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Abstract Spaceborne Synthetic Aperture Radar (SAR) is a well-established and powerful imaging

technology that can provide high-resolution images of the Earth’s surface on a global scale. For

future SAR systems, one of the key capabilities is to acquire images with both high-resolution

and wide-swath. In parallel to the evolution of SAR sensors, more precise range models, and effec-

tive imaging algorithms are required. Due to the significant azimuth-variance of the echo signal in

High-Resolution Wide-Swath (HRWS) SAR, two challenges have been faced in conventional imag-

ing algorithms. The first challenge is constructing a precise range model of the whole scene and the

second one is to develop an effective imaging algorithm since existing ones fail to process high-

resolution and wide azimuth swath SAR data effectively. In this paper, an Advanced High-order

Nonlinear Chirp Scaling (A-HNLCS) algorithm for HRWS SAR is proposed. First, a novel

Second-Order Equivalent Squint Range Model (SOESRM) is developed to describe the range his-

tory of the whole scene, by introducing a quadratic curve to fit the deviation of the azimuth FM

rate. Second, a corresponding algorithm is derived, where the azimuth-variance of the echo signal

is solved by azimuth equalizing processing and accurate focusing is achieved through a high-order

nonlinear chirp scaling algorithm. As a result, the whole scene can be accurately focused through

one single imaging processing. Simulations are provided to validate the proposed range model

and imaging algorithm.

� 2020 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Spaceborne Synthetic Aperture Radar (SAR) is a well-

established remote sensing technology, capable of acquiring

images of Earth’s surface independent of weather conditions

and sunlight illumination. With beam steering techniques,
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the sliding spotlight mode has been employed to support high-

resolution applications. Since the first spaceborne SAR, Seasat

was launched in 1978,1,2 significant progress has been made in

this area. With the launch of the SAR satellites Radarsat-2,

TerraSAR-X, TanDEM-X, COSMO SkyMed, ALOS-2 and

COSMO SkyMed Second Generation (CSG), the resolution

of spaceborne SAR has been upgraded from tens of meters

to the sub-meter level, and the ratio of imaging area to resolu-

tion element has been increased from 50 million to 252 mil-

lion.2–9 Benefiting from an advanced SAR sensor technology,

the TerraSAR-X Next Generation (TSX-NG) will allow a high

spatial resolution down to 0.25 m and a 5 km swath in both

azimuth and range directions.10,11 For TSX-NG, the ratio of

imaging area to resolution element will increase to 400 million.

In the future, spaceborne SAR systems are expected to acquire

much wider areas with high-resolution for numerous applica-

tions. Suppose the swath of High-Resolution Wide-Swath

(HRWS) SAR can be enlarged to 20 km (Azimuth) � 20 km

(Range) with the same resolution of TSX-NG, the ratio of

image area to resolution element would reach 6.4 billion, much

higher than the magnitude of current SAR systems. Studies

have demonstrated that through a longer integration time, a

larger squint angle and adopting the Continuously Varying

Pulse Repetition Frequency (CVPRF) strategy, the echo signal

can be effectively acquired.12 However, the much longer inte-

gration time and larger squint angle in azimuth would pose

many challenges for spaceborne SAR signal processing, partic-

ularly the imaging part.

Among them is how to construct a precise range model to

describe the range history more accurately in the HRWS case.

Many studies have been performed in this area, with various

accurate range models put forward. The most well-known

range model in spaceborne SAR is the Hyperbolic Range

Equation Model (HREM) or the Equivalent Squint Range

Model (ESRM),13,14 which is derived from the straight track

and is adapted to the curved orbit of spaceborne SAR by

equivalent velocity and squint angle. Based on either HREM

or ESRM, several variations have been proposed and applied

in the classic imaging algorithms. A Fourth-order Doppler

Range Model (DRM4) was proposed for high-resolution

spaceborne SAR, where the range model perfectly compen-

sates the actual range history up to the quartic term.15 An

Advanced Hyperbolic Range Equation (AHRE) was intro-

duced for Medium Earth Orbit (MEO) SAR, where an addi-

tional linear term is introduced into the conventional HREM

to handle the focusing issue of an azimuth resolution around

3 m with altitude ranging from 1000 to 10000 km.16 A Modi-

fied Equivalent Squint Range Model (MESRM) was devel-

oped for high-resolution spaceborne SAR, where an

additional cubic component and quartic component are intro-

duced into the conventional ESRM, and a better imaging

result can be obtained.17 Recently, range model for curvilinear

trajectory airborne SAR, which involves three-dimensional

velocity and acceleration is proposed. Based on Chebyshev

approximation, the range model in the form of equivalent

hyperbolic equation is obtained and shows high precise for a

target point within its synthetic aperture time.18

However, all these studies are focused on the range model

of a single point target, without considering the influence of

azimuth-variance on the whole scene. As a result, the ground

scenes in their simulations were both chosen as 4 km in azi-

muth by Luo15 and Wang17 et al, when the resolution is set

between 0.25–0.30 m. Once the azimuth swath is enlarged to

20 km, the targets at the azimuth edge will suffer from severe

degradation due to the mismatch between the range model

and the Doppler parameter, which varies significantly along

with different targets in the azimuth direction. To describe

the azimuth-variance of the Doppler parameter, a Second-

Order ESRM (SOESRM) is proposed in this paper, where a

quadratic curve is introduced to fit the deviation of azimuth

FM rate, so that a more accurate description of range history

can be obtained.

Regarding the focusing algorithm for spaceborne SAR, the

Chirp Scaling Algorithm (CSA) is commonly employed due to

its good phase preservation and high-efficiency properties.19

To improve the performance, some modified CSAs have been

proposed, such as the Advanced Non-Linear Chirp Scaling (A-

NLCS) algorithm,16 the Higher-order Hybrid Correlation

Algorithm (HHCA)17 and the High-order NonLinear Chirp

Scaling (HNLCS) algorithm.20 However, all these algorithms

are focused on compensating for the spatial variant cross-

coupling phase between range and azimuth, without consider-

ing the azimuth-variance of the Doppler parameters. As a

result, they cannot be applied to HRWS spaceborne SAR

directly.

In this work, an Advanced High-order Nonlinear Chirp

Scaling (A-HNLCS) algorithm is proposed, where the

azimuth-variance of the Doppler parameters is removed by

equalization filtering, and accurate focusing is realized through

the higher-order nonlinear chirp scaling algorithm. The resid-

ual azimuth-variance, image aliasing, and geometric distortion

are removed by a modified resampling process. Simulations are

performed to show significantly improved imaging results.

It is necessary to point out that researchers of the German

Aerospace Center (DLR) have also proposed a concept of

HRWS mode which aims to achieve a high resolution (meter

level) in azimuth direction and a wide swath (hundreds of kilo-

meters) in range direction.21,22 However, there are mainly two

differences between the HRWS mode of DLR and the concept

discussed in this paper. Firstly, DLR aims to operate in a 2 m

azimuth resolution with a 400 km range swath using both Dig-

ital Beam-Forming (DBF) and multi-channel techniques to

extend the capability of SAR systems,21 but in this paper, we

emphasize a much higher azimuth resolution (0.25 m) with

20 km swath in azimuth by increasing the squint angle of

SAR. Secondly, challenges faced in signal processing for the

two concepts are different. For the HRWS mode of DLR,

the main challenge is the processing of the loss of pulses caused

by blockage over a large range swath.22 Meanwhile, due to the

2 m azimuth resolution, the ERSM and CSA are precise

enough for signal processing. In this paper, azimuth variance

becomes the main challenge for 0.25 m azimuth resolution

and 20 km swath in both azimuth and range directions, hence,

a more precise range model and a more effective imaging algo-

rithm are required. Generally, the concept of DLR emphasizes

the coverage to observe large-scope areas, but the concept in

this paper focuses on the observation of high-value targets

with a very high resolution and wide swath.

This paper is organized as follows: Based on azimuth-

variance analysis of the range history, a second-order ERSM

is proposed in Section 2. The corresponding advanced imaging

algorithm for HRWS spaceborne SAR is developed in Sec-
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tion 3. Simulation results are provided in Section 4, and con-

clusions are drawn in Section 5.

2. Modified range model

An accurate range model is the basis of SAR signal processing,

which describes not only the range history of point targets but

also the variation of Doppler parameters. The spaceborne

SAR geometry in Earth-centered rotating coordinates is illus-

trated in Fig. 1, where the actual path is represented by the

black solid line, and the paths based on HREM and MESRM

are denoted by the blue dotted line and red dashed line, respec-

tively. T1 and T3 represent the edge points of the scene in the

azimuth direction, and T2 presents the center point. Si and Ei,

where i = {1, 2, 3}, are the start and end positions of the illu-

mination for the corresponding target Ti. It can be seen that

MESRM can match the range history of T2, but not precise

enough for the points which are far away from the azimuth

center, i.e., T1 and T3. R0 is the slant range at Doppler center

time of T2.

By introducing an additional cubic component and quartic

component into the conventional ESRM, MESRM is given

as20

R t; r0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 þ m20t
2 � 2r0m0tcosu0 þ Da3t3 þ Da4t4

q

ð1Þ

m0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kfd
2

� �2
� kr0fr

2

q

u0 ¼ arccos
kfd
2m0

Da3 ¼
�kr0fr3

6
�

m3
0
sin2u0cosu0

r0

Da4 ¼
�kr0fr4

24
þ

m4
0
sin2u0

4r2
0

1� 5cos2u0ð Þ � Da3m0cosu0

r0

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð2Þ

where t is the azimuth time, r0 is the slant range at Doppler

center time, m0 is the equivalent radar velocity between the scat-

ter and the SAR, u0 is the equivalent squint angle, Da3 and Da4
represent cubic and quartic coefficients, k is the signal wave-

length, and fd, fr, fr3 and fr4 denote the Doppler centroid fre-

quency, the azimuth Frequency Modulation (FM) rate, the

rate of the azimuth FM rate and the second-order derivative

of the azimuth FM rate, respectively.

Differentiating Eq. (1) with respect to t for the point with a

distance of x0 from the scene center, we have

@R t; r0; x0ð Þ

@t
¼ �

kfd t; r0; x0ð Þ

2
�
kfr t; r0; x0ð Þ

2
t� t0ð Þ þ � � � ð3Þ

fd t; r0; x0ð Þ ¼ �
2m20 t� t0ð Þ � 2r0m0cosu0 þ 3Da3 t� t0ð Þ

2
þ 4Da4 t� t0ð Þ

3

kR t; r0; x0ð Þ
ð4Þ

fr t; r0; x0ð Þ ¼ �
2m2

0
þ6Da3 t�t0ð Þþ12Da4 t�t0ð Þ2

kR t;r0 ;x0ð Þ

þ
2m2

0
t�t0ð Þ�2r0m0cosu0þ3Da3 t�t0ð Þ2þ4Da4 t�t0ð Þ3½ �

2

2kR t;r0 ;x0ð Þ3

ð5Þ

where t0 is the azimuth time when the target at x0 is illumi-

nated by the center of the radar beam.

From Eqs. (4) and (5), it can be seen that for MESRM there

is a mapping relationship between fd t; r0; x0ð Þ and fr t; r0; x0ð Þ,
as shown in Fig. 2 (red line), and the simulation parameters

are listed in Table 1. For the point with a distance of x0 from

the scene center, there is a fd t; r0; x0ð Þ and a corresponding

fr t; r0; x0ð Þ. Generally, if the Doppler parameters of all the tar-

gets match the mapping relationship of the actual situation

(the blue dashed line in Fig. 2), precise focusing of the whole

scene can be realized through one single imaging process.

However, due to the earth rotation and curved orbit, there is

an obvious deviation as targets move away from the scene cen-

ter, as shown in the red box of Fig. 2. Moreover, the Doppler

FM rate error as a function of azimuth position caused by

MESRM is given in Fig. 3, where the red dashed lines are

the safe lines corresponding to a maximal phase error of

p=4. The result indicates that the edge targets would suffer

from severe degradation and the effective imaging area is close

to 4 km in azimuth when MESRM is implemented. The imag-

ing result cannot meet the requirement of a larger scene, such

as 20 km in azimuth. Therefore, a more precise range model is

needed to solve the azimuth-variance phenomenon for HRWS

SAR.

To describe the azimuth-variance of the Doppler parame-

ters, a Second-Order ERSM (SOERSM) is proposed in this

paper by introducing a quadric curve to fit the deviation of

the azimuth FM rate. The azimuth FM rate and the rate of

the azimuth FM rate can be expressed as follows:

fr;actual t; r0; x0ð Þ ¼ fr t; r0; x0ð Þ þ n1 r0ð Þt0 þ
n2 r0ð Þ

2
t20

fr3;actual t; r0; x0ð Þ ¼ fr3 t; r0; x0ð Þ þ n2 r0ð Þt0

(

ð6Þ

Fig. 1 Geometry of sliding spotlight mode for spaceborne SAR.

Fig. 2 Mapping relationship between fd and fr for 21 point

targets in azimuth.
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where fr;actual and fr3;actual represent the actual value of the azi-

muth FM rate and the rate of the azimuth FM rate; n1 r0ð Þ
and n2 r0ð Þ are the first and second-order fitting coefficients.

Substituting Eq. (6) into Eq. (1), the range model can be

modified as SOERSM

R t; r0; x0ð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 � 2r0m0Dtcosu0 þ Da02Dt
2 þ Da03Dt

3 þ Da4Dt4
p ð7Þ

Da02 ¼ m20 �
kr0
2

n1 r0ð Þt0 þ
n2 r0ð Þ

2
t20

� �

Da03 ¼ Da3 �
kr0n2 r0ð Þ

6
t0

8

<

:

ð8Þ

where Dt ¼ t� t0.

With SOERSM, the error of fr t; r0; x0ð Þ caused by targets

moving away from the scene center, is compensated effectively.

Fig. 4 shows the Doppler FM rate error, where it can be seen

that the error of the Doppler FM rate is limited within the safe

lines and the effective imaging swath can be enlarged to 20 km

in azimuth. Hence, SOERSM is more suitable for HRWS

SAR.

Orbit error (velocity error and position error of SAR satel-

lite) would introduce error to the estimates of parameters of

range models such as Doppler frequency, Doppler FM fre-

quency, etc. Also, this is a challenge for all range models and

SAR systems are equipped to offer accurate orbit measure-

ments. The absolute 3-D orbit accuracy of TerraSAR-X is bet-

ter than 10 cm,23 and the 3-D orbit and velocity accuracy of

Gaofen-3 is better than 5 cm and 0.05 mm/s,24 respectively.

Analysis of Doppler FM rate error caused by SOESRM and

MESRM with velocity error fixed as 0.05 mm/s and position

error fixed as 10 cm is given in Fig. 5. It can be seen that the

error of the Doppler FM rate is still within the safe lines based

on current orbit and velocity accuracy, which means that well-

focused images can be achieved by the range model of

SOESRM.

To compare the difference between MESRM and the pro-

posed SOERSM, we expand the range model of Eq. (7) based

on Taylor polynomial as Eq. (9) (see Appendix A). Also, Che-

byshev orthogonal decomposition is another strategy for the

expansion of the range model.18

R t; r0; x0ð Þ � R1 t; r0; x0ð Þ þ R2 t; r0; x0ð Þ þ R3 t; r0; x0ð Þ ð9Þ

where

R1 t; r0 ;x0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 � 2r0m0Dtcosu0 þ m20Dt
2 þ Da3 þ

kr0n1 r0ð Þ

6

� �

Dt3 þ Da4 þ
kr0n2 r0ð Þ

24

� �

Dt4
r

R2 t; r0 ;x0ð Þ ¼ � kn1 r0ð Þ

12
t3 � kn2 r0ð Þ

48
t4

R3 t; r0 ;x0ð Þ ¼
kn1 r0ð Þt2

0

4
þ

kn2 r0ð Þt3
0

12

� �

Dtþ
kn1 r0ð Þt3

0

12
þ

kn2 r0ð Þt4
0

48

8

>

>

>

>

>

<

>

>

>

>

>

:

ð10Þ

According to Eqs. (7) and (10), a few remarks would facil-

itate a better understanding of the characteristics of SOERSM.

(1) The first part R1 t; r0; x0ð Þ is similar to MESRM, which is

azimuth-invariant and can be compensated using the tradi-

tional high-resolution imaging algorithm.

(2) The second part R2 t; r0; x0ð Þ consists of a cubic term and

a quartic term, which is the same for all targets and can be

compensated before focusing.

(3) The last part R3 t; r0; x0ð Þ is made up of a linear term and

a constant term, which is azimuth-variant. The constant term

causes a range shift Dr1 r0; x0ð Þ and also brings in a phase error

Du1 r0; x0ð Þ, while the linear term leads to a Doppler centroid

error, which not only introduces a phase error Du2 r0; x0ð Þ,
but also causes a range shift Dr2 r0; x0ð Þ and an azimuth shift

Dx2 r0; x0ð Þ. Considering the azimuth-variant property, these

terms should be compensated after focusing. The items of

the errors above are given in Eqs. (11) and (12).

Table 1 List of simulation parameters.

Description Value

Height (km) 514

Eccentricity 0.0011

Inclination (�) 98

Longitude of ascending node (�) 0

Argument of perigee (�) 90

Carrier frequency (GHz) 9.6

Bandwidth (GHz) 1.2

Sampling frequency (GHz) 1.4

Look angle (�) 30

Antenna length (m) 4.8

Azimuth resolution (m) 0.25

Hybrid factor 0.10417

Fig. 3 Doppler FM rate error as a function of azimuth position

caused by MESRM.

Fig. 4 Error of Doppler FM rate for different azimuth positions

using SOERSM.
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Du1 r0; x0ð Þ ¼ � pn1 r0ð Þ

3
t30 �

pn2 r0ð Þ

12
t40

Du2 r0; x0ð Þ ¼ �p
Df2

d
r0 ;x0ð Þ

fr r0 ;x0ð Þ

8

<

:

ð11Þ

Dr1 r0; x0ð Þ ¼ kn1 r0ð Þ
12

t30 þ
kn2 r0ð Þ

48
t40

Dr2 r0; x0ð Þ ¼ � kfd r0 ;x0ð ÞDfd r0 ;x0ð Þ

2fr r0 ;x0ð Þ
�

kDf2
d
r0 ;x0ð Þ

4fr r0 ;x0ð Þ

Dx2 r0; x0ð Þ ¼ Dfd r0 ;x0ð Þ
fr r0 ;x0ð Þ

mg

8

>

>

>

<

>

>

>

:

ð12Þ

where Dfd r0; x0ð Þ ¼ � n1 r0ð Þ

2
t20 �

n2 r0ð Þ

6
t30 and mg is the ground

velocity.

In general, the premise of the expansion in Eq. (9) is to

guarantee the phase error is within p=4. Hence, it is necessary

to analyse the feasibility of the expansion. To show the accu-

racy of the expansion of SOERSM, the phase error as a func-

tion of illumination time is given in Fig. 6, using the orbit and

radar parameters listed in Table 1. Lines with different colours

represent the phase error of different targets in azimuth. There

are 21 targets and the distance between adjacent points is

1 km. It can be seen that the maximum value of phase error

is still within p=4, which means that the expansion is effective

and would not cause severe degradation to signal processing.

3. Proposed imaging algorithm

Based on the aforementioned discussion, an advanced nonlin-

ear chirp scaling algorithm is proposed here. The block dia-

gram of the proposed algorithm is shown in Fig. 7. There

are three parts: the first part is azimuth preprocessing, which

is used to avoid azimuth aliasing and remove the azimuth-

variance caused by R2 t; r0; x0ð Þ; the second part is high-

precision focusing within the full swath; the last part is residual

phase compensation, which is used to remove image aliasing,

residual azimuth-variance and realize geometric correction

caused by R3 t; r0; x0ð Þ. In the following, details of the basic

operations are provided according to the signal flow in the

diagram.

3.1. Azimuth preprocessing

To remove the azimuth-variance of the Doppler parameter

and azimuth aliasing of the Doppler spectrum, an improved

azimuth sub-aperture processing is performed firstly. Com-

pared with the traditional one,15 an equalizing filter is intro-

duced to remove the azimuth-variance, and the equalizing

filter function H1 fs; tð Þ is given by

H1 fs; tð Þ ¼ exp �j
pn1 rrefð Þ

3
tk þ tð Þ3 � j

pn2 rrefð Þ

12
tk þ tð Þ4

� �

�exp �j2p 1þ fs
fc

� �

fd;kTsub

j k

fprf
Nsub

t
� � ð13Þ

where the first exponential term is used to remove the azimuth-

variance of the echo signal, and the second one is used to

reduce the effect of the transmitted bandwidth; rref denotes

the reference slant range; fprf represents the Pulse Repetition

Frequency (PRF); fc represents the carrier frequency; Nsub is

the azimuth sample number of the sub-aperture; Tsub is the size

of the sub-aperture; fd;k is the Doppler centroid frequency of

the kth sub-aperture; tk is the center time of the kth sub-

aperture, and �b c is the rounding operation.

After azimuth equalizing filter processing, sub-aperture azi-

muth FFT, delay phase compensation and sub-aperture

recombination are performed for azimuth sub-aperture pro-

cessing, and the 2-D signal spectrum data are obtained in a dis-

crete form without aliasing in the azimuth direction. The delay

phase function H2 fs; kð Þ can be expressed as follows:

Fig. 5 Doppler FM rate error caused by SOESRM and MESRM with velocity error fixed as 0.05 mm/s or position error fixed as 10 cm

of satellite.

Fig. 6 Phase error as a function of illumination time caused by

approximation of SOESRM.
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H2 fs; kð Þ ¼ exp �j2p 1þ
fs
fc

� �

fd;kTsub

	 


fprf

Nsub

tk

� �

ð14Þ

Based on the proposed range model, after demodulation to

baseband, the received signal for the point target at x0 can be

described as

S s; t; r0; x0ð Þ ¼ r0xr s�
2R t; r0; x0ð Þ

c

� �

exp �
j4pR t; r0; x0ð Þ

k

� �

� xa t� t0ð Þexp �jpKr s�
2R t; r0; x0ð Þ

c

� �2
 !

ð15Þ

where r0 represents the scattering coefficient, t0 is the Doppler

center time, s represents the fast time, c is the speed of light, Kr

is the range chirp rate, xr �ð Þ and xa �ð Þ denote antenna pattern

functions in the range and azimuth directions, respectively. x0

is the azimuth position of the target.

Using the principle of stationary phase and Fourier trans-

formation, the 2-D Point Target Spectrum (PTS) of Eq. (15)

can be obtained as (see Appendix B)

S fa; fs; r0; x0ð Þ ¼ r0Wr fsð ÞWa fað Þexp Uazi fa; r0; x0ð Þð Þexp UHOP fa; fs; r0;x0ð Þð Þ

�exp URCM fa; fs; r0; x0ð Þð Þexp Urg2 fa; fs; r0;x0ð Þ
� �

�exp �jp
4n1 rrefð Þt3

0
þn2 rrefð Þt4

0

12

� �

exp jp
fa�f0

dð Þ
2
Dn1 r0ð Þt0

f2r

� �

ð16Þ

where

Uazi fa ; r0 ; x0ð Þ ¼ �j
4p

k
r00 �

k2 fa � f0d
� �2

8
a r0ð Þ þ

k3 fa � f0d
� �3

24
b r0ð Þ �

k4 fa � f0d
� �4

64
c r0ð Þ

" #

ð17Þ

URCM fs; fa; r0; x0ð Þ ¼ �j p
c

4r00 þ
k2 f2a�f2

dð Þ
2

a r0ð Þ �
k3 2faþf0

dð Þ fa�f0
dð Þ

2

6
b r0ð Þ

� �

fs

�j
pk4 3faþf0

dð Þ fa�f0
dð Þ

3

64c
c r0ð Þfs

ð18Þ

Fig. 7 Block diagram of proposed advanced high-order nonlinear chirp scaling algorithm.
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Urg2 fs ; fa ; r0; x0ð Þ ¼ �j
pf2s
Kr

þ j
pkf2a

2f2c
a r0ð Þ � k fa � f0d

� �

b r0ð Þ þ
3k2 fa � f0d
� �2

4
c r0ð Þ

" #

f2s ð19Þ

UHOP fs; fa; r0; x0ð Þ ¼ �j2pfata fs; fa; r0; x0ð Þ � j4p 1
k
þ fs

c

� �

R ta fs; fa; r0; x0ð Þð Þ

�Uazi fa; r0; x0ð Þ � URCM fa; fs; r0; x0ð Þ � Urg2 fa; fs; r0; x0ð Þ

ð20Þ

where ta �ð Þ is the stationary point, r00 ¼ r0 þ
kn1 r0ð Þ

12
t30 þ

kn2 r0ð Þ

48
t40,

f0d r0; x0ð Þ ¼ fd r0; 0ð Þ þ Dfd r0; x0ð Þ, Dn1 r0ð Þ ¼ n1 r0ð Þ � n1 rref
� �

.

f0d; fd; fr; fr3 and fr4 represent f0d r0; x0ð Þ,fd r0; 0ð Þ,fr r0; 0ð Þ,fr3 r0; 0ð Þ

and fr4 r0; 0ð Þ, respectively. a,b and c are the Doppler parame-

ters of the echo signal and can be calculated as a ¼ �2
kfr r0ð Þ

,

b ¼ �2fr3 r0ð Þ

k2f3r r0ð Þ
and c ¼ 4fr r0ð Þfr4 r0ð Þ�12fr3 r0ð Þ

3k3f5r r0ð Þ
.

Considering the range-dependence of the Doppler parame-

ters, a linear hypothesis is used to deduce the following imag-

ing algorithm, as follows

a ¼ a1 þ a2 r0 � rrefð Þ

b ¼ b1 þ b2 r0 � rrefð Þ

c ¼ c1 þ c2 r0 � rrefð Þ

8

>

<

>

:

ð21Þ

where rref is the reference slant range. The corresponding

parameters are mref, uref, Da3;ref and Da4;ref.

Substituting Eq. (21) into Eq. (16), the 2-D signal spectrum

can be obtained, and the corresponding imaging algorithm is

provided in the following section.

3.2. Focusing processing

Since the aliasing effect in the azimuth frequency domain is

removed after the improved azimuth sub-aperture processing,

the improved higher-order nonlinear chirp scaling algorithm

can be employed to implement Range Cell Migration Correc-

tion (RCMC), range compression, Second Range Compres-

sion (SRC), as well as azimuth compression.

The algorithm starts with higher-order phase compensation

and cubic phase filtering in the 2-D frequency domain, as

follows

H3 fs; fað Þ ¼ exp �UHOP fs; fa; rrefð Þð Þ � exp j
2p

3
Y fað Þf3s

� �

ð22Þ

where the first exponential term is used to remove the higher-

order cross-coupling, and the second exponential term is intro-

duced to provide an accurate accommodation of range depen-

dence of SRC. Y fað Þ is the azimuth-frequency varying cubic

phase filter coefficient, given by

Y fað Þ ¼ �
kf2a 4a2 � 4k fa � fdð Þb2 þ 3k2 fa � fdð Þ2c2

h i

8f2cKm fa; rrefð Þ cs22 fað Þ þ 2s2 fað Þð Þ
ð23Þ

where

1
Km fa ;r0ð Þ

¼ � 1
Kr
� kf2a

2f2c
a1 � k fa � fdð Þb1 þ

3
4
k2 fa � fdð Þ2c1

h i

� kf2a
2f2c

a2 � k fa � fdð Þb2 þ
3
4
k2 fa � fdð Þ2c2

h i

r0 � rrefð Þ

ð24Þ

s2 fað Þ ¼
k2 f2a � f2d
� �

4c
a2 �

k3 2fa þ fdð Þ fa � fdð Þ2

12c
b2

þ
k4 3fa þ fdð Þ fa � fdð Þ3

32c
c2 ð25Þ

After higher-order phase compensation and cubic phase fil-

tering, the signal is transformed to the range-Doppler domain

by range Inverse FFT (IFFT). Nonlinear chirp scaling process-

ing is performed to remove the range dependence of SRC and

RCM, where the nonlinear chirp scaling function H4 s; fað Þ,
centered at the reference range sd fa; rrefð Þ, is given by

H4 s; fað Þ ¼ exp �j
2p

3
q3 fað Þ s� sd fa; rrefð Þð Þ3

� �

� exp �jpq2 fað Þ s� sd fa; rrefð Þð Þ2
� �

ð26Þ

where q2 fað Þ and q3 fað Þ denote the quadratic and cubic

coefficients

q2 fað Þ ¼ � c
2
Km fa; rrefð Þs2 fað Þ

q3 fað Þ ¼ c2

4
Y fað ÞK3

m fa; rrefð Þs22 fað Þ

(

ð27Þ

sd fa; r0ð Þ ¼
2r0

c
þ s1 fað Þ þ s1 fað Þ r0 � rrefð Þ ð28Þ

s1 fað Þ ¼
k2 f2a � f2d
� �

4c
a1 �

k3 2fa þ fdð Þ fa � fdð Þ2

12c
b1

þ
k4 3fa þ fdð Þ fa � fdð Þ3

32c
c1 ð29Þ

After nonlinear chirp scaling processing, the signal can be

expressed as

S s; fa; r0;x0ð Þ ¼ r0wr sð ÞWa fað Þ

� exp �j
2p

3
Y fað ÞK3

m fa; rrefð Þ 1� s22 fað Þ
� �

Ds3
� �

� exp U0 fa; r0; x0ð Þð Þexp Uazi fa; r0; x0ð Þð Þ

� exp jpKm fa; rrefð Þ 1þ
c

2
s2 fað Þ

� �

Ds2
� �

� exp �jp
4n1 rrefð Þt30 þ n2 rrefð Þt40

12

� �

� exp jp
fa � f0d
� �2

Dn1 r0ð Þt0

f2r

 !

ð30Þ

where

U0 fa; r0;x0ð Þ ¼ jpKm fa; r0ð Þs22 fað Þ � j4p
q2
c2

� �

r0 � rrefð Þ2

� j
2p

3
Y fað ÞK3

m fa; r0ð Þs32 fað Þ � j
16pq3
3c3

� �

r0 � rrefð Þ3

ð31Þ

Ds ¼ s�
2r00
c

� s1 fað Þ ð32Þ

From Eq. (30), it can be seen that the RCMC and SRC are

independent of range r0, and the bulk RCMC and SRC can be

performed accurately and effectively across the range swath.

Accordingly, the range processing filter H5 fs; fað Þ is given by

H5 fs; fað Þ ¼ exp j2pfss1 fað Þð Þ

� exp jp
f2s

Km fa; rrefð Þ 1þ s2 fað Þc

2

� �

0

@

1

A

� exp �jp
2Y fað Þ 1�

s2
2
fað Þc2

4

� �

f3s

3 1þ s2 fað Þc

2

� �3

0

B

@

1

C

A

ð33Þ
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With range IFFT, the data is transformed back to the

range-Doppler domain, and then range-dependent azimuth-

matched filtering and residual phase compensation can be per-

formed by the azimuth processing filter H6 fa; r0ð Þ

H6 fa; r0ð Þ ¼ exp �Uazi fa; r0ð Þð Þexp �U0 fa; r0ð Þð Þ ð34Þ

3.3. Residual phase compensation

Since the target is focused by the higher-order nonlinear chirp

scaling algorithm, image aliasing, residual azimuth-variance

and realize geometric correction still exist. An azimuth resam-

pling operation is applied to remove the existing residual

phase.

The operation begins with de-rotation processing, and the

de-rotation phase function H7 fa; r0ð Þ is given by

H7 fa; r0ð Þ ¼ exp �jp
f2a
fr;D

� �

exp �jp
Dn1 r0ð Þf3a

6f3r

 !

ð35Þ

where Dn1 r0ð Þ ¼ n1 r0ð Þ � n1 rrefð Þ, fr;D ¼ fr;rot=Hf, Hf denotes

the hybrid factor, and fr;rot is the slope of the varying Doppler

centroid introduced by beam steering, fr denotes fr r0; 0ð Þ.
After the azimuth IFFT, residual phase multiplication is

performed to compensate the residual quadric and cubic

phase. The residual phase function is given by

H8 t; r0ð Þ ¼ exp �jpfr;Dt
2

� �

exp jp
Dn1 r0ð Þf3r;D

6f3r
t3

 !

ð36Þ

Then, the focused image can be obtained by azimuth FFT,

which can be expressed in the following

S s; t; r0; x0ð Þ ¼ Ar s� 2
c

r00 �
kfdDfd
2fr

�
kDf2

d

4fr

� �� �

�Aa t0 þ
Dfd
fr
�

Dn1 r0ð Þf2
d

4f3r

� �

exp �jp
Df2

d

fr

� �

�exp �j 4pr0
k

� j
pn2 r0ð Þ

12
t40 � j

pn1 r0ð Þ

3
t30 � j

pDn1 r0ð Þf3
d

6f3r

� �

ð37Þ

From Eq. (37), we can see that there is geometric distortion

and phase error in the focused image, and residual phase com-

pensation and geometry correction are needed to obtain the

accurately focused image. Here, we use Lagrange interpolation

to realize geometry correction, and the mapping relationship is

described in Eq. (38). The phase error is compensated by mul-

tiplying H9 x0; r0ð Þ with each pixel in the focused image.

rr;0 ¼ r00 �
kfdDfd
2fr

�
kDf2

d

4fr

xr;0 ¼ x0 þ
Dfd
fr
mg �

Dn1f
2
d

4f3r
mg

8

<

:

ð38Þ

H9 x0; r0ð Þ ¼ exp jp
Df2d
fr

þ jp
n2 r0ð Þ

12
t40 þ jp

n1 r0ð Þ

3
t30 þ jp

Dn1 r0ð Þ

6f3r
f3d

 !

ð39Þ

4. Simulations and analysis

To demonstrate the performance of the proposed imaging

algorithm, raw data is first generated for point targets using

the parameters given in Table 1 and the scene shown in

Fig. 8. The distances of different targets along the range and

azimuth directions are 10.0 km and 1.0 km, respectively. Rect-

angular weighting is used for both azimuth and range process-

ing. For SAR signal processing, range model is the foundation

of an imaging algorithm. In Ref. 20, the accuracy of ESRM,

DRM4, and MESRM has been compared (see Figs. 4 and 5

in Ref. 20), and also focused results using NCS, xkA and

HHCA indicate that HHCA can achieve the best imaging

quality when processing SAR data with a high resolution of

0.25 m (see Figs. 13 to 15 in Ref. 20). Hence, HHCA is

employed for the comparison with the proposed A-HNLCS

algorithm.

Fig. 9 shows the Impulse Response Width (IRW) (normal-

ized to the theoretical) curve to azimuth displacement, and

Fig. 10 shows the Peak Sidelobe Ratio (PSLR) results to azi-

muth displacement. In the HHCA, the imaging performance

degrades with azimuth displacement. Only targets near the

scene center can be focused accurately, and the targets at the

azimuth edge suffer from severe degradation. In the proposed

A-HNLCS algorithm, all targets of the whole scene can be

focused well. The deterioration of the IRW and PSLR is less

than 0.5% and 3 %, respectively.

To quantify the focusing performance, the point target

analysis results are listed in Table 2, where the ideal PSLR is

�13.26 dB, using the rectangular window. The theoretical res-

olution is calculated according to the following equation:

qa;c ¼
AL

2
�
Hfr0 þ rref � r0

rref
ð40Þ

Fig. 11 shows the azimuth profile of PT1 and PT63, where

the red dashed line represents the focused results by HHCA,

and the blue solid line represents the focused results by the

proposed A-HNLCS algorithm. It can be seen that the edge

targets based on HHCA suffer from severe degradation, and

significant azimuth main lobe broadening and sidelobe arising

can be observed. Compared to the HHCA results, the focusing

performance of the proposed algorithm has been improved sig-

nificantly, and all of the targets are well focused by the pro-

posed method. All these indicate that our proposed focusing

algorithm can meet the imaging requirement of high-

resolution wide-swath spaceborne SAR effectively.

Computational complexity of AHRE, A-NLCS, HHCA,

and A-HNLCS is compared in Table 3. Times of both range

Fig. 8 Ground scene layout in our simulation.
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Fourier Transform (FT) and azimuth FT for the above algo-

rithms are the same because they all based on CSA. The pro-

posed A-HNLCS requires the most complex multiplication.

The computation can be described as25:

p

2
NaNrlog2 Nað Þ þ

q

2
NaNrlog2 Nrð Þ þmNaNr ð41Þ

where p and q are the times of azimuth FT and range FT,

respectively. m is the times of complex multiplication; Na

and Nr are the number of samples in azimuth and range

directions.

The proportion of computation and total computational

operations of four different algorithms are shown in Fig. 12

for a range of Na and Nr. It indicates that FT always takes

more than 80% of the computation for these four imaging

algorithms, and the increasing complex multiplication of the

proposed A-HNLCS would not cause much computation, as

it is mainly dominated by FT. Furthermore, A-HNLCS can

achieve the image of the whole scene instead of dividing the

Fig. 9 IRW of the focused result.

Fig. 10 PSLR of the focused result.

Table 2 Performance analysis of point targets.

Point target HHCA A-HNLCS algorithm

qa;m (m) qa;c (m) PSLR (dB) qa;m (m) qa;c (m) PSLR (dB)

1 0.285 0.269 �9.17 0.270 0.269 �13.07

11 0.269 0.269 �13.22 0.269 0.269 �13.24

21 0.294 0.269 �7.88 0.270 0.269 �13.21

22 0.268 0.250 �8.63 0.251 0.250 �13.02

32 0.250 0.250 �13.21 0.250 0.250 �13.22

42 0.274 0.250 �7.74 0.251 0.250 �13.19

43 0.249 0.230 �8.22 0.231 0.230 �12.98

53 0.230 0.230 �13.21 0.230 0.230 �13.18

63 0.255 0.230 �7.31 0.231 0.230 �13.15
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echo into several parts and stitching sub-images after process-

ing. Hence, the increasing computational complexity of A-

HNLCS is acceptable to some extent.

5. Conclusions

As a trend for future remote sensing technology, high-

resolution wide-swath spaceborne SAR requires more precise

range models and more effective imaging algorithms.

(1) Based on the analysis of azimuth-variance error in the

range model, a second-order equivalent squint range

model was developed to describe the range history for

a larger azimuth swath.

(2) An advanced high-order nonlinear chirp scaling algo-

rithm for HRWS spaceborne SAR was proposed,

where sub-aperture processing was used to remove

the azimuth variance and azimuth aliasing, the

higher-order nonlinear chirp scaling algorithm was

derived for accurate focusing, and the residual azi-

muth variance, imaging aliasing and geometric distor-

tion were removed by a modified re-sampling

operation.

(3) Simulation results have been provided to demonstrate

the effectiveness of the proposed imaging algorithm.

The proposed SOESRM and A-HNLCS algorithm can

also be applied to other SAR systems where a larger azi-

muth swath is required.
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Fig. 11 Azimuth profiles of point 1 and point 63 for HHCA and A-HNLCS algorithm.

Table 3 Analysis of computational complexity for different algorithms.

Algorithm AHRE A-NLCS HHCA A-HNLCS

Times of range FT 4 4 4 4

Times of azimuth FT 3 3 3 3

Times of complex multiplications 5 4 8 9

Fig. 12 Proportion of computation and total computational operations of four different algorithms for a range of Na and Nr.
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Appendix A. Approximate expression of SOERSM

Approximate expression Eq. (9) of SOERSM Eq. (7) is derived

as following. The high order range model can be written as

R t; r0; x0ð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 � 2r0m0Dtcosu0 þ Da2Dt2 þ Da3Dt3 þ Da4Dt4
p

ðA1Þ

where Dt ¼ t� t0.

Based on the Taylor polynomial, Eq. (A1) can be expanded

as

R t; r0; x0ð Þ ¼ r0 þ
@R tð Þ

@t
tþ

1

2
�
@2R tð Þ

@t2
t2

þ
1

6
�
@3R tð Þ

@t3
t3 þ

1

24
�
@4R tð Þ

@t4
t4 þ � � �

ðA2Þ

‘with

@R tð Þ
@t

¼ � m0cosu0

@2R tð Þ

@t2
¼

Da2�m2
0
cos2u0

r0

@3R tð Þ

@t3
¼ 3Da3

r0
þ

3Da2m0cosu0�3m3
0
cos3u0

r2
0

@4R tð Þ

@t4
¼ 12Da4

r0
þ 12Da3m0cosu0

r2
0

�

3Da2
2
�18Da2m

2
0
cos2u0þ15m4

0
cos4u0

r3
0

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

Then, Eq. (7) can be rewritten as

R t; r0;x0ð Þ � r0 � v0cosu0Dtþ
1
2

Da0
2
�v2

0
cos2u0

r0
Dt2 þ 1

6

3Da0
3

r0
þ

3Da0
2
v0cosu0

r2
0

�
3v3

0
cos3u0

r2
0

� �

Dt3

þ 1
24

12Da4
r0

þ
12Da0

3
v0cosu0

r2
0

�
3 Da0

2ð Þ
2
�18Da0

2
v2
0
cos2u0þ15v4

0
cos4u0

r3
0

� �

Dt4

ðA3Þ

Substituting Eq. (8) to Eq. (A3), we have

R t; r0; x0ð Þ � r0 � v0cosu0Dtþ
1

2
�
m20 � v20cos

2u0

r0
Dt2

þ
1

6

3 Da3 þ
kr0
6
n1 r0ð Þ

� �

r0
þ
3v30cosu0

r20
�
3v30cos

3u0

r20

" #

Dt3

þ
1

24

12 Da4 þ
kr0
24
n2 r0ð Þ

� �

r0
þ
12 Da3 þ

kr0
6
n1 r0ð Þ

� �

v0cosu0

r20

"

�
3v40 � 18v40cos

2u0 þ 15v40cos
4u0

r30

�

Dt4

�
k

4
MDt2 �

k

12
n1 r0ð Þ þ n2 r0ð Þt0ð Þ þ

k

4r0
Mv0cosu0

� �

Dt3

�
k

48
n2 r0ð Þ þ

k

12r0
v0cosu0 n1 r0ð Þ þ n2 r0ð Þt0ð Þ

�

þ
k2

32r0
M2 �

kv20
8r20

Mþ
3kv20cos

2u0

8r20
M

�

Dt4 ðA4Þ

M ¼ n1 r0ð Þt0 þ
1

2
n2 r0ð Þt20

Since r0 is much larger than other terms, Eq. (A4) can then

be written as

R t; r0; x0ð Þ � R1 t; r0; x0ð Þ � k
4
MDt2 � k

12
n1 r0ð Þ þ n2 r0ð Þt0ð ÞDt3 � k

48
n2 r0ð ÞDt4

¼ R1 t; r0; x0ð Þ � k
4
M t� t0ð Þ2 � k

12
n1 r0ð Þ þ n2 r0ð Þt0ð Þ t� t0ð Þ3 � k

48
n2 r0ð Þ t� t0ð Þ4

ðA5Þ

By expanding Eq. (A5) and omitting the high order terms

of t
p
0t

q, where p > 0 and q > 1, we have

R t; r0; x0ð Þ � R1 t; r0; x0ð Þ � kn1 r0ð Þ
12

t3 � kn2 r0ð Þ
48

t4 þ
kn1 r0ð Þt2

0

4
þ

kn2 r0ð Þt3
0

12

� �

Dtþ
kn1 r0ð Þt3

0

12
þ

kn2 r0ð Þt4
0

48

¼ R1 t; r0; x0ð Þ þ R2 t; r0; x0ð Þ þ R3 t; r0; x0ð Þ

ðA6Þ

where

R1 t; r0 ; x0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 � 2r0m0Dtcosu0 þ m20Dt
2 þ Da3 þ

kr0n1 r0ð Þ

6

� �

Dt3 þ Da4 þ
kr0n2 r0ð Þ

24

� �

Dt4
r

R2 t; r0 ; x0ð Þ ¼ � kn1 r0ð Þ

12
t3 � kn2 r0ð Þ

48
t4

R3 t; r0 ; x0ð Þ ¼
kn1 r0ð Þt2

0

4
þ

kn2 r0ð Þt3
0

12

� �

Dtþ
kn1 r0ð Þt3

0

12
þ

kn2 r0ð Þt4
0

48

8

>

>

>

>

>

<

>

>

>

>

>

:

ðA7Þ

Appendix B. 2-D point target spectrum

2-D point target spectrum of the received signal are derived as

following.

From Eq. (15), we have

S fa; fs; r0; x0ð Þ ¼ r0Wr fsð ÞWa fað Þexp �j
pf2s
Kr

� �

� exp �j2pfata fa; fs; r0;x0ð Þ � j4p
1

k
þ
fs
c

� �

R ta fa; fs; r0; x0ð Þð Þ

� �
ðB1Þ

where fa is the azimuth frequency, fs is the range frequency,

ta fa; fs; r0; x0ð Þ is the stationary point, obtained by

solving the following equation:

2
1

k
þ
fs
c

� �

@R ta fa; fs; r0; x0ð Þð Þ

@t
þ fa ¼ 0 ðB2Þ

The MESRM Eq. (7) can be expanded into its Taylor series

as

R t; r0ð Þ ¼ r0 � m0tcosu0 þ
m2
0
sin2u0

2r0
t2 þ

Da0
3

2r0
þ

m3
0
cosu0sin

2u0

2r2
0

� �

t3

þ
Da0

4

2r0
þ

Da0
3
m0cosu0

2r2
0

�
m4
0
sin2u0 1�5cos2u0ð Þ

8r3
0

� �

t4 þ � � �

ðB3Þ

where Da03 ¼ Da3 þ
kr0n1 r0ð Þ

6
and Da04 ¼ Da4 þ

kr0n2 r0ð Þ

24
.

Neglecting the first-order item �m0tcosu0 firstly, which

would be reconsidered later, the range model can be written as

Rtemp t; r0ð Þ ¼ r0 þ K2t
2 þ K3t

3 þ K4t
4 þ � � � ðB4Þ

where K2, K3 and K4 represent parameters of the second-order,

third-order and forth-order of t, respectively.

Using the series reversion26 and substituting Eq. (B4) to Eq.

(B3), the stationary point can be derived as

ta ¼ a Pfað Þ þ b Pfað Þ2 þ c Pfað Þ3 ðB5Þ

where

a ¼ 1= 2K2ð Þ

b ¼ �3K3= 8K3
2

� �

c ¼ 9K2
3 � 4K2K4

� �

= 16K5
2

� �

P ¼ �c= 2 fc þ fsð Þ½ �

8

>

>

>

<

>

>

>

:

ðB6Þ

The expression of the phase is

Utemp fa; fs; r0; x0ð Þ ¼ �j
pf2s
Kr

t� jp 2fata þ 4
1

k
þ
fs
c

� �

r0 þ K2t
2 þ K3t

3 þ K4t
4 þ � � �

� �

� �

¼ �j
pf2s
Kr

� jp 2
1

P
Pfata �

2

P
r0 þ K2t

2 þ K3t
3 þ K4t

4 þ � � �
� �

� �

ðB7Þ

Substituting Eq. (B5) to Eq. (B7), we have
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Utemp fa; fs; r0; x0ð Þ ¼ �j
pf2s
Kr

� jp �
2r0

P
þ aPf2a þ

2

3
bP2f3a þ

1

2
cP3f4a

� �

ðB8Þ

By reconsidering the first-order item, the expression of

received signal in time domain is

s s; t; r0; x0ð Þ ¼ stemp s�
2K1t

c
; t; r0; x0

� �

exp �j2p
2fcK1

c
t

� �

ðB9Þ

Based on the theory of Fourier Transform, the 2-D point

target spectrum of the received signal is

S fa; fs; r0; x0ð Þ ¼ S fa þ
2K1

c
fs þ fcð Þ; fs; r0; x0

� �

¼ r0Wr fsð ÞWa fa þ
2K1

c
fs þ fcð Þ

� �

� exp Utemp fs; fa þ
2K1

c
fs þ fcð Þ

� � �

ðB10Þ

Then

U fa; fs; r0;x0ð Þ ¼ �j
pf2s
Kr

� jp �
2r0

P
þ

a

P
Pfa � K1ð Þ

2
þ

2b

3P
Pfa � K1ð Þ

3
þ

c

2P
Pfa � K1ð Þ

4

� �

ðB11Þ

By substituting Eq. (B6) to Eq. (B11), we expand Eq. (B11)

and obtain the following expression of the phase in frequency

domain:

U fa; fs; r0; x0ð Þ ¼ �j
pf2s
Kr

� j
4p

k
r0 �

k2 fa � fdð Þ2

8
aþ

k3 fa � fdð Þ3

24
b�

k4 fa � fdð Þ4

64
c

" #

� j
4p

c
r0 þ

k2 f2a � f2d
� �

8
a�

k3 2fa þ fdð Þ fa � fdð Þ
2

24
bþ

k4 3fa þ fdð Þ fa � fdð Þ
3

64
c

" #

fs

þ j4p
kf2a

8f2c
a�

k2f2a fa � fdð Þ

8f2c
bþ

3k3f2a fa � fdð Þ2

32f2c
c

" #

f2s ðB12Þ

Based on the proposed SOESRM, the expression of the 2-D

point target spectrum of the received signal can be derived as

S fa; fs; r0; x0ð Þ

¼r0Wr fsð ÞWa fað Þexp �j2pfata fa; fs; r0; x0ð Þ � j4p
1

k
þ
fs
c

� �

R ta fa; fs; r0; x0ð Þð Þ

� �

� r0Wr fsð ÞWa fað Þexp Uazi fa; r0; x0ð Þð Þexp UHOP fa; fs; r0; x0ð Þð Þ

� exp URCM fa; fs; r0; x0ð Þð Þexp Urg2 fa; fs; r0; x0ð Þ
� �

� exp �jp
4n1 rrefð Þt30 þ n2 rrefð Þt40

12

 �

exp jp
fa � f0d
� �2

Dn1 r0ð Þt0

f2r

( )

ðB13Þ

where

Uazi fa; r0; x0ð Þ ¼ �j
4p

k
r00 �

k2 fa � f0d
� �2

8
a r0ð Þ þ

k3 fa � f0d
� �3

24
b r0ð Þ �

k4 fa � f0d
� �4

64
c r0ð Þ

" #

ðB14Þ

URCM fs; fa; r0; x0ð Þ ¼ �j p
c

4r00 þ
k2 f2a�f2

dð Þ
2

a r0ð Þ �
k3 2faþf0

dð Þ fa�f0
dð Þ

2

6
b r0ð Þ

� �

fs

�j
pk4 3faþf0

dð Þ fa�f0
dð Þ

3

64c
c r0ð Þfs

ðB15Þ

Urg2 fs; fa; r0; x0ð Þ ¼ �j
pf

2
s

Kr

þ j
pkf

2
a

2f2c
a r0ð Þ � k fa � f0d

� �

b r0ð Þ þ
3k2 fa � f0d
� �2

4
c r0ð Þ

" #

f2s

ðB16Þ

UHOP fs; fa; r0; x0ð Þ ¼ �j2pfata fs; fa; r0; x0ð Þ � j4p 1
k
þ fs

c

� �

R ta fs; fa; r0; x0ð Þð Þ

�Uazi fa; r0;x0ð Þ � URCM fa; fs; r0;x0ð Þ � Urg2 fa; fs; r0; x0ð Þ

ðB17Þ

where ta �ð Þ is the stationary point, r00 ¼ r0 þ
kn1 r0ð Þ

12
t30 þ

kn2 r0ð Þ

48
t40,

f0d r0; x0ð Þ ¼ fd r0; 0ð Þ þ Dfd r0; x0ð Þ, Dn1 r0ð Þ ¼ n1 r0ð Þ � n1 rrefð Þ.

f0d; fd; fr; fr3 and fr4 represent f0d r0; x0ð Þ,fd r0; 0ð Þ,fr r0; 0ð Þ,fr3 r0; 0ð Þ

and fr4 r0; 0ð Þ, respectively. a,b and c are the Doppler parame-

ters of the echo signal. They can be calculated as a ¼ �2
kfr r0ð Þ

,

b ¼ �2fr3 r0ð Þ

k2f3r r0ð Þ
and c ¼ 4fr r0ð Þfr4 r0ð Þ�12fr3 r0ð Þ

3k3f5r r0ð Þ
.
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