young children. On the other hand, it can be argued that adolescents with GCTs seem to more closely resemble the characteristics of young adult patients with respect to clinical, biological and epidemiological characteristics.¹⁹ Thus, there is a knowledge gap about the optimal approach to treating adolescents with GCTs. To date, it is not known whether adolescents with GCTs are more effectively treated with pediatric or adult approaches. Compounding this matter is the observation that adolescents with GCTs are under-represented in clinical trials, frequently too old to meet the age inclusion criteria of pediatric trials and too young to meet age eligibility for adult studies.²⁰

We sought to determine whether adolescents with GCTs experience outcomes that are more alike to children or to young adults, and where the dividing line between pediatric and adult standards of care or clinical trial inclusion criteria should be drawn. There is only limited evidence to help guide such discussions. This limitation stems from the heterogeneous manifestations of GCTs across age-groups which precludes direct comparisons, as well as the relatively small sample size of individual trials which prevents adequately powered subgroup analyses. Previously, Cost et al.²¹ reported on the outcomes among 20 children, 39 adolescents, and 354 adult patients with testicular GCTs treated at their institution. The EFS for adolescents was worse when compared with children and young adults, even after adjusting for stage, International Germ Cell

Cancer

171	Cancer Collaborative Group (IGCCCG) risk-group, ¹⁷ and histology. However, this was a single
172	centre analysis with a small sample size.

The Malignant Germ Cell Tumour International Consortium (MaGIC) assembled a large pooled dataset of extracranial GCT patients treated across multiple clinical trials and collaborative groups^{20, 22}, allowing for secondary analysis of prospective trial data. For this current study, we derived a relatively homogenous subgroup of male patients with GCT across three age-groups (children, adolescents, and young adults) in order to compare event-free survival (EFS). A secondary objective was to determine whether the IGCCCG risk stratification system used in adult studies¹⁷ was predictive of outcome in pediatric or adolescent patients with GCTs.

Patients and Methods

At the time of this analysis, the MaGIC database included all patients enrolled in five trials conducted by the Children's Oncology Group (COG; INT-1016,²³ INT-0097,¹⁸ AGCT0132,²⁴ AGCT01P1²⁵ and P9749²⁶), three trials from the Children's Cancer and Leukemia Group (CCLG; GCI,²⁷ GCII²⁸ and GCIII²⁹), and three trials from the Medical Research Council (MRC; TE09,³⁰ TE13³¹ and TE20³²). Each trial had received research ethics board approval from the relevant agencies. The project was reviewed and approved by the Institutional Review Board at the Dana-Farber Cancer Institute.

47 190

> From the total dataset of 2,024 patients, we selected males age 0-30 years with newly diagnosed, metastatic, non-seminomatous malignant GCT of the testis, retroperitoneum or mediastinum. The resulting subgroup of 593 patients provided a population with relatively uniform

disease characteristics that was large enough to provide adequate numbers of patients within each of the three age-groups.

In order to maintain uniform treatment intensity, we only included patients treated with standard regimens with outcomes known to be similar to each other. The regimens included the adult standard-of-care BEP (weekly bleomycin, represented henceforth by the upper case letter 'B', and once per cycle etoposide and cisplatin), the pediatric standard-of-care PEb (cisplatin, etoposide and reduced bleomycin used once per cycle, represented henceforth by the lowercase letter 'b'), HD-PEb (high-dose cisplatin and Eb), C-PEb (cyclophosphamide and PEb), and pediatric JEb (carboplatin and Eb). We included pediatric JEb as it has similar outcomes to pediatric PEb^{29,33}. However, adult patients treated with carboplatin regimens were excluded as these regimens, which notably used lower doses of carboplatin than those used in paediatric regimens, have been shown to be inferior to BEP in randomized trials.^{30, 34}

We categorized 'age-group' as children (age 0 to <11 years), adolescents (11 to <18 years), or young adults (18 to <30 years old). The selection of age 11 years as the cut-off between children and adolescents was based on our earlier analysis which showed this age to be the most significant and discriminant prognostic cut-off among pediatric GCTs.²² We selected 18 years as the defining age between adolescents and young adults as it is the most frequent age of transition from pediatric to adult care in many centres and clinical trials. We defined 'metastatic' as lymph node metastasis or distant sites, classified in the MRC trials as stage II or III, in CCLG as stage II-IV, or in COG as stage III or IV.

Page 11 of 57

Cancer

Next, we retrospectively applied the IGCCCG risk stratification, assigning each patient to either the good-risk, intermediate-risk, or poor-risk group.¹⁷ The IGCCCG criteria utilize histologic subtype, primary site, sites of metastases, and pre-chemotherapy serum levels of alpha fetoprotein (AFP), ß subunit of human chorionic gonadotropin (BHCG), and lactate dehydrogenase (LDH) to determine risk-group, thus providing a composite variable of the most significant (adult) prognostic factors. Of note, tumor marker levels in pediatric trials measured at "diagnosis" may have been pre-surgical levels, rather than post-surgical levels as used by the IGCCCG. Furthermore, since some of the trial protocols of our pooled dataset were conducted prior to the IGCCCG classification, and because IGCCCG risk stratification has not traditionally been applied to pediatric GCT patients, we expected and encountered a high rate of missing values on the relevant data elements, especially LDH levels. If the particular value of a variable was not available to assign the IGCCCG risk group, we assumed (for the primary analysis) that the value would not have increased the assigned risk group (i.e., patients were assigned to the good-risk group by default and positive evidence was required to elevate a patient to the intermediate-risk or poor-risk groups) as this is analogous to what would be done in a clinical setting. A sensitivity analysis including only patients with complete stratifying data available was also performed.

The primary outcome was EFS, defined as the time interval from date of diagnosis to relapse or progression, second malignancy, death, or date last seen (whichever occurred first). The two potential predictor variables of main interest were age-group and IGCCCG risk-group. We constructed survival curves using the Kaplan-Meier method and used the log-rank test to compare EFS. We examined whether the IGCCCG risk-group within each age-group was significantly associated with EFS. We then conducted a multivariable Cox proportional hazards

2 3 4	240
5 6	241
7 8	242
9 10	243
11 12 13	244
13 14 15	245
16 17	246
18 19	247
20 21	247
22 23	_
24 25 26	249 250
20 27 28	250
29 30	
31 32	252
33 34	253
35 36 37	254
37 38 39	255
40 41	256
42 43	257
44 45	258
46 47	259
48 49 50	260
50 51 52	261
53 54	262
55 56	263
57 58 59	
59 60	

1

240 regression analysis to determine whether age-group (with adolescent age as the reference level) 241 remained independently significant when adjusting for IGCCCG risk group. Lastly, we 242 conducted sensitivity analyses to determine whether the results remained the same if we 243 excluded all patients a) who received carboplatin (given historic results of carboplatin studies in 244 adult patients), and b) with mediastinal primary sites of disease (given that mediastinal primary 245 non-seminomatous tumors are assigned to the IGCCCG poor-risk group regardless of any other 246 risk factors). A P-value of ≤ 0.050 was considered as evidence of a significant difference. All 247 analyses were conducted by the authors using Stata version 13.1 (College Station, TX). 248 249 Results The Consort diagram (Fig.1) shows the flow of patients in this study. From a total of 2024 250 251 non-duplicated records in the pooled database, 593 patients met inclusion criteria, of which 191 252 were from pediatric studies and 402 from adult studies. Table 1 shows the characteristics of the source studies, including their patient populations, regimens used, and the number of patients from 253 254 each trial who met eligibility criteria for this study. 255 256 The characteristics of all included patients are shown in Table 2. The mean (\pm standard 257 deviation) age was 19.4 (\pm 8.9) years. Five-hundred and thirty patients presented with testicular 258 tumors (89.4%), 44 (7.4%) with mediastinal tumors, and 19 (3.3%) with retroperitoneal primary 259 tumors. There were 90 children, 109 adolescents, and 394 young adults. Among the 90 children, 260 84 (93%) were less than 3 years old. Among the 109 adolescents, only four patients were between 261 11 and 13 years old. Tumour marker elevation was significantly different between age-groups: 262 adolescents had the highest mean serum BHCG level (24,288 IU/L) and mean LDH level (934

U/L), while the pediatric group demonstrated the highest mean AFP elevation (29,717 ng/mL).

Page 13 of 57

Cancer

While there was a significant difference in the proportion of patients with poor-risk tumors in the pediatric and adolescent population (46% and 47% respectively) compared with the adult population (6%), this likely reflected the differences in the inclusion criteria of included studies rather than differences in natural distribution. In the adolescent group, 95/109 (87%) patients were treated with pediatric protocols, of whom 85 received cisplatin-based regimes (PEb) and 10 received carboplatin-based regimens (JEb). Fourteen of 109 (13%) adolescents were treated with adult-type regimens (BEP).

Among all 593 patients, there were 91 events and 35 deaths. The overall 5-year EFS was 85% [95% confidence intervals (CI) 82-88 %] and the overall 5-year overall survival (OS) was 94% (95%; CI 92-96%; Fig 2A). The median follow-up time for patients who survived without an event was 5.9 years (range 0.1 to 14.0 years). Age-group was strongly associated with EFS (p=0.0001) (Fig 2B). The 5-year EFS for adolescents (72%; CI = 62-79 %) was lower than for children (90%; CI=81-95 %, p=0.003) and for young adults (88%; CI=84-91%, p=0.0002). Risk-group was also strongly associated with EFS (p<0.0001) (Fig 2C). The 5-year EFS for the good-risk group (89%) was higher than for the intermediate-risk group (76%) (p=0.0003) and poor-risk group (76%) (p<0.0001).

 Figure 3 shows the EFS curves for each age-group stratified by risk-group. Risk-group was not significantly associated with EFS among children (p=0.7162) or young adults in this cohort (p=0.2703) but was associated with EFS among adolescents (p=0.0020). Among the 51 adolescents with poor-risk disease, 5-year EFS was only 57% (95% CI=42-70%), the lowest value observed across all subgroup analyses. In an exploratory analysis, the poor outcome in these 51

patients was not driven by patients being treated on adult regimens (two patients, no events) or JEb regimens (four patients, no events). Adolescent patients treated with the pediatric regimen PEb had a 5- EFS of 64% (95% CI= 53-74%) compared to a 5-yr EFS of 92.9% (95%CI= 59-98%) in adolescent patients treated with the BEP regimen used in adult patients (log-rank p=0.0517). The Cox regression model including both age-group and risk-group (Table 3) demonstrated that, after adjusting for risk-group, the effect of age-group remained statistically significant (likelihood-ratio test for significance of age-group adjusted for risk-group p=0.0025). The difference in EFS between adolescents and children remained significant (HR=0.30., p=0.001), but the difference between adolescents and young adults was no longer significant (HR 0.66, p=0.114). The results did not change if children treated on the carboplatin based JEb regimen were excluded (Table 3), or if patients with mediastinal primary tumors were excluded (Table 3). In a sensitivity analysis, including only the 465 patients who had complete data for IGCCC risk stratification (78% of total sample size), the direction of results remained the same. In the proportional hazard analysis of these patients (Supplemental Table 1), the difference in EFS between adolescents and children remained significant (HR=0.21, p=0.001), and the difference between adolescents and adults was not significant (HR=0.59, p=0.081). Discussion

307 Our study describes the outcomes of adolescent males with extracranial GCTs when 308 compared against children and young adults within a large pooled dataset of collaborative phase 309 III clinical trials. We showed that adolescent males had the lowest 5-year EFS (72%) compared 310 with both children (90%) and young adults (88%) in unadjusted analysis. After adjusting for riskPage 15 of 57

Cancer

311 group, the difference between adolescents and children remained significant, but the difference 312 between adolescents and young adults did not. Furthermore, we examined whether the IGCCCG 313 risk-classification system could successfully discriminate outcome among children or adolescents. 314 The risk-groups were associated with outcome among adolescents, but not among children. This 315 showed that the IGCCCG can be usefully applied for adolescents. Children had excellent outcomes 316 regardless of risk-group, further validating the results of the MaGIC risk stratification²² where all 317 patients <11y belong to the same risk group.</p>

Our findings also pointed to the under-representation of adolescents in clinical trials. There were only 109 adolescent males with metastatic GCT in this entire dataset, pooled from every pediatric clinical trial across North America and the United Kingdom for the last thirty years. Considering that extracranial metastatic GCT is the most common cancer among adolescent males, and that 430 new testicular GCTs are diagnosed in boys aged 15-19 years in the United States each year,¹⁵ this remarkably small number of patient provides a stark example of the adolescent and young adult (AYA) 'gap' in cancer care, research, and outcomes.³⁵

A strength of our study was its pooling of multiple good quality clinical trials to assemble the largest sample size currently possible to conduct this comparison, which any individual trial would not have allowed. This analysis focused on the outcomes of non-germinomatous/non-seminomatous GCTs in males, therefore, the results cannot be extrapolated to female patients or patients with pure germinomas/seminomas. One of our major limitations was the inability to analyse the effect of different therapeutic modalities and their individual impact on outcomes. Surgery is a cornerstone in the management of GCTs and the role of retroperitoneal lymph node dissection (RPLND) for post-chemotherapy residual lesions has been well described in the adult

literature ³⁶⁻³⁹; this analysis was unable to account for its contribution to outcome. A potential weakness of the study was its moderate rate of missing data on the variables needed to assign IGCCCG risk-group. However, the results remained unchanged in a sensitivity analysis in which patients with missing data were excluded, suggesting this factor did not affect conclusions. Lastly, since tumor marker levels in pediatric trials measured at diagnosis may have been pre-surgical levels rather than post-surgical levels, it is possible that some pediatric patients may have been miscategorized on their IGCCCG risk group, which would have biased our risk group analyses. However, the direction of this bias would not be expected to weaken the results. Adolescents with metastatic GCT are biologically and clinically more similar to young adults than children¹⁹, and this study demonstrates that they are also more alike in outcomes. While this study could not assess the superiority of any particular treatment approach or chemotherapy regimen, we believe it provides enough reason to consider treating adolescent males with GCTs differently than young children. We suggest that adolescent males with metastatic GCTs should be treated with approaches that have been developed with the wider evidence-base of adult testicular cancer, allowing them to receive the dose intensity of weekly bleomycin⁴⁰⁻⁴⁴, the predictive stratification of the IGCCCG^{17, 32, 45}, and the surgical guidelines for procedures such as RPLND of post-chemotherapy residual tumors³⁶⁻³⁹. All of these are standards-of-care among medical oncologists and urologists treating adults with metastatic GCTs. The results of this analysis, together with our earlier work on developing a revised GCT risk stratification⁴⁶, has already allowed us to incorporate these lessons into the current generation of GCT clinical trials in the United States and the United Kingdom. The current multi-group trial

Page 17 of 57

Cancer

AGCT1531 (NCT03067181) includes all standard-risk patients between age 11-25 years as a single study group and prescribes these standards to all Furthermore, the COG has petitioned and joined two clinical trials led by adult testicular cancer cooperative groups: the ANZUP P3BEP or COG-AGCT1532 trial of accelerated BEP for high-risk patients, and the Alliance-A031102 TIGER trial for patients with relapsed testicular GCTs. Both these studies were originally planned for adult patients alone, but on the evidence presented here, their eligibility criteria were modified to include adolescent patients. Taken together, these three trials cover the entire spectrum of adolescent GCTs. The availability of the data is due to the work of the Malignant Germ Cell international Consortium (MaGIC) which has galvanized a remarkable collaboration of multiple cooperative groups across the silos of age-groups and international borders⁴⁷. Through MAGIC and other similar efforts, we hope to provide a path that will narrow the gap and improve outcomes for AYA patients with germ cell tumours.

REFERENCES

- 1. Bleyer A, Viny A, Barr R. Cancer in 15- to 29-year-olds by primary site. Oncologist. 2006;11: 590-601.
- 2. Leonard RC, Gregor A, Coleman RE, Lewis I. Strategy needed for adolescent patients with
- cancer. BMJ. 1995;311: 387.
- 3. Thomas DM, Seymour JF, O'Brien T, Sawyer SM, Ashley DM. Adolescent and young adult cancer: a revolution in evolution? Intern Med J. 2006;36: 302-307.
- 4. Carr R, Whiteson M, Edwards M, Morgan S. Young adult cancer services in the UK: the journey to a national network. Clin Med. 2013;13: 258-262.
- 5. Birch JM, Alston RD, Kelsey AM, Quinn MJ, Babb P, McNally RJ. Classification and
- incidence of cancers in adolescents and young adults in England 1979-1997. Br J Cancer. 2002;87: 1267-1274.
- 6. Hollis R, Morgan S. The adolescent with cancer--at the edge of no-man's land. Lancet Oncol. 2001;2: 43-48.
- 7. Albritton KH, Wiggins CH, Nelson HE, Weeks JC. Site of oncologic specialty care for older adolescents in Utah. J Clin Oncol. 2007;25: 4616-4621.
- 8. Eden T. Challenges of teenage and young-adult oncology. Lancet Oncol. 2006;7: 612-613.
- 9. Boissel N, Auclerc MF, Lheritier V, et al. Should adolescents with acute lymphoblastic
- leukemia be treated as old children or young adults? Comparison of the French FRALLE-93 and LALA-94 trials. J Clin Oncol. 2003;21: 774-780.
- 10. Stark D, Lewis I. Improving outcomes for teenagers and young adults (TYA) with cancer. Klin Padiatr. 2013;225: 331-334.
- 11. Hunger SP, Lu X, Devidas M, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's oncology
- group. J Clin Oncol. 2012;30: 1663-1669.
- 12. Paulussen S AS, Juergens HF Cure rates in Ewing tumor patients aged over 15 years are
- better in pediatric oncology units. Results of GPOH CESS/EICESS studies. Proc Am Soc Clin Oncol 2003:816.
- 13. Paulussen M DU, Jürgens H, Ranft A. Should Adolescents with Ewing Sarcoma be treated in pediatric or non-pediatric oncology institutions? An analysis of GPOH Ewing trial
- (CESS/EICESS/EURO-E.W.I.N.G.) data. Pediatr Blood Cancer 2012:1046.
- 14. Collins M WM, Convers R, Herschtal A, Whelan J, Bielack S, Sydes MR, Gelderblom H,
- Ferrari S, Picci P, Smeland S, Eriksson M, Petrilli S, Bleyer A, Thomas DM. Benefits and
- adverse events in younger versus older patients receiving adjuvant chemotherapy for
- osteosarcoma: findings from a 4,403 patient meta-analysis. Journal of Clinical Oncology. 2013;In Press.
- 15. Howlader N, Noone AM, Krapcho M, al e. SEER Cancer Statistics Review, 1975-2008,
- National Cancer Institute. Available from URL: http://seer.cancer.gov?csr/1975 2008/ 2011].
- 16. CRUK. Teenage and young adult cancer statistics. [accessed 13-05-2013.
- 17. International Prognostic Factors Study Group. International germ cell consensus
- classification: A prognostic factor-based staging system for metastatic germ cell cancers. Journal
- of Clinical Oncology. 1997;15: 594-603.
- 18. Cushing B, Giller R, Cullen J, et al. Randomized comparison of combination chemotherapy
- with etoposide, bleomycin, and either high-dose or standard-dose cisplatin in children and
- adolescents with high-risk malignant germ cell tumors: A Pediatric Intergroup Study--Pediatric

2
3

- ³ 417 Oncology Group 9049 and Children's Cancer Group 8882. Journal of Clinical Oncology.
- 4 5 418 2004;22: 2691-2700.
- 419
 419
 419
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
- 421 20. Stoneham SJ, Hale JP, Rodriguez-Galindo C, et al. Adolescents and young adults with a
- ⁹ 422 "rare" cancer: getting past semantics to optimal care for patients with germ cell tumors.
- ¹⁰ 423 Oncologist. 2014;19: 689-692.
- 424 424 425 421. Cost NG, Lubahn JD, Adibi M, et al. A comparison of pediatric, adolescent, and adult testicular germ cell malignancy. Pediatr Blood Cancer. 2014;61: 446-451.
- ¹³⁴²⁵ testicular germ cell malignancy. Pediatr Blood Cancer. 2014;61: 446-451.
- 426
 427
 427
 428
 428
 429
 429
 429
 420
 420
 420
 420
 421
 421
 422
 422
 423
 424
 425
 425
 426
 427
 428
 428
 428
 429
 429
 420
 420
 420
 421
 421
 422
 422
 423
 424
 424
 425
 425
 426
 427
 428
 428
 428
 428
 428
 429
 429
 420
 420
 420
 421
 421
 422
 422
 423
 424
 425
 425
 426
 427
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 429
 429
 420
 420
 420
 421
 421
 422
 422
 423
 424
 424
 425
 425
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 429
 429
 429
 429
 429
 429
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
 428
- ¹⁷ 429 23. Rogers PC, Olson TA, Cullen JW, et al. Treatment of children and adolescents with stage II
- ¹⁸ 430 testicular and stages I and II ovarian malignant germ cell tumors: A Pediatric Intergroup Study--
- ¹⁹ 431 Pediatric Oncology Group 9048 and Children's Cancer Group 8891. Journal of Clinical
- ²⁰ 432 Oncology. 2004;22: 3563-3569.
- 433 24. Shaikh F, Cullen JW, Olson TA, et al. Reduced and Compressed Cisplatin-Based
- 434 Chemotherapy in Children and Adolescents With Intermediate-Risk Extracranial Malignant
- 24 435 Germ Cell Tumors: A Report From the Children's Oncology Group. J Clin Oncol. 2017;35:
- ²⁵ 436 1203-1210.
- ²⁶ 437 25. Malogolowkin MH, Krailo M, Marina N, Olson T, Frazier AL. Pilot study of cisplatin,
- 438 etoposide, bleomycin, and escalating dose cyclophosphamide therapy for children with high risk
- 439 germ cell tumors: a report of the children's oncology group (COG). Pediatr Blood Cancer.
- 30 440 2013;60: 1602-1605.
- 26. Marina N, Chang KW, Malogolowkin M, et al. Amifostine does not protect against the
- 442 ototoxicity of high-dose cisplatin combined with etoposide and bleomycin in pediatric germ-cell
 443 tumors. Cancer. 2005;104: 841-847.
- 444 27. Mann JR, Pearson D, Barrett A, Raafat F, Barnes JM, Wallendszus KR. Results of the United
 445 Kingdom Children's Cancer Study Group's Malignant Germ Cell Tumor Studies. Cancer.
- ³⁶ ₃₇ 446 1989;63: 1657-1667.
- 447 28. Mann JR, Raafat F, Robinson K, et al. The United Kingdom Children's Cancer Study Group's
- 39 448 Second Germ Cell Tumor Study: Carboplatin, etoposide, and bleomycin are effective treatment
- 40 449 for children with malignant extracranial germ cell tumors, with acceptable toxicity. Journal of 41 450 Clinical Openlogy 2000:18: 3800-3818
- ⁴¹ 450 Clinical Oncology. 2000;18: 3809-3818.
- 42 451 29. Depani S, Stoneham S, Krailo M, Xia C, Nicholson J. Results from the UK Children's
- 45
 452
 452
 453
 453
 453
 454
 453
 455
 455
 455
 456
 457
 457
 457
 457
 458
 459
 459
 459
 459
 451
 451
 452
 453
 453
 453
 454
 454
 455
 455
 455
 455
 455
 455
 455
 456
 457
 457
 457
 457
 457
 458
 459
 459
 459
 451
 451
 452
 452
 453
 454
 454
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 455
 <
- 46 454 30. Horwich A, Sleijfer DT, Fossa SD, et al. Randomized trial of bleomycin, etoposide, and
- 47 455 cisplatin compared with bleomycin, etoposide, and carboplatin in good-prognosis metastatic
- ⁴⁸
 ⁴⁵⁶
 ⁴⁵⁷ nonseminomatous germ cell cancer: a Multiinstitutional Medical Research Council/European
 ⁴⁹ Organization for Research and Treatment of Cancer Trial. Journal of Clinical Oncology.
- ⁵⁰ 458 1997;15: 1844-1852.
- ⁵¹ 459 31. Kaye SB, Mead GM, Fossa S, et al. Intensive induction-sequential chemotherapy with
- 460 BOP/VIP-B compared with treatment with BEP/EP for poor-prognosis metastatic
- 54 461 nonseminomatous germ cell tumor: A randomized Medical Research Council/European
- 55
- 56
- 57

- Organization for Research and Treatment of Cancer study. Journal of Clinical Oncology.
- 1998;16 (2): 692-701.

- 32. De Wit R, Roberts JT, Wilkinson PM, et al. Equivalence of three or four cycles of
- bleomycin, etoposide, and cisplatin chemotherapy and of a 3- or 5-day schedule in good-
- prognosis germ cell cancer: A randomized study of the European Organization for Research and
- Treatment of Cancer Genitourinary Tract Cancer Cooperative Group and the Medical Research
- Council. Journal of Clinical Oncology. 2001;19 (6): 1629-1640.
- 33. Frazier AL, Stoneham S, Rodriguez-Galindo C, et al. Comparison of carboplatin versus
- cisplatin in the treatment of paediatric extracranial malignant germ cell tumours: A report of the
- Malignant Germ Cell International Consortium. Eur J Cancer. 2018;98: 30-37.
- 34. Shaikh F, Nathan PC, Hale J, Uleryk E, Frazier AL. Is there a role for carboplatin in the
- treatment of malignant germ cell tumors? A systematic review of adult and pediatric trials.
- Pediatr Blood Cancer. 2013;60: 587-592.
- 35. Bleyer A. The adolescent and young adult gap in cancer care and outcome. Curr Probl Pediatr Adolesc Health Care. 2005;35: 182-217.
- 36. Albers P, Albrecht W, Algaba F, et al. Guidelines on Testicular Cancer: 2015 Update. Eur Urol. 2015;68: 1054-1068.
- 37. Heidenreich A, Haidl F, Paffenholz P, Pape C, Neumann U, Pfister D. Surgical management of complex residual masses following systemic chemotherapy for metastatic testicular germ cell
- tumours. Ann Oncol. 2017;28: 362-367.
- 38. Hugen CM, Hu B, Jeldres C, et al. Utilization of retroperitoneal lymph node dissection for testicular cancer in the United States: Results from the National Cancer Database (1998-2011). Urol Oncol. 2016;34: 487.e487-487.e411.
- 39. Stephenson AJ, Bosl GJ, Motzer RJ, et al. Retroperitoneal lymph node dissection for
- nonseminomatous germ cell testicular cancer: impact of patient selection factors on outcome. J Clin Oncol. 2005;23: 2781-2788.
- 40. De Wit R, Stoter G, Kaye SB, et al. Importance of bleomycin in combination chemotherapy for good-prognosis testicular nonseminoma: A randomized study of the European Organization
- for Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group. Journal of Clinical Oncology. 1997;15 (5): 1837-1843.
- 41. Culine S, Kerbrat P, Kramar A, et al. Refining the optimal chemotherapy regimen for good-
- risk metastatic nonseminomatous germ-cell tumors: A randomized trial of the Genito-Urinary
- Group of the French Federation of Cancer Centers (GETUG T93BP). Annals of Oncology. 2007;18 (5): 917-924.
- 42. Levi JA, Raghavan D, Harvey V, et al. The importance of bleomycin in combination chemotherapy for good-prognosis germ cell carcinoma. Journal of Clinical Oncology. 1993;11
- (7): 1300-1305.
- 43. Grimison PS, Stockler MR, Thomson DB, et al. Comparison of Two Standard Chemotherapy
- Regimens for Good-Prognosis Germ Cell Tumors: Updated Analysis of a Randomized Trial.
- JNCI Journal of the National Cancer Institute. 2010;102: 1253-1262.
- 44. Toner GC, Stockler MR, Boyer MJ, et al. Comparison of two standard chemotherapy
- regimens for good-prognosis germ-cell tumours; a randomised trial. Australian and New Zealand Germ Cell Trial Group. Lancet. 2001;357: 739-745.
- 45. Einhorn LH, Williams SD, Loehrer PJ, et al. Evaluation of optimal duration of chemotherapy
- in favorable-prognosis disseminated germ cell tumors: a Southeastern Cancer Study Group
- protocol. J Clin Oncol. 1989;7: 387-391.

1 2		
3 4	508 509	46. Frazier AL, Hale JP, Rodriguez-Galindo C, et al. Revised risk classification for pediatric extracranial germ cell tumors based on 25 years of clinical trial data from the United Kingdom
5	510	and United States. J Clin Oncol. 2015;33: 195-201.
6 7	511	47. Olson TA, Murray MJ, Rodriguez-Galindo C, et al. Pediatric and Adolescent Extracranial
8	512	Germ Cell Tumors: The Road to Collaboration. J Clin Oncol. 2015;33: 3018-3028.
9	513	
10		
11 12		
12		
14		
15		
16 17		
17		
19		
20		
21 22		
23		
24		
25 26		
20 27		
28		
29		
30 31		
32		
33		
34 25		
35 36		
37		
38		
39 40		
41		
42		
43 44		
44 45		
46		
47		
48 49		
50		
51		
52 53		
53 54		
55		
56		
57 58		21
59		21

514	Table 1.	Characteristics	of Included	Clinical Trials

Study	Patients in Source Studies	Regimens	Number in present study
ТЕ09	598 adults with good-prognosis	4BEP	139
1207	testicular NGGCTs (273 under 30Y)	4JEB (Carboplatin AUC 5)	0
TE13	380 adults with poor-prognosis	BEP/EP	58
	NGGCTs (121 under 30Y)	BOP/VIP-B	0
TE20	812 adults with good-prognosis GCTs (230 NGGCTs under 30Y)	4BEP or 3BEP	205
GC2	137 children with MGCT	JEb (Carboplatin 600 mg/m ²)	39
GC3	138 children with MGCT	JEb (Carboplatin 600 mg/m ²)	9
POG 9048 (INT 1016)	74 children with intermediate-risk NGGCTs	4PEb	0
POG 9049	299 children with high-risk	4PEb	43
(INT 0097)	MGCTs	4HD-PEb	43
P9749	25 children with high-risk MGCT	4HD-PEb	4
AGCT01P1	19 children with high-risk NGGCT	4C-PEb	5
AGCT0132	218 children with intermediate- risk NGGCTs	3PEb	47

Abbreviations: AUC, area under the curve; b, bleomycin once per cycle; B, bleomycin once per week; C, cyclophosphamide; E, etoposide; HD-P, high dose cisplatin; I, ifosfamide; J, carboplatin; MGCT, malignant germ cell tumors; NGGCT, non-germinomatous germ cell tumors; O, vincristine; P, cisplatin; POG, Pediatric Oncology Group; V, etoposide. * includes 38 patients from GCT2 and 1 patient from GCT1

1 2
3 4 5
5 6 7
8 9
10 11
12 13
14 15
16 17 18
19 20
21 22
23 24
25 26
27 28 29
30 31
32 33
34 35
36 37
38 39 40
41 42
43 44
45 46
47 48 49
50 51
52 53
54 55
56 57 58
59 60

Table 2. Patient Characteristics

Variable	All Pts 0 to 30y N (%)	0 to <11y N (%)	11 to <18y N (%)	18 to 30y N (%)
	N=593	N=90	N=109	N=394
Age mean (SD)	19.4 (8.9)	1.9 (1.9)	14.7 (1.5)	24.8 (3.6)
Testicular	530 (89%)	67 (74%)	82(75%)	381 (96.7%)
Mediastinal tumor	44 (7%)	16 (18%)	22 (20%)	6 (1.5%)
Retroperitoneal	19 (3%)	7(8%)	5(5%)	7 (1.7%)
AFP (ng/mL)				
Mean	6294	29717	6924	857
(range)	(0 -700000)	(8-700000)	(0-96000)	(0-63630)
<1000	449 (76%)	34 (38%)	57 (52%)	358 (91%)
1,000-10,000	68 (11%)	23 (26%)	25 (23%)	20 (5%)
>10,000	62 (10%)	30 (33%)	23 (21%)	9 (2%)
Missing	14 (2%)	3 (3%)	4 (4%)	7 (2%)
βHCG (IU/L)				
Mean	12358	5	24289	11592
(range)	(0-1057700)	(0-62)	(1-990000)	(0-1057700)
<5,000	435 (73%)	33 (37%)	44 (40%)	358 (91%)
5,000 - 50,000	30 (5%)	0 (0%)	12 (11%)	18 (5%)
>50,000	14 (2%)	0 (0%)	3 (3%)	11 (3%)
Missing	114 (19%)	57 (63%)	50 (46%)	7 (2%)
LDH (U/L)				
Mean	587	701	934	500
(range)	(77-5540)	(149-3631)	(77-5540)	(93-5186)
<930	318 (54%)	22 (24%)	40 (37%)	256 (65%)
930-6200	47 (8%)	7 (8%)	19 (17%)	21 (5%)
>6200	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Missing	228 (38%)	61 (68%)	50 (46%)	117 (30%)
Non-pulmonary visceral metastases	34 (6%)	9 (10%)	16 (15 %)	9 (2%)
RiskGroup				
Good	267 (45 %)	4 (4%)	14 (13%)	249 (63%)
Intermediate	82 (14%)	21 (23%)	23 (21%)	38 (10%)
Poor	116 (20%)	41 (46%)	51 (47%)	24 (6%)
Missing	128 (21%)	24 (27%)	21 (19%)	83 (21%)

1 2 3 4 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 24 25 26 27 8 9 30 31 23 34 5 36 37 8 9 40 41 22 34 5 6 7 8 9 10 11 23 24 25 26 27 8 9 30 31 32 33 45 36 37 8 9 40 11 23 45 5 6 7 8 9 10 11 23 45 5 6 7 8 9 10 11 23 44 5 6 7 8 9 10 11 23 44 5 6 7 8 9 10 11 23 24 25 26 27 8 9 30 31 32 33 34 5 36 37 8 9 40 11 23 24 25 26 27 8 9 30 31 22 33 34 5 36 37 8 9 40 11 23 24 25 26 27 8 9 30 31 32 33 4 5 36 37 8 9 40 41 22 32 42 5 26 27 8 9 30 31 32 33 4 5 36 37 8 9 40 41 42 33 44 5 36 37 8 9 40 41 42 33 44 5 36 37 8 39 40 41 42 33 44 5 36 37 8 9 40 41 42 25 26 27 8 9 30 31 32 33 45 36 37 8 9 40 41 42 33 44 5 36 37 8 9 40 41 42 33 34 5 36 37 8 9 40 41 42 33 45 36 37 8 9 40 41 42 33 45 36 37 8 9 40 41 42 33 45 36 37 8 9 40 41 42 43 44 5 36 37 8 9 40 41 42 43 45 5 37 8 9 40 41 42 43 45 5 3 7 8 9 40 41 42 4 5 8 9 4 5 8 9 4 4 4 4 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 4 5 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	521 522
45 46 47	
48 49	523
50 51	524
52 53	525
54 55	526
56 57 58 59 60	527

1

Table 3. Univariate Kaplan-Meier and Multivariable Cox Regression Analysis of Age-Group 521 and Risk-Group. 522

		Univ	ariate		N	Aultivariate	
	1		All Patien	ts (N=593)	1		
Variable	5y EFS (%)	Hazard Ratio	95% CI	P value	Hazard Ratio	95% CI	P value
Age Group							
0 - <11	90	0.31	0.14-0.65	0.002	0.30	0.14 - 0.63	0.001
11 - <18	72	Reference			Reference		
18 - <30	88	0.43	0.27-0.68	0.000	0.66	0.40 - 1.11	0.114
Risk Group							
Good	89	0.42	0.26-0.67	0.000	0.42	0.24 - 0.72	0.002
Intermediate	76	0.87	0.48-1.56	0.634	0.88	0.48 - 1.60	0.663
Poor	76	Reference			Reference		
	1	Jł	Eb patients ex	cluded* (N=5	545)		
Age Group							
0 - <11	92	0.21	0.07-0.60	0.004	0.21	0.07 - 0.59	0.003
11 - <18	69	Reference	0.07 0.00		Reference	0.07 0.09	0.000
18 - <30	88	0.38	0.24-0.60	0.000	0.62	0.36 - 1.03	0.066
Risk Group							
Good	89	0.36	0.22-0.58	0.000	0.39	0.22 - 0.68	0.001
Intermediate	75	0.77	0.42-1.42	0.401	0.81	0.44 - 1.50	0.489
Poor	73	Reference			Reference		
	-	Mediastina	l primary tur	nors exclude	d** (N=549)		
Age Group							
0 - <11	89	0.41	0.18-0.94	0.035	0.40	0.108-0.91	0.029
11 - <18	77	Reference			Reference		
18 - <30	87	0.55	0.33-0.93	0.024	0.83	0.347-1.47	0.506
Risk Group							
Good	89	0.43	0.25-0.75	0.003	0.40	0.22 - 0.74	0.003
Intermediate	76	0.89	0.46-1.72	0.737	0.88	0.45 – 1.71	0.693
Poor	77	Reference			Reference		

Abbreviations: CI, confidence interval; EFS, event-free survival; JEb, carboplatin/etoposide/reduced bleomycin; N, number; y, years. *48 Patients received JEb. **44 Patients with mediastinal tumours.

2		
3 4	528	FIGURE LEGENDS
5 6	529	
7	530	Figure 1. CONSORT diagram describing flow of patients through the study
8 9 10 11 12 13 14 15	531 532 533 534 535 536	Figure 2. A) Event-free survival (EFS) and overall survival (OS) for all patients (N=593) B) EFS by risk-group; C) EFS by age-group
16 17 18 19 20 21 22 32 42 52 62 7 82 93 03 132 33 435 36 37 38 39 40 41 42 43 44 50 51 52 53 45 56	537 538	Figure 3. A) EFS for children (age 0 to <11 years) by risk-group; B) EFS for adolescents (age 11 to <18 years) by risk-group; C) EFS for young adults (age 18 to <30 years) by risk-group.
57 58 59 60		25
00		

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
21 22 23	
23	
24 25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

1 Title: Outcomes of Adolescent Males with Extracranial Metastatic Germ Cell Tumors:- A Report

- 2 from the Malignant Germ Cell Tumor <u>International</u> Consortium.
- 3 Authors:
- 4 Furqan Shaikh¹, Daniel Stark², Adriana Fonseca¹, Ha Dang³, Caihong Xia³, Mark Krailo³, Farzana
- 5 Pashankar⁴, Carlos Rodriguez-Galindo⁵, Thomas A. Olson⁶, James C. Nicholson⁷, Matthew J.
- 6 Murray⁷, James F. Amatruda⁸, Deborah Billmire⁹, Sara Stoneham¹⁰, A. Lindsay Frazier¹¹.
- 7 **Running Title:** Germ Cell Tumors in Adolescent Males
- 8 Authors Degrees and Affiliations:
- 9 Furqan Shaikh MD MSc. The Hospital for Sick Children, University of Toronto
- 10 Daniel Stark MD. The Institute for Medical Research, University of Leeds
- 11 Adriana Fonseca MD. The Hospital for Sick Children, University of Toronto
- 12 Ha Dang PhD. Children's Oncology Group
- 13 Caihong Xia PhD. Children's Oncology Group
- 14 Mark Krailo PhD. Children's Oncology Group
- 15 Farzana Pashankar MD. Yale Cancer Center
- 16 Carlos Rodriguez-Galindo MD. St. Jude Children's Research Hospital
- ⁰ 17 *Thomas Olson MD*. Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta,
- 18 Emory University
- 19 James C. Nichols MD. Cambridge University Hospitals NHS Foundation Trust, Hills Road,
- 7 20 Cambridge, CB2 0QQ, UK
- 21 *Mathew J. Murray MD PhD*. Cambridge University Hospitals NHS Foundation Trust, Hills Road,
- 22 Cambridge, CB2 0QQ, UK
 - 23 James F. Amatruda MD, PhD. Children's Hospital Los Angeles.; University of Southern California.
 - 1

Cancer

2		
3 4	24	Deborah Billmire MD. Riley Hospital for Children
5 6	25	Sara Stoneham MD. Children's and Young Persons Cancer Services, University College London
7 8 9	26	Hospital Trusts, 250 Euston Road, London NW1 2PG.
9 10 11	27	A. Lindsay Frazier MD MSc. Dana-Farber Cancer Institute and Boston Children's Hospital
12 13	28	
14 15	29	Corresponding Author:
16 17 18	30	Dr. Adriana Fonseca,
19 20	31	Division of Hematology/Oncology, The Hospital for Sick Children
21 22	32	555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
23 24	33	adriana.fonseca@sickkids.ca
25 26 27	34	Phone: 1-416-813-7703
28 29	35	Fax: 1-416-813-5327
30 31	36	
32 33 34	37	Financial support:
35 36	38	This work was supported by:
37 38	39	St. Baldrick's Foundation Consortium Grant
39 40	40	Bridging the Gap Fund, Dana Farber Cancer Institute
41 42 43	41	Katie Walker Cancer Trust
44 45	42	Teenage Cancer Trust
46 47	43	William Guy Forbeck Foundation
48 49 50	44	The Franklin Foundation
50 51 52	45	
53 54	46	
55 56	40	
57 58 59		2
59 60		

3 4	47	Conflict of Interest Statement:
5 6 7	48	Furqan Shaikh, Daniel Stark, Adriana Fonseca, Ha Dang, Caihong Xia, Mark Krailo, Farzana
8 9	49	Pashankar, Thomas Olson, James C. Nichols, Mathew J. Murray, James F. Amatruda, Deborah
10 11 12	50	Billmire & Sara Stoneham: No Conflict to declare
13 14	51	Carlos Rodriguez-Galindo: Advisory board Novimmune; A. Lindsay Frazier: Clinical Advisory
15 16 17	52	board for Decibel Therapeutics.
18 19	53	
20 21	54	Author Contribution Statement:
22 23 24	55	Furqan Shaikh: Conceptualization, methodology, data curation, formal analysis, original draft,
25 26	56	writing- review and editing.
27 28 29	57	Daniel Stark: Conceptualization, methodology, data acquisition writing - review and editing.
30 31 32	58	Adriana Fonseca: Data curation, formal analysis, original draft, and writing- review and editing.
33 34	59	Ha Dang: Data curation, methodology, formal analysis, writing- review and editing.
35 36 37	60	Caihong Xia: Data curation, methodology, formal analysis, writing- review and editing.
38 39	61	Mark Krailo: Conceptualization, methodology, data curation, formal analysis, writing- review
40 41 42	62	and editing.
43 44	63	Farzana Pashankar: Conceptualization, methodology, data acquisition writing - review and editing.
45 46 47	64	Carlos Rodriguez-Galindo: Conceptualization, funding acquisition, methodology, writing - review
48 49	65	and editing.
50 51	66	Thomas Olson: Conceptualization, methodology, data acquisition writing - review and editing.
52 53	67	James C. Nichols: Conceptualization, methodology, data acquisition writing - review and editing.
54 55 56	68	Mathew J. Murray: Conceptualization, methodology, data acquisition writing - review and editing.
57 58 59		3

Page 29 of 57

 Cancer

James F. Amatruda: Conceptualization, funding acquisition, methodology, writing - review and

editing. Deborah Billmire: Conceptualization, funding acquisition, methodology, writing - review and editing. Sara Stoneham: Conceptualization, methodology, data acquisition writing - review and editing. A. Lindsay Frazier: Conceptualization, funding acquisition, methodology, writing - review and editing. All authors have made meaningful contributions, approved the final version of the manuscript and are accountable for all aspects of the work. Lay Summary: Adolescent males with metastatic germ cell tumors are frequently treated with regimens developed for children. In this study, we built a large dataset of male patients with metastatic germ cell tumors across different age groups to understand the outcomes of adolescent patients when compared with children and young adults. Our results suggest that adolescent males with metastatic germ cell tumors have worse results than children and are more similar to young adults with germ cell tumors. Therefore, the treatment of adolescents with germ cell tumors, should resemble young adult therapeutic approaches. **Précis for Table of Contents:** EFS for adolescent patients with metastatic germ cell tumors was similar to young adults but significantly worse than for children. This finding highlights the importance of coordinating

91 initiatives across clinical trial organizations to improve outcomes for adolescents and young adults.

92 Abstract:

93 PURPOSE: Adolescents with extracranial metastatic germ cell tumors (GCTs) are often treated on
94 regimens developed for children, but more closely resemble the clinical characteristics of young
95 adult patients. We sought to determine event-free survival (EFS) for adolescents with GCTs and
96 compared children and young adults.

97 PATIENTS AND METHODS: We assembled an individual patient database of eleven GCT trials: 98 eight conducted by pediatric cooperative groups and three by an adult group. We included male 99 patients aged 0-30 years with metastatic, non-seminomatous malignant GCTs of the testis, 100 retroperitoneum, or mediastinum, treated with platinum-based chemotherapy. We categorized age-101 group as children (0 to <11 years), adolescents (11 to <18 years), or young adults (18 to <30 years 102 old). We compared EFS and adjusted for risk-group using Cox proportional hazards analysis.

103 RESULTS: From a total of 2,024 individual records, 593 patients met inclusion criteria, of whom 104 90 were children, 109 were adolescents, and 394 were young adults. The 5-year EFS for 105 adolescents [72 %; 95% confidence-interval (CI)=62-79%] was lower than for children (90%; 106 CI=81-95%, p=0.003) or young adults (88%; CI=84-91%, p=0.0002). International Germ Cell 107 Cancer Collaborative Group (IGCCCG) risk-group was associated with EFS in the adolescent age-108 group (p=0.0257). After adjusting for risk-group, the difference in EFS between adolescents and 109 children remained significant (HR=0.30, p=0.001).

111 CONCLUSION: EFS for adolescent patients with metastatic GCTs was similar to young adults 112 but significantly worse than for children. This finding highlights the importance of coordinating 113 initiatives across clinical trial organizations to improve outcomes for adolescents and young adults. **Keywords:** Germ cell tumors, adolescent males, outcomes, AYA, Testicular GCT.

1		
2 3 4	115	
5 6	116	Total numbers:
7 8 9	117	Text pages: 24
9 10 11	118	Tables: 3
12 13	119	Figures: 3
14 15	120	Supplemental material: 1 table
16 17 18	121	Previous presentations:
19 20	122	ASCO 2019 Annual meeting
21 22	123	International Extracranial Germ Cell Tumor Conference 2019
23 24 25	124	
26 27	125	
28 29		
30 31		
32 33		
34		
35 36		
37		
38 39		
40 41		
41		
43		
44 45		
46		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57		
58 59		6
60		

126 Background

> Adolescents and young adults (AYAs) with cancer are a unique group of patients with special characteristics.¹⁻⁴ AYAs develop a specific spectrum of cancers.⁵ require age-appropriate psychosocial support, and often inhabit a medical 'no man's land'⁶ where they are neither the specific focus of pediatric or adult worlds of oncology.⁷ This results in their care being underresearched, trials under-accrued, and optimal management disputed.⁸ AYAs may sometimes be subject to professional competition for patient 'ownership' or an individual clinical conviction that the management used for one age-group is right for another.^{9, 10} But specific attention to the needs of AYA cancer patients has yielded progress. In acute lymphoblastic leukemia, management has evolved based upon pooling of data from different treatment approaches, with greatly improved AYA outcomes in recent trials.¹¹ Similarly, Ewing sarcoma outcomes for AYAs were inferior to those seen in children, until collaborative protocols overcame this difference.^{12, 13} In osteosarcoma, outcomes for AYAs are also inferior to those observed in children, and pooling of clinical trial data has hypothesised tractable reasons for these differences related to pharmacologic or clinical factors.¹⁴ We believe similar advances can be made for AYA patients with GCTs through collaborative, investigative efforts.

Extracranial germ cell tumors (GCTs) account for approximately 3-4% of cancers in children, 14% of cancers in adolescents aged 15-19 years, and 18% of cancers in young adults aged 20-30 years.^{15, 16} Thus, GCTs are among the few malignancies that are encountered relatively commonly by both pediatric and medical oncologists. However, treatment regimens have evolved separately within pediatric and adult oncology collaborative groups. The two groups use different

Cancer

3
4
5
6
7
8
-
9
10
11
12
13
14
15
16
17
18
19
20
21
י <u>∸</u> רר
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
29
40
41
42
43
44
45
45
45 46
45 46 47
45 46 47 48
45 46 47 48 49
45 46 47 48
45 46 47 48 49 50
45 46 47 48 49 50 51
45 46 47 48 49 50 51 52
45 46 47 48 49 50 51 52 53
45 46 47 48 49 50 51 52
45 46 47 48 49 50 51 52 53
45 46 47 48 49 50 51 52 53 54 55
45 46 47 48 49 50 51 52 53 54 55 56
45 46 47 48 49 50 51 52 53 54 55 56 57
45 46 47 48 49 50 51 52 53 54 55 56

60

staging and risk stratification systems, different numbers of cycles, and different cumulative doses
of chemotherapy.^{17, 18}

150

151 Historically, patients under the age of 15-18 years in North America or under 16 years in 152 the United Kingdom (UK) have been treated on pediatric regimens, and most adolescents within 153 these ages have been treated with the approaches developed for young children. On the other hand, 154 it can be argued that adolescents with GCTs seem to more closely resemble the characteristics of 155 young adult patients with respect to clinical, biological and epidemiological characteristics.¹⁹ 156 Thus, there is a knowledge gap about the optimal approach to treating adolescents with GCTs. To 157 date, it is not known whether adolescents with GCTs are more effectively treated with pediatric or 158 adult approaches. Compounding this matter is the observation that adolescents with GCTs are 159 under-represented in clinical trials, frequently too old to meet the age inclusion criteria of pediatric 160 trials and too young to meet age eligibility for adult studies.²⁰

161

162 We sought to determine whether adolescents with GCTs experience outcomes that are 163 more alike to children or to young adults, and where the dividing line between pediatric and adult 164 standards of care or clinical trial inclusion criteria should be drawn. There is only limited evidence 165 to help guide such discussions. This limitation stems from the heterogeneous manifestations of 166 GCTs across age-groups which precludes direct comparisons, as well as the relatively small 167 sample size of individual trials which prevents adequately powered subgroup analyses. Previously, Cost et al.²¹ reported on the outcomes among 20 children, 39 adolescents, and 354 adult patients 168 169 with testicular GCTs treated at their institution. The EFS for adolescents was worse when 170 compared with children and young adults, even after adjusting for stage, International Germ Cell

171 Cancer Collaborative Group (IGCCCG) risk-group, ¹⁷ and histology. However, this was a single
172 centre analysis with a small sample size.

The Malignant Germ Cell Tumour International Consortium (MaGIC) assembled a large pooled dataset of extracranial GCT patients treated across multiple clinical trials and collaborative groups^{20, 22}, allowing for secondary analysis of prospective trial data. For this current study, we derived a relatively homogenous subgroup of male patients with GCT across three age-groups (children, adolescents, and young adults) in order to compare event-free survival (EFS). A secondary objective was to determine whether the IGCCCG risk stratification system used in adult studies¹⁷ was predictive of outcome in pediatric or adolescent patients with GCTs.

Patients and Methods

At the time of this analysis, the MaGIC database included all patients enrolled in five trials conducted by the Children's Oncology Group (COG; INT-1016,²³ INT-0097,¹⁸ AGCT0132,²⁴ AGCT01P1²⁵ and P9749²⁶), three trials from the Children's Cancer and Leukemia Group (CCLG; GCI,²⁷ GCII²⁸ and GCIII²⁹), and three trials from the Medical Research Council (MRC; TE09,³⁰ TE13³¹ and TE20³²). Each trial had received research ethics board approval from the relevant agencies. The project was reviewed and approved by the Institutional Review Board at the Dana-Farber Cancer Institute.

From the total dataset of 2,024 patients, we selected males age 0-30 years with newly diagnosed, metastatic, non-seminomatous malignant GCT of the testis, retroperitoneum or mediastinum. The resulting subgroup of 593 patients provided a population with relatively uniform

disease characteristics that was large enough to provide adequate numbers of patients within each of the three age-groups.

In order to maintain uniform treatment intensity, we only included patients treated with standard regimens with outcomes known to be similar to each other. The regimens included the adult standard-of-care BEP (weekly bleomycin, represented henceforth by the upper case letter 'B', and once per cycle etoposide and cisplatin), the pediatric standard-of-care PEb (cisplatin, etoposide and reduced bleomycin used once per cycle, represented henceforth by the lowercase letter 'b'), HD-PEb (high-dose cisplatin and Eb), C-PEb (cyclophosphamide and PEb), and pediatric JEb (carboplatin and Eb). We included pediatric JEb as it has similar outcomes to pediatric PEb ^{29, 33}. However, adult patients treated with carboplatin regimens were excluded as these regimens, which notably used lower doses of carboplatin than those used in paediatric regimens, have been shown to be inferior to BEP in randomized trials.^{30, 34}

We categorized 'age-group' as children (age 0 to <11 years), adolescents (11 to <18 years), or young adults (18 to <30 years old). The selection of age 11 years as the cut-off between children and adolescents was based on our earlier analysis which showed this age to be the most significant and discriminant prognostic cut-off among pediatric GCTs.²² We selected 18 years as the defining age between adolescents and young adults as it is the most frequent age of transition from pediatric to adult care in many centres and clinical trials. We defined 'metastatic' as lymph node metastasis or distant sites, classified in the MRC trials as stage II or III, in CCLG as stage II-IV, or in COG as stage III or IV.

Next, we retrospectively applied the IGCCCG risk stratification, assigning each patient to either the good-risk, intermediate-risk, or poor-risk group.¹⁷ The IGCCCG criteria utilize histologic subtype, primary site, sites of metastases, and pre-chemotherapy serum levels of alpha fetoprotein (AFP), β subunit of human chorionic gonadotropin (β HCG), and lactate dehydrogenase (LDH) to determine risk-group, thus providing a composite variable of the most significant (adult) prognostic factors.- Of note, tumor marker levels in pediatric trials measured at "diagnosis" may have been pre-surgical levels, rather than post-surgical levels as used by the IGCCCG. Furthermore, sSince some of the trial protocols of our pooled dataset were conducted prior to the IGCCCG classification, and because IGCCCG risk stratification has not traditionally been applied to pediatric GCT patients, we expected and encountered a high rate of missing values on the relevant data elements, especially LDH levels. -If the particular value of a variable was not available to assign the IGCCCG risk group, we assumed (for the primary analysis) that the value would not have increased the assigned risk group (i.e., patients were assigned to the good-risk group by default and positive evidence was required to elevate a patient to the intermediate-risk or poor-risk groups) as this is analogous to what would be done in a clinical setting. A sensitivity analysis including only patients with complete stratifying data available was also performed. The primary outcome was EFS, defined as the time interval from date of diagnosis to relapse or

potential predictor variables of main interest were age-group and IGCCCG risk-group. We
constructed survival curves using the Kaplan-Meier method and used the log-rank test to
compare EFS. We examined whether the IGCCCG risk-group within each age-group was

progression, second malignancy, death, or date last seen (whichever occurred first). The two

239 significantly associated with EFS. We then conducted a multivariable Cox proportional hazards

Page 37 of 57

Cancer

1	
2 3 4	240
4 5 6	241
7 8	242
9 10	243
11 12 13	244
14 15	245
16 17	246
18 19 20	247
21 22	248
23 24	249
25 26 27	250
27 28 29	251
30 31	252
32 33 34	253
34 35 36	254
37 38	255
39 40	256
41 42 43	257
44 45	258
46 47	259
48 49 50	260
50 51 52	261
53 54	261 262
55 56 57	263
57 58 59	
60	

40	regression analysis to determine whether age-group (with adolescent age as the reference level)
41	remained independently significant when adjusting for IGCCCG risk group. Lastly, we
12	conducted sensitivity analyses to determine whether the results remained the same if we
43	excluded all patients a) who received carboplatin (given historic results of carboplatin studies in
14	adult patients), and b) with mediastinal primary sites of disease (given that mediastinal primary
45	non-seminomatous tumors are assigned to the IGCCCG poor-risk group regardless of any other
46	risk factors). A P-value of ≤ 0.050 was considered as evidence of a significant difference. All
17	analyses were conducted by the authors using Stata version 13.1 (College Station, TX).
18	
19	Results
50	The Consort diagram (Fig.1) shows the flow of patients in this study. From a total of 2024
51	non-duplicated records in the pooled database, 593 patients met inclusion criteria, of which 191
52	were from pediatric studies and 402 from adult studies. Table 1 shows the characteristics of the
53	source studies, including their patient populations, regimens used, and the number of patients from
54	each trial who met eligibility criteria for this study.
55	
56	The characteristics of all included patients are shown in Table 2. The mean (±standard
57	deviation) age was 19.4 (\pm 8.9) years. Eive-hundred and thirty patients presented with testicular
58	tumors (89 <u>.4</u> %), 44 (7 <u>.4</u> %) with mediastinal tumors, and 19 (3 <u>.3</u> %) with retroperitoneal primary
59	There were 90 children, 109 adolescents, and 394 young adults. Among the 90 children,
50	84 (93%) were less than 3 years old. Among the 109 adolescents, only four patients were between
51	11 and 13 years oldTumour marker elevation was significantly different between age-groups:
52	adolescents had the highest mean serum β HCG level (24,288 IU/L) and mean LDH level (934
53	U/L), while the pediatric group demonstrated the highest mean AFP elevation (29,717 ng/mL).
	12

While there was a significant difference in the proportion of patients with poor-risk tumors in the pediatric and adolescent population (46% and 47% respectively) compared with the adult population (6%), this likely reflected the differences in the inclusion criteria of included studies rather than differences in natural distribution. In the adolescent group, 95 109 [87%] patients were reated with pediatric protocols of wlomich, 85 received cisplatin-based regimes (PEb) and 10

received carboplatin-based regimens -(JEb). Fourteen of 109 (13%) adolescents were treated with

Among all 593 patients, there were 91 events and 35 deaths. The overall 5-year EFS was 85% [95% confidence intervals (CI) 82-88 %] and the overall 5-year overall survival (OS) was 94% (95%; CI 92-96%; Fig 2A). The median follow-up time for patients who survived without an event was 5.9 years (range 0.1 to 14.0 years). Age-group was strongly associated with EFS (p=0.0001) (Fig 2B). The 5-year EFS for adolescents (72%; CI = 62-79 %) was lower than for children (90%; CI=81-95 %, p=0.003) and for young adults (88%; CI=84-91%, p=0.0002). Risk-group was also strongly associated with EFS (p<0.0001) (Fig 2C). The 5-year EFS for the good-risk group (89%) was higher than for the intermediate-risk group (76%) (p=0.0003) and poor-risk group (76%) (p<0.0001).

 Figure 3 shows the EFS curves for each age-group stratified by risk-group. Risk-group was not significantly associated with EFS among children (p=0.7162) or young adults in this cohort (p=0.2703) but was associated with EFS among adolescents (p=0.0020). Among the 51 adolescents with poor-risk disease, 5-year EFS was only 57% (95% CI=42-70%), the lowest value observed across all subgroup analyses. In an exploratory analysis, the poor outcome in these 51

Cancer

2	
3	
4	
5 6 7 8 9 10	
6	
7	
8	
9	
10	
10	
11 12 13	
12	
13	
14	
15	
16	
15 16 17	
17	
18	
19	
20	
21	
22	
20 21 22 23 24 25 26 27 28 29	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

287	patients was not driven by patients being treated on adult regimens (two patients, no events) or
288	JEb regimens (four patients, no events). Adolescent patients treated with the pediatric regimen
289	PEb had a 5- EFS of 64% (95% CI= 53-74%) compared to a 5-yr EFS of 92.9% (95%CI= 59-98%)
290	in adolescent patients treated with the BEP regimen used in adult <u>patients</u> (log-rank p=0.0517).
291 292	The Cox regression model including both age-group and risk-group (Table 3) demonstrated
293	that, after adjusting for risk-group, the effect of age-group remained statistically significant
294	(likelihood-ratio test for significance of age-group adjusted for risk-group p=0.0025). The
295	difference in EFS between adolescents and children remained significant (HR=0.30., p=0.001),
296	but the difference between adolescents and young adults was no longer significant (HR 0.66,
297	p=0.114). The results did not change if children treated on the carboplatin based JEb regimen were
298	excluded (Table 3), or if patients with mediastinal primary tumors were excluded (Table 3).
299	
300	In a sensitivity analysis, including only the 465 patients who had complete data for IGCCC
301	risk stratification (78% of total sample size), the direction of results remained the same. In the
302	proportional hazard analysis of these patients (Supplemental Table 1), the difference in EFS
303	between adolescents and children remained significant (HR=0.21, p=0.001), and the difference
304	between adolescents and adults was not significant (HR=0.59, p=0.081).
305	
306	Discussion
307	Our study describes the outcomes of adolescent males with extracranial GCTs when

307 Our study describes the outcomes of adolescent males with extracranial GCTs when 308 compared against children and young adults within a large pooled dataset of collaborative phase 309 III clinical trials. We showed that adolescent males had the lowest 5-year EFS (72%) compared 310 with both children (90%) and young adults (88%) in unadjusted analysis. After adjusting for risk-

311 group, the difference between adolescents and children remained significant, but the difference 312 between adolescents and young adults did not. Furthermore, we examined whether the IGCCCG 313 risk-classification system could successfully discriminate outcome among children or adolescents. 314 The risk-groups were associated with outcome among adolescents, but not among children. This 315 showed that the IGCCCG can be usefully applied for adolescents. Children had excellent outcomes 316 regardless of risk-group, further validating the results of the MaGIC risk stratification²² where all 317 patients <11y belong to the same risk group.</p>

Our findings also pointed to the under-representation of adolescents in clinical trials. There were only 109 adolescent males with metastatic GCT in this entire dataset, pooled from every pediatric clinical trial across North America and the United Kingdom for the last thirty years. Considering that extracranial metastatic GCT is the most common cancer among adolescent males, and that 430 new testicular GCTs are diagnosed in boys aged 15-19 years in the United States each year,¹⁵ this remarkably small number of patient provides a stark example of the adolescent and young adult (AYA) 'gap' in cancer care, research, and outcomes.³⁵

A strength of our study was its pooling of multiple good quality clinical trials to assemble the largest sample size currently possible to conduct this comparison, which any individual trial would not have allowed. This analysis focused on the outcomes of non-germinomatous/non-seminomatous GCTs in males, therefore, the results cannot be extrapolated to female patients or patients with pure germinomas/seminomas. One of our major limitations was the inability to analyse the effect of different therapeutic modalities and their individual impact on outcomes. Surgery is a cornerstone in the management of GCTs and the role of retroperitoneal lymph node dissection (RPLND) for post-chemotherapy residual lesions has been well described in the adult Page 41 of 57

Cancer

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
12	
16 17	
17	
18 10	
19	
20	
21 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

355

334	literature ³⁶⁻³⁹ ; this analysis was unable to account for its contribution to outcome. A potential
335	weakness of the study was its moderate rate of missing data on the variables needed to assign
336	IGCCCG risk-group. However, the results remained unchanged in a sensitivity analysis in which
337	patients with missing data were excluded, suggesting this factor did not affect conclusions. Lastly,
338	since tumor marker levels in pediatric trials measured at diagnosis may have been pre-surgical
339	levels rather than post-surgical levels, it is possible that some pediatric patients may have been
340	miscategorized on their IGCCCG risk group, which would have biased our risk group analyses.
341	However, the direction of this bias would not be expected to weaken the results.
342	
343	Adolescents with metastatic GCT are biologically and clinically more similar to young
344	adults than children ¹⁹ , and this study demonstrates that they are also more alike in outcomes. While
345	this study could not assess the superiority of any particular treatment approach or chemotherapy
346	regimen, we believe it provides enough reason to consider treating adolescent males with GCTs
347	differently than young children. We suggest that adolescent males with metastatic GCTs should
348	be treated with approaches that have been developed with the wider evidence-base of adult
349	testicular cancer, allowing them to receive the dose intensity of weekly bleomycin ⁴⁰⁻⁴⁴ , the
350	predictive stratification of the IGCCCG ^{17, 32, 45} , and the surgical guidelines for procedures such as
351	RPLND of post-chemotherapy residual tumors ³⁶⁻³⁹ . All of these are standards-of-care among
352	medical oncologists and urologists treating adults with metastatic GCTs.
353	
354	The results of this analysis, together with our earlier work on developing a revised GCT

of GCT clinical trials in the United States and the United Kingdom. The current multi-group trial

16

risk stratification⁴⁶, has already allowed us to incorporate these lessons into the current generation

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
41	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

60

1

357	AGCT1531 (NCT03067181) includes all standard-risk patients between age 11-25 years as a
358	single study group and prescribes these standards to all Furthermore, the COG has petitioned and
359	joined two clinical trials led by adult testicular cancer cooperative groups: the ANZUP P3BEP or
360	COG-AGCT1532 trial of accelerated BEP for high-risk patients, and the Alliance-A031102
361	TIGER trial for patients with relapsed testicular GCTs. Both these studies were originally planned
362	for adult patients alone, but on the evidence presented here, their eligibility criteria were modified
363	to include adolescent patients. Taken together, these three trials cover the entire spectrum of
364	adolescent GCTs. The availability of the data is due to the work of the Malignant Germ Cell
365	international Consortium (MaGIC) which has galvanized a remarkable collaboration of multiple
366	cooperative groups across the silos of age-groups and international borders ⁴⁷ . Through MAGIC
367	and other similar efforts, we hope to provide a path that will narrow the gap and improve outcomes
368	for AYA patients with germ cell tumours.
369	
370	

³/₄ 372 **REFERENCES**

- ⁵ 373 1. Bleyer A, Viny A, Barr R. Cancer in 15- to 29-year-olds by primary site. Oncologist. 2006;11:
 ⁶ 374 590-601.
- ⁷ 375
 ⁸ 375
 ⁷ Leonard RC, Gregor A, Coleman RE, Lewis I. Strategy needed for adolescent patients with
- ⁹ 376 cancer. BMJ. 1995;311: 387.
- 377 3. Thomas DM, Seymour JF, O'Brien T, Sawyer SM, Ashley DM. Adolescent and young adult
 378 cancer: a revolution in evolution? Intern Med J. 2006;36: 302-307.
- ¹² 379 4. Carr R, Whiteson M, Edwards M, Morgan S. Young adult cancer services in the UK: the journey to a national network. Clin Med. 2013;13: 258-262.
- ¹⁴ 381 5. Birch JM, Alston RD, Kelsey AM, Quinn MJ, Babb P, McNally RJ. Classification and
- ¹⁵ 382 incidence of cancers in adolescents and young adults in England 1979-1997. Br J Cancer.
 ¹⁷ 383 2002;87: 1267-1274.
- 384 6. Hollis R, Morgan S. The adolescent with cancer--at the edge of no-man's land. Lancet Oncol.
 385 2001;2: 43-48.
- 386
 7. Albritton KH, Wiggins CH, Nelson HE, Weeks JC. Site of oncologic specialty care for older adolescents in Utah. J Clin Oncol. 2007;25: 4616-4621.
- 388 8. Eden T. Challenges of teenage and young-adult oncology. Lancet Oncol. 2006;7: 612-613.
- 389 9. Boissel N, Auclerc MF, Lheritier V, et al. Should adolescents with acute lymphoblastic
- 390 leukemia be treated as old children or young adults? Comparison of the French FRALLE-93 and
 391 LALA-94 trials. J Clin Oncol. 2003;21: 774-780.
- 392 392 10. Stark D, Lewis I. Improving outcomes for teenagers and young adults (TYA) with cancer.
 393 Klin Padiatr. 2013;225: 331-334.
- 32 396 group. J Clin Oncol. 2012;30: 1663-1669.
- 33 397 12. Paulussen S AS, Juergens HF Cure rates in Ewing tumor patients aged over 15 years are
- 34 398 better in pediatric oncology units. Results of GPOH CESS/EICESS studies. Proc Am Soc Clin
 35 399 Oncol 2003:816.
- 400
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
- 402 (CESS/EICESS/EURO-E.W.I.N.G.) data. Pediatr Blood Cancer 2012:1046.
- 403 14. Collins M WM, Conyers R, Herschtal A, Whelan J, Bielack S, Sydes MR, Gelderblom H,
- 404 Ferrari S, Picci P, Smeland S, Eriksson M, Petrilli S, Bleyer A, Thomas DM. Benefits and
- 42 405 adverse events in younger versus older patients receiving adjuvant chemotherapy for
- 43 406 osteosarcoma: findings from a 4,403 patient meta-analysis. Journal of Clinical Oncology.
 44 407 2013;In Press.
- 45 408 15. Howlader N, Noone AM, Krapcho M, al e. SEER Cancer Statistics Review, 1975-2008,
- 409 National Cancer Institute. Available from URL: <u>http://seer.cancer.gov?csr/1975_2008/</u> 2011].
- 48 410 16. CRUK. Teenage and young adult cancer statistics. [accessed 13-05-2013.
- 49 411 17. International Prognostic Factors Study Group. International germ cell consensus
- 412 classification: A prognostic factor-based staging system for metastatic germ cell cancers. Journal
 413 of Clinical Oncology. 1997;15: 594-603.
- ⁵² 414 18. Cushing B, Giller R, Cullen J, et al. Randomized comparison of combination chemotherapy
- $_{54}$ 415 with etoposide, bleomycin, and either high-dose or standard-dose cisplatin in children and
- 415 with etoposide, beoffyein, and ether high-dose of standard-dose etsplatin in ethildren and
 416 adolescents with high-risk malignant germ cell tumors: A Pediatric Intergroup Study--Pediatric
- 56
- 57
- 58 59

- Oncology Group 9049 and Children's Cancer Group 8882. Journal of Clinical Oncology. 2004;22: 2691-2700. 19. Collinson K, Murray MJ, Orsi NM, et al. Age-related biological features of germ cell tumors. Genes Chromosomes Cancer. 2014;53: 215-227. 20. Stoneham SJ, Hale JP, Rodriguez-Galindo C, et al. Adolescents and young adults with a "rare" cancer: getting past semantics to optimal care for patients with germ cell tumors. Oncologist. 2014;19: 689-692. 21. Cost NG, Lubahn JD, Adibi M, et al. A comparison of pediatric, adolescent, and adult testicular germ cell malignancy. Pediatr Blood Cancer. 2014;61: 446-451. 22. Frazier AL, Hale JP, Rodriguez-Galindo C, et al. Revised risk classification for pediatric extracranial germ cell tumors based on 25 years of clinical trial data from the United Kingdom and United States. J Clin Oncol (in press). 23. Rogers PC, Olson TA, Cullen JW, et al. Treatment of children and adolescents with stage II testicular and stages I and II ovarian malignant germ cell tumors: A Pediatric Intergroup Study--Pediatric Oncology Group 9048 and Children's Cancer Group 8891. Journal of Clinical Oncology. 2004;22: 3563-3569. 24. Shaikh F, Cullen JW, Olson TA, et al. Reduced and Compressed Cisplatin-Based Chemotherapy in Children and Adolescents With Intermediate-Risk Extracranial Malignant Germ Cell Tumors: A Report From the Children's Oncology Group. J Clin Oncol. 2017;35: 1203-1210. 25. Malogolowkin MH, Krailo M, Marina N, Olson T, Frazier AL. Pilot study of cisplatin, etoposide, bleomycin, and escalating dose cyclophosphamide therapy for children with high risk germ cell tumors: a report of the children's oncology group (COG). Pediatr Blood Cancer. 2013;60: 1602-1605. 26. Marina N, Chang KW, Malogolowkin M, et al. Amifostine does not protect against the ototoxicity of high-dose cisplatin combined with etoposide and bleomycin in pediatric germ-cell tumors. Cancer. 2005;104: 841-847. 27. Mann JR, Pearson D, Barrett A, Raafat F, Barnes JM, Wallendszus KR. Results of the United Kingdom Children's Cancer Study Group's Malignant Germ Cell Tumor Studies. Cancer. 1989:63: 1657-1667. 28. Mann JR, Raafat F, Robinson K, et al. The United Kingdom Children's Cancer Study Group's Second Germ Cell Tumor Study: Carboplatin, etoposide, and bleomycin are effective treatment for children with malignant extracranial germ cell tumors, with acceptable toxicity. Journal of Clinical Oncology. 2000;18: 3809-3818. 29. Depani S, Stoneham S, Krailo M, Xia C, Nicholson J. Results from the UK Children's Cancer and Leukaemia Group study of extracranial germ cell tumours in children and adolescents (GCIII). Eur J Cancer. 2019;118: 49-57. 30. Horwich A, Sleijfer DT, Fossa SD, et al. Randomized trial of bleomycin, etoposide, and cisplatin compared with bleomycin, etoposide, and carboplatin in good-prognosis metastatic nonseminomatous germ cell cancer: a Multiinstitutional Medical Research Council/European Organization for Research and Treatment of Cancer Trial. Journal of Clinical Oncology. 1997;15: 1844-1852. 31. Kaye SB, Mead GM, Fossa S, et al. Intensive induction-sequential chemotherapy with BOP/VIP-B compared with treatment with BEP/EP for poor-prognosis metastatic nonseminomatous germ cell tumor: A randomized Medical Research Council/European

1		
2 3		
4	462	Organization for Research and Treatment of Cancer study. Journal of Clinical Oncology.
5	463	1998;16 (2): 692-701.
6	464	32. De Wit R, Roberts JT, Wilkinson PM, et al. Equivalence of three or four cycles of
7	465	bleomycin, etoposide, and cisplatin chemotherapy and of a 3- or 5-day schedule in good-
8	466	prognosis germ cell cancer: A randomized study of the European Organization for Research and
9 10	467	Treatment of Cancer Genitourinary Tract Cancer Cooperative Group and the Medical Research
11	468	Council. Journal of Clinical Oncology. 2001;19 (6): 1629-1640.
12	469	33. Frazier AL, Stoneham S, Rodriguez-Galindo C, et al. Comparison of carboplatin versus
13	470	cisplatin in the treatment of paediatric extracranial malignant germ cell tumours: A report of the
14	471	Malignant Germ Cell International Consortium. Eur J Cancer. 2018;98: 30-37.
15	472	34. Shaikh F, Nathan PC, Hale J, Uleryk E, Frazier AL. Is there a role for carboplatin in the
16 17	473	treatment of malignant germ cell tumors? A systematic review of adult and pediatric trials.
17 18	474	Pediatr Blood Cancer. 2013;60: 587-592.
19	475	35. Bleyer A. The adolescent and young adult gap in cancer care and outcome. Curr Probl
20	476	Pediatr Adolesc Health Care. 2005;35: 182-217.
21	477	36. Albers P, Albrecht W, Algaba F, et al. Guidelines on Testicular Cancer: 2015 Update. Eur
22	478	Urol. 2015;68: 1054-1068.
23	479	37. Heidenreich A, Haidl F, Paffenholz P, Pape C, Neumann U, Pfister D. Surgical management
24 25	480	of complex residual masses following systemic chemotherapy for metastatic testicular germ cell
25 26	481	tumours. Ann Oncol. 2017;28: 362-367.
27	482	38. Hugen CM, Hu B, Jeldres C, et al. Utilization of retroperitoneal lymph node dissection for
28	483	testicular cancer in the United States: Results from the National Cancer Database (1998-2011).
29	484	Urol Oncol. 2016;34: 487.e487-487.e411.
30	485	39. Stephenson AJ, Bosl GJ, Motzer RJ, et al. Retroperitoneal lymph node dissection for
31 32	486 487	nonseminomatous germ cell testicular cancer: impact of patient selection factors on outcome. J
33	487 488	Clin Oncol. 2005;23: 2781-2788.
34	488 489	40. De Wit R, Stoter G, Kaye SB, et al. Importance of bleomycin in combination chemotherapy for good-prognosis testicular nonseminoma: A randomized study of the European Organization
35	489	for Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group. Journal
36	490 491	of Clinical Oncology. 1997;15 (5): 1837-1843.
37	491	41. Culine S, Kerbrat P, Kramar A, et al. Refining the optimal chemotherapy regimen for good-
38 39	492	risk metastatic nonseminomatous germ-cell tumors: A randomized trial of the Genito-Urinary
40	494	Group of the French Federation of Cancer Centers (GETUG T93BP). Annals of Oncology.
41	495	2007;18 (5): 917-924.
42	496	42. Levi JA, Raghavan D, Harvey V, et al. The importance of bleomycin in combination
43	497	chemotherapy for good-prognosis germ cell carcinoma. Journal of Clinical Oncology. 1993;11
44	498	(7): 1300-1305.
45 46	499	43. Grimison PS, Stockler MR, Thomson DB, et al. Comparison of Two Standard Chemotherapy
40 47	500	Regimens for Good-Prognosis Germ Cell Tumors: Updated Analysis of a Randomized Trial.
48	500	JNCI Journal of the National Cancer Institute. 2010;102: 1253-1262.
49	502	44. Toner GC, Stockler MR, Boyer MJ, et al. Comparison of two standard chemotherapy
50	502	regimens for good-prognosis germ-cell tumours: a randomised trial. Australian and New Zealand
51	505 504	Germ Cell Trial Group. Lancet. 2001;357: 739-745.
52 53	505	45. Einhorn LH, Williams SD, Loehrer PJ, et al. Evaluation of optimal duration of chemotherapy
53 54	505	in favorable-prognosis disseminated germ cell tumors: a Southeastern Cancer Study Group
55	507	protocol. J Clin Oncol. 1989;7: 387-391.
56	207	
57		
58		20

2		
3	508	46. Frazier AL, Hale JP, Rodriguez-Galindo C, et al. Revised risk classification for pediatric
4	509	extracranial germ cell tumors based on 25 years of clinical trial data from the United Kingdom
5	510	and United States. J Clin Oncol. 2015;33: 195-201.
6		
7	511	47. Olson TA, Murray MJ, Rodriguez-Galindo C, et al. Pediatric and Adolescent Extracranial
8	512	Germ Cell Tumors: The Road to Collaboration. J Clin Oncol. 2015;33: 3018-3028.
9	513	
10		
11		
12		
13		
14		
15		
16		
17		
18 19		
19 20		
20 21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40 41		
41		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		-
58		21
59		

Cancer

Study	Patients in Source Studies	Regimens	Number in present study
ТЕ09	598 adults with good-prognosis	4BEP	139
	testicular NGGCTs (273 under 30Y)	4JEB (Carboplatin AUC 5)	0
TE13	380 adults with poor-prognosis	BEP/EP	58
	NGGCTs (121 under 30Y)	BOP/VIP-B	0
TE20	812 adults with good-prognosis	4BEP or 3BEP	205
	GCTs (230 NGGCTs under 30Y)		
GC2	137 children with MGCT	JEb (Carboplatin 600 mg/m ²)	39
GC3	138 children with MGCT	JEb (Carboplatin 600 mg/m ²)	9
POG 9048 (INT 1016)	74 children with intermediate-risk NGGCTs	4PEb	0
POG 9049	299 children with high-risk	4PEb	43
(INT 0097)	MGCTs	4HD-PEb	43
P9749	25 children with high-risk MGCT	4HD-PEb	4
AGCT01P1	19 children with high-risk NGGCT	4C-PEb	5
AGCT0132	218 children with intermediate- risk NGGCTs	3PEb	47

cisplatin; I, ifosfamide; J, carboplatin; MGCT, malignant germ cell tumors; NGGCT, non-germinomatous germ cell tumors; O, vincristine; P, cisplatin; POG, Pediatric Oncology Group; V, etoposide. * includes 38 patients from GCT2 and 1 patient from GCT1

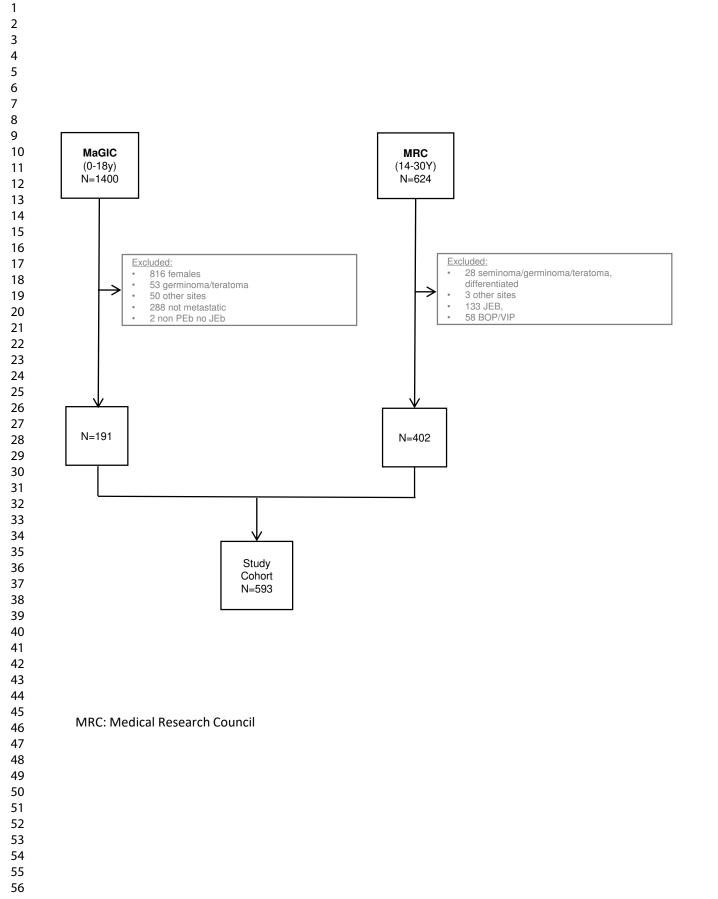
Table 2. Patient Characteristics

Variable	All Pts 0 to 30y N (%)	0 to <11y N (%)	11 to <18y N (%)	18 to 30y N (%)
	N=593	N=90	N=109	N=394
Age mean (SD)	19.4 (8.9)	1.9 (1.9)	14.7 (1.5)	24.8 (3.6)
Testicular	530 (89%)	67 (74%)	82(75%)	381 (96.7%)
Mediastinal tumor	44 (7%)	16 (18%)	22 (20%)	6 (1.5%)
Retroperitoneal	19 (3%)	7(8%)	5(5%)	7 (1.7%)
AFP (ng/mL)				
Mean	6294	29717	6924	857
(range)	(0 -700000)	(8-700000)	(0-96000)	(0-63630)
<1000	449 (76%)	34 (38%)	57 (52%)	358 (91%)
1,000-10,000	68 (11%)	23 (26%)	25 (23%)	20 (5%)
>10,000	62 (10%)	30 (33%)	23 (21%)	9 (2%)
Missing	14 (2%)	3 (3%)	4 (4%)	7 (2%)
βHCG (IU/L)				
Mean	12358	5	24289	11592
(range)	(0-1057700)	(0-62)	(1-990000)	(0-1057700)
<5,000	435 (73%)	33 (37%)	44 (40%)	358 (91%)
5,000 - 50,000	30 (5%)	0 (0%)	12 (11%)	18 (5%)
>50,000	14 (2%)	0 (0%)	3 (3%)	11 (3%)
Missing	114 (19%)	57 (63%)	50 (46%)	7 (2%)
LDH (U/L)				
Mean	587	701	934	500
(range)	(77-5540)	(149-3631)	(77-5540)	(93-5186)
<930	318 (54%)	22 (24%)	40 (37%)	256 (65%)
930-6200	47 (8%)	7 (8%)	19 (17%)	21 (5%)
>6200	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Missing	228 (38%)	61 (68%)	50 (46%)	117 (30%)
Non-pulmonary visceral metastases	34 (6%)	9 (10%)	16 (15 %)	9 (2%)
RiskGroup				
Good	267 (45 %)	4 (4%)	14 (13%)	249 (63%)
Intermediate	82 (14%)	21 (23%)	23 (21%)	38 (10%)
Poor	116 (20%)	41 (46%)	51 (47%)	24 (6%)
Missing	128 (21%)	24 (27%)	21 (19%)	83 (21%)

2	
3	
4	
5	
6	
0	
/	
8	
9	
1	0
	1
1	2
1	2 3
1	4
1	5
1	6
1 1 1	7
1	R
1	9
	0
2	
2	
2	3
2	4
	5
2	6
2	7
2	8
2	9
	-
3	n
	0
3	1
3 3	1 2
3 3 3	1 2 3
3 3 3 3	1 2 3 4
3 3 3 3	1 2 3 4
3 3 3 3 3	1 2 3 4 5
3 3 3 3 3 3 3	1 2 3 4 5
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2 3 4 5 6 7
3 3 3 3 3 3 3 3 3 3	1 2 3 4 5 6 7 8
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2 3 4 5 6 7 8 9
3 3 3 3 3 3 3 3 3 3 3 3 4	1 2 3 4 5 6 7 8 9 0
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2 3 4 5 6 7 8 9 0
3 3 3 3 3 3 3 3 3 4 4	1 2 3 4 5 6 7 8 9 0 1
3 3 3 3 3 3 3 3 4 4 4 4	123456789012
3 3 3 3 3 3 3 3 3 4 4 4 4 4	1234567890123
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4	12345678901234
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4	123456789012345
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4	1234567890123456
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4	12345678901234567
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4	12345678901234567
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	123456789012345678
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	1234567890123456789
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5	12345678901234567890
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5	123456789012345678901
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5	1234567890123456789012
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	12345678901234567890123
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5	12345678901234567890123
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	123456789012345678901234
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	1234567890123456789012345
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 _

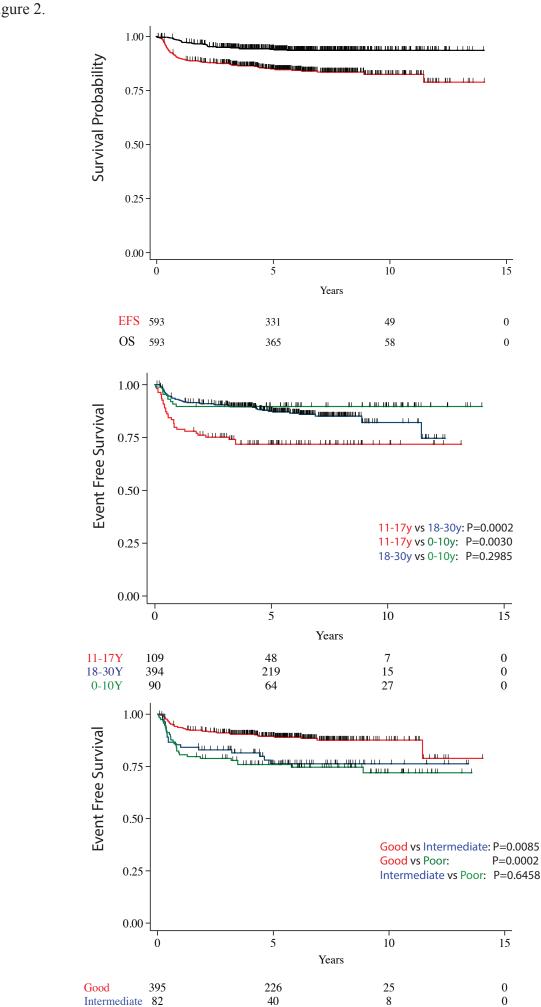
1
2
3
4
5
6
7
8
9
10
11
12
13
14

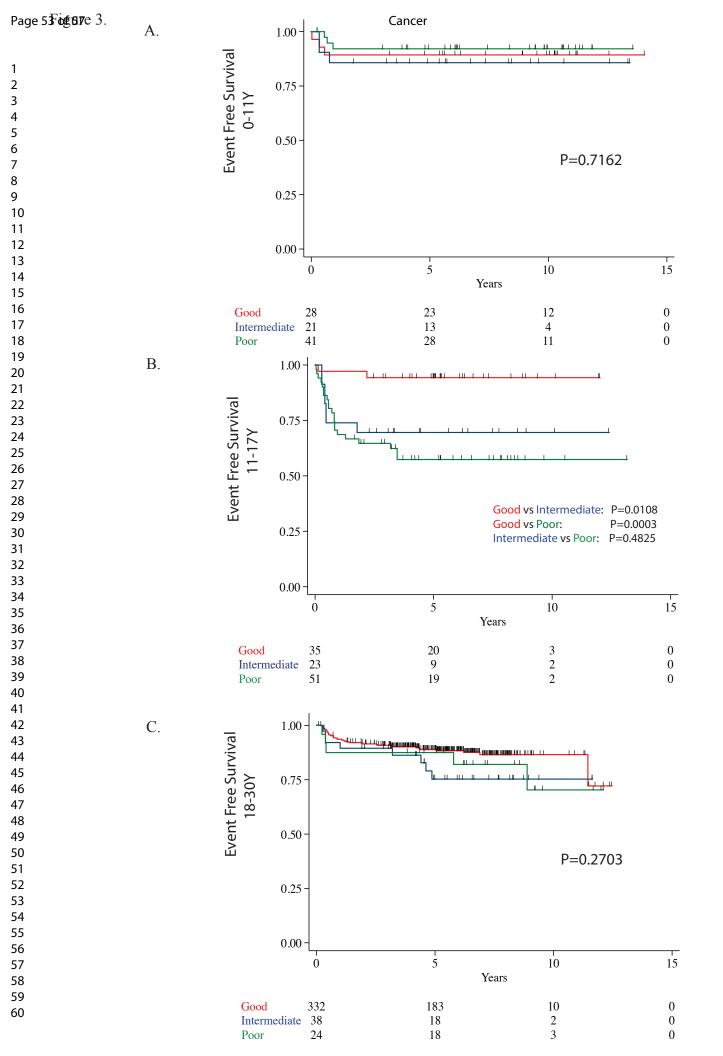

Table 3. Univariate Kaplan-Meier and Multivariable Cox Regression Analysis of Age-Group and Risk-Group.

	Univariate			Multivariate			
	l		All Patien	ts (N=593)			
Variable	5y EFS (%)	Hazard Ratio	95% CI	P value	Hazard Ratio	95% CI	P value
Age Group							
0 - <11	90	0.31	0.14-0.65	0.002	0.30	0.14 - 0.63	0.001
11 - <18	72	Reference			Reference		
18 - <30	88	0.43	0.27-0.68	0.000	0.66	0.40 - 1.11	0.114
Risk Group							
Good	89	0.42	0.26-0.67	0.000	0.42	0.24 - 0.72	0.002
Intermediate	76	0.87	0.48-1.56	0.634	0.88	0.48 - 1.60	0.663
Poor	76	Reference			Reference		
	1	JI	Eb patients ex	cluded* (N=	545)		
Age Group 0 - <11	92	0.21	0.07-0.60	0.004	0.21	0.07 - 0.59	0.003
11 - <18	69	Reference	0.07-0.00	0.004	Reference	0.07 - 0.39	0.005
18 - <30	88	0.38	0.24-0.60	0.000	0.62	0.36 - 1.03	0.066
Risk Group	00	0.50	0.21 0.00	0.000	0.02	0.50 1.05	0.000
Good	89	0.36	0.22-0.58	0.000	0.39	0.22 - 0.68	0.001
Intermediate	75	0.77	0.42-1.42	0.401	0.81	0.44 - 1.50	0.489
Poor	73	Reference			Reference		
		Mediastina	l primary tur	nors exclude	d** (N=549)		
Age Group							
0 - <11	89	0.41	0.18-0.94	0.035	0.40	0.108-0.91	0.029
11 - <18	77	Reference			Reference		
18 - <30	87	0.55	0.33-0.93	0.024	0.83	0.347-1.47	0.506
Risk Group							
Good	89	0.43	0.25-0.75	0.003	0.40	0.22 - 0.74	0.003
Intermediate	76	0.89	0.46-1.72	0.737	0.88	0.45 - 1.71	0.693
Poor	77	Reference			Reference		

Abbreviations: CI, confidence interval; EFS, event-free survival; JEb, carboplatin/etoposide/reduced bleomycin; N, number; y, years. *48 Patients- received JEb. **44 Patients with mediastinal tumours.

2		
3 4	528	FIGURE LEGENDS
5 6	529	
7	530	Figure 1. CONSORT diagram describing flow of patients through the study
8 9 10 11 12 13 14 15	531 532 533 534 535 536	Figure 2. A) Event-free survival (EFS) and overall survival (OS) for all patients (N=593) B) EFS by risk-group; C) EFS by age-group
$\begin{array}{c} 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 940\\ 41\\ 43\\ 445\\ 46\\ 47\\ 48\\ 950\\ 51\\ 52\\ 54\\ 55\\ 56\end{array}$	537 538	Figure 3. A) EFS for children (age 0 to <11 years) by risk-group; B) EFS for adolescents (age 11 to <18 years) by risk-group; C) EFS for young adults (age 18 to <30 years) by risk-group.
57 58		25
59		




A.

Poor

C.

B.

Page 54 of 57

Study	Patients in Source Studies	Regimens	Number included in present study	
TEAO	598 adults with good-prognosis testicular NGGCTs (273 under 30Y)	4BEP	139	
ТЕ09	598 adults will good-prognosis testicular NOOCTS (275 under 501)	4JEB (Carboplatin AUC 5)	0	
TF12	380 adults with poor-prognosis	BEP/EP	58	
TE13	NGGCTs (121 under 30Y)	BOP/VIP-B	0	
TF20	812 adults with good-prognosis		205	
TE20	GCTs (230 NGGCTs under 30Y)	4BEP or 3BEP		
GC2	137 children with MGCT	JEb (Carboplatin 600 mg/m ²)	39 (+1 from GC1)	
GC3	138 children with MGCT	JEb (Carboplatin 600 mg/m ²)	9	
POG 9048 (INT 1016)	74 children with intermediate-risk NGGCTs	4PEb	0	
		4PEb	43	
POG 9049 (INT 0097)	299 children with high-risk MGCTs	4HD-PEb	43	
P9749	25 children with high-risk MGCT	4HD-PEb	4	
AGCT01P1	19 children with high-risk NGGCT	4C-PEb	5	
AGCT0132	218 children with intermediate-risk NGGCTs	3PEb	47	

Abbreviations: AUC, area under the curve; b, bleomycin once per cycle; B, bleomycin once per week; C, cyclophosphamide; E, etoposide; HD-P, high dose cisplatin; l ifosfamide; J, carboplatin; MGCT, malignant germ cell tumors; NGGCT, non-germinomatous germ cell tumors; O, vincristine; P, cisplatin; POG, Pediatric Oncology Group; V, etoposide.

Page 55 of 57

Cancer

Variable	All Pts 0 to 30y N (%)	0 to <11y N (%)	11 to <18y N (%)	18 to 30y N (%)
	N=593	N=90	N=109	N=394
Age mean (SD)	19.4 (8.9)	1.9 (1.9)	14.7 (1.5)	24.8 (3.6)
Testicular	530 (89%)	67 (74%)	82(75%)	381 (96.7%)
Mediastinal tumor	44 (7%)	16 (18%)	22 (20%)	6 (1.5%)
Retroperitoneal	19 (3%)	7(8%)	5(5%)	7 (1.7%)
AFP (ng/mL)				
Mean	6294	29717	6924	857
(range)	(0 -700000)	(8-700000)	(0-96000)	(0-63630)
<1000	449 (76%)	34 (38%)	57 (52%)	358 (91%)
1,000-10,000	68 (11%)	23 (26%)	25 (23%)	20 (5%)
>10,000	62 (10%)	30 (33%)	23 (21%)	9 (2%)
Missing	14 (2%)	3 (3%)	4 (4%)	7 (2%)
βHCG (IU/L)				
Mean	12358	5	24289	11592
(range)	(0-1057700)	(0-62)	(1-990000)	(0-1057700)
<5,000	435 (73%)	33 (37%)	44 (40%)	358 (91%)
5,000 - 50,000	30 (5%)	0 (0%)	12 (11%)	18 (5%)
>50,000	14 (2%)	0 (0%)	3 (3%)	11 (3%)
Missing	114 (19%)	57 (63%)	50 (46%)	7 (2%)
LDH (U/L)				
Mean	587	701	934	500
(range)	(77-5540)	(149-3631)	(77-5540)	(93-5186)
<930	318 (54%)	22 (24%)	40 (37%)	256 (65%)
930-6200	47 (8%)	7 (8%)	19 (17%)	21 (5%)
>6200	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Missing	228 (38%)	61 (68%)	50 (46%)	117 (30%)
Non-pulmonary visceral metastases	34 (6%)	9 (10%)	16 (15 %)	9 (2%)
RiskGroup				
Good	267 (45 %)	4 (4%)	14 (13%)	249 (63%)
Intermediate	82 (14%)	21 (23%)	23 (21%)	38 (10%)
Poor	116 (20%)	41 (46%)	51 (47%)	24 (6%)
Missing	128 (21%)	24 (27%)	21 (19%)	83 (21%)

		Univa	ariate]	Multivariate	e
			All Patient (N=593)			
Variable	5y EFS (%)	Hazard Ratio	95% CI	P value	Hazard Ratio	95% CI	P value
Age Group							
0 - <11	90	0.31	0.14-0.65	0.002	0.30	0.14 - 0.63	0.001
11 - <18	72	Reference			Reference		
18 - <30	88	0.43	0.27-0.68	0.000	0.66	0.40 - 1.11	0.114
Risk Group							
Good	89	0.42	0.26-0.67	0.000	0.42	0.24 - 0.72	0.002
Intermediate	76	0.87	0.48-1.56	0.634	0.88	0.48 - 1.60	0.663
Poor	76	Reference			Reference		
		JEb j	patients exclu	ded* (N=54	5)		
Age Group							
0 - <11	92	0.21	0.07-0.60	0.004	0.21	0.07 - 0.59	0.003
11 - <18	69	Reference			Reference		
18 - <30	88	0.38	0.24-0.60	0.000	0.62	0.36 - 1.03	0.066
Risk Group							
Good	89	0.36	0.22-0.58	0.000	0.39	0.22 - 0.68	0.001
Intermediate	75	0.77	0.42-1.42	0.401	0.81	0.44 - 1.50	0.489
Poor	73	Reference			Reference		
	Ν	lediastinal p	rimary tumo	rs excluded*	* (N=549)		
Age Group							
0 - <11	89	0.41	0.18-0.94	0.035	0.40	0.108-0.91	0.029
11 - <18	77	Reference			Reference		
18 - <30	87	0.55	0.33-0.93	0.024	0.83	0.347-1.47	0.506
Risk Group							
Good	89	0.43	0.25-0.75	0.003	0.40	0.22 - 0.74	0.003
Intermediate	76	0.89	0.46-1.72	0.737	0.88	0.45 - 1.71	0.693
Poor	77	Reference			Reference		

Abbreviations: CI, confidence interval; EFS, event-free survival; JEb, carboplatin/etoposide/reduced bleomycin; N, number; y, years. *48 Patients received JEb. **44 Patients with mediastinal tumours.

		Univariate		Multivariate					
All Patient with	All Patient with non-missing IGCCCG (N=465)								
Variable	Hazard Ratio	95% CI	P value	Hazard Ratio	95% CI	P value			
Age Group									
0 - <11	0.31	0.14-0.65	0.000	0.21	0.09 - 0.52	0.001			
11 - <18	Reference			Reference					
18 - <30	0.43	0.14-0.65	0.002	0.59	0.32 - 1.07	0.081			
Risk Group									
Good	0.29	0.17-0.51	0.000	0.29	0.15 - 0.58	<0.001			
Intermediate	0.87	0.48-1.57	0.646	0.89	0.49 - 1.63	0.706			
Poor	Reference			Reference					