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Recent studies have confirmed the coupling of optical vortices, such as Laguerre-Gaussian and Bessel-

Gaussian modes, to quadrupole-active atomic transitions. This interaction has been shown to be enhanced

considerably in the case of Laguerre-Gaussian beams due to the gradient coupling, particularly, in the case

of a relatively large winding number. Here, we consider the trapping and the dynamics of atoms in the optical

quadrupole potential generated by two coaxial counterpropagating optical vortex beams. We focus on the atomic

transition 6 2S1/2 → 5 2D5/2 in Cs which is a dipole-forbidden but a quadrupole-allowed transition. We show

how this atomic transition engages with the optical vortex fields at near resonance, leading to atom trapping

in the optical quadrupole potential well accompanied by translational motion. We show how the optical forces

generate the motion of the atoms trapped within the quadrupole potential, illustrating the results using typical

experimentally accessible parameters.

DOI: 10.1103/PhysRevA.101.043403

I. INTRODUCTION

The physics of optical vortices and their interactions is

now a well-developed branch of optical physics with notable

advances in both its experimental and the theoretical aspects

[1,2]. Since its inception, following the first article by Allen

et al. [3], the area has flourished and inspired works in other

areas [4–7]. A great deal of work has been focused on the

interaction of such special forms of light with atoms [8].

However, most of the theoretical as well as the experimen-

tal investigations involving interaction with atoms have dealt

with dipole-active transitions, so ignoring the higher multi-

polar orders, which are, as is traditionally the case, assumed

to be very small [9–11]. As is well known, the investigations

involving dipole-active transitions have led to a great deal of

new physics. In particular, much work has been performed on

the diffraction of atoms and their manipulation by laser fields,

which resulted in useful applications, including laser cooling,

Bose-Einstein condensation, and ultracold atoms, atom lasers,

the simulation of condensed-matter systems, the generation

and study of strongly correlated systems, and the realization

of ultracold molecules [12–14].

The experimental developments regarding the interaction

of atoms and molecules with lasers suggest that there is a need

for further theoretical examination of atom-light interactions.

This is fueled by the recent progress in optical measurement

techniques specifically on quadrupole transitions [15–17].

There are also recent reports involving quadrupole interac-

tions in rubidium interacting with the evanescent modes of

*sbougouffa@hotmail.com; sbougouffa@imamu.edu.sa
†m.babiker@york.ac.uk

microfibers [18,19]. Such advances have also been inspired

by and have also prompted theoretical investigations (as is the

case in this paper) that are concerned with the examination

of the quadrupole interaction effects in the context of twisted

light [20–27].

The two main types of twisted light that have been most

considered are the Laguerre-Gaussian (LG) modes and the

Bessel modes [including the Bessel-Gaussian (BG) modes].

An enhancement of the quadrupole interaction has been

shown to arise when the atoms interact with higher-order

beams since such beams have already been experimentally

realized [28,29]. Both types of vortex beam are character-

ized by the property of orbital angular momentum for all

light modes greater than the fundamental mode [30,31], and

studies focusing on the quadrupole potentials have already

been reported [22,30] with an application to the case of

Cs atoms. The generation of Laguerre-Gaussian beams with

winding numbers as high as l = 300 and beyond has also been

experimentally demonstrated [32].

This paper is concerned with atomic motion in the optical

quadrupole potential, and we focus on Cs and its dipole-

forbidden but quadrupole-active transition. Our aim is to find

out whether and in what manner Cs atoms can be both trapped

and their motion within the trap predicted using twisted

light whose frequency is closely tuned to the Cs quadrupole

transition.

The paper is organized as follows. In Sec. II, the formalism

involving the quadrupole interaction is outlined, leading to

expressions for the optical quadrupole potential and forces on

the two-level atom. Section III is concerned with two different

kinds of optical vortices, namely, LG beams and BG beams,

and the evaluation of the corresponding quadrupole Rabi fre-

quency of these modes as a first step. The spatial distribution

of the corresponding quadrupole potential is discussed for the
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particular case of Cs atoms. Section IV is concerned with the

atom dynamics within the quadrupole potential generated by

two counterpropagating vortex beams. Section V contains our

comments and conclusions.

II. QUADRUPOLE INTERACTION

First of all, we outline the theory leading to the spatial

dependence of the optical quadrupole potential acting on the

atom in the presence of an optical vortex, and this allows

the detailed study of atom trapping and atom dynamics.

Consider, at this stage, a physical system consisting of the

two-level atom interacting with a single optical vortex beam

propagating along the +z axis. The ground and excited states

of the two-level atom are {|g〉 , |e〉} with corresponding energy

levels E1 and E2, respectively, corresponding to the resonance

frequency ωa = (E2 − E1)/h̄. The interaction Hamiltonian is

a multipolar series about the center-of-mass coordinate R and

can be written as

Ĥint = Ĥd p + Ĥqp + · · · , (1)

where the first term Ĥd p = −µ̂ · Ê(R) stands for the electric

dipole interaction between the atom and the electric-field

µ̂ = qr with r as the internal position vector, is the electric

dipole moment vector and Ê(R) is the electric-field vec-

tor. The transition process in question is taken here to be

dipole forbidden but quadrupole allowed, so it is the second

quadrupole interaction term that dominates. We have Ĥqp =
− 1

2

∑

i j Q̂i j
∂Ê j

∂Ri
. This is essentially the coupling between the

Cartesian components of the quadrupole moment tensor Q̂i j

and the gradients of the electric-field vector components,

evaluated at the center-of-mass coordinate R. Without loss

of generality, we assume that the electric field is polarized

along the x direction, which yields the following form of the

quadrupole interaction Hamiltonian:

Ĥqp = −
1

2

∑

i

Q̂ix

∂Êx

∂Ri

, (2)

where Q̂i j = Qi j (π̂ + π̂†) are the elements of the quadrupole

tensor operator, Qi j = 〈i| Q̂i j | j〉 are the quadrupole matrix

element, and π̂ (π̂†) are the atomic level lowering (raising)

operators. The quantized electric field in terms of the

center-of-mass position vector in cylindrical coordinates R =
(ρ, φ, Z ) is given by

Ê(R) = îu{k}(R)â{k}e
iθ{k}(R) + H.c., (3)

where î is the unit polarization vector, taken to be linear

polarization along the x direction; u{k}(R) and θ{k}(R) are the

amplitude and the phase of the vortex electric field. Here, the

subscript {k} denotes a group of indices that specify the optical

mode in terms of its axial wave-vector k, winding number

ℓ, and radial number p (for LG modes). The operators â{k}

and â
†
{k} are the annihilation and creation operators of the field

mode {k}. Finally, H.c. stands for Hermitian conjugate. Using

this form of the electric field, we obtain the desired expression

for the quadrupole interaction Hamiltonian,

Ĥq = h̄â{k}	
Q

{k}(R)eiθ{k}(R) + H.c., (4)

where 	
Q

{k}(R) is the quadrupole Rabi frequency. The details

of the interaction depend on the specific vortex mode, whether

(as in this article) we are dealing with an LG mode or a

BG mode and whether we have more than one mode as is

the case of interest here where the field is set up in such a

way as to generate two counterpropagating beams of the same

magnitude |ℓ| and the same (or opposite) signs of the winding

number ℓ.

III. OPTICAL FORCES

We are now in a position to apply the above formalism

to evaluate the mechanical action due to the optical forces

on the atom characterized by optical quadrupole transitions.

The expressions for the steady-state optical forces on the

two-level atom are Doppler forces due, in principle, to any

form of the light field, are well known in the limit of moderate

field intensity [33]. These expressions can be adapted for

the present case of an atomic quadrupole interacting with an

optical vortex field. We have for the total average force F
opt.

{k}
due to the quadrupole interaction with an atom moving with

velocity V = Ṙ,

F
opt.

{k} (R, V) = F
spon

{k} (R, V) + F
Q

{k}(R, V), (5)

where the first term is the scattering force due to to the ab-

sorption and spontaneous emission of the light by the moving

atom via quadrupole transitions,

F
spon

{k} = h̄ŴQ

∣

∣	
Q

{k}(R)
∣

∣

2

{

∇θ{k}(R)/4

�2
{k}(R, V) +

∣

∣	
Q

{k}(R)
∣

∣

2
/2 + Ŵ2

Q/4

}

, (6)

and the second term is the quadrupole force that arises from the nonuniformity of the field distribution,

F
Q

{k} = −
1

4
h̄∇

∣

∣	
Q

{k}(R)
∣

∣

2

{

�{k}(R, V)

�2
{k}(R, V) +

∣

∣	
Q

{k}(R)
∣

∣

2
/2 + Ŵ2

Q/4

}

. (7)

Here, ∇θ{k}(R) is the gradient of the phase θ{k}(R). ŴQ is

the quadrupole transition rate, and �{k}(R, V) is the dynamic

detuning which is a function of both the position and the ve-

locity vectors of the atom �{k}(R, V) = �0 − V · ∇θ{k}(R),

where �0 = ω − ωa is the static detuning with ω as the

frequency of the applied light field. The second term in the

dynamic detuning � is written δ = −V · ∇θ{k}(R) and arises

because of the Doppler effect due to the atomic motion. The

quadrupole force is responsible for confining the atom to

maximal or minimal intensity regions of the field, depending
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on the detuning �{k}. Note that in contrast with the familiar

case involving a dipole-allowed transition in which the atomic

motion evolves with the optical field strength, in the present

case of a quadrupole transition, it is the gradients of field

components that govern the atomic process. Furthermore, the

gradients of the electric field in atom-field interactions can

lead to transitions for atoms confined in the dark regions of the

light beam where there is a weak light intensity but relatively

strong-field gradients [8].

Corresponding to the quadrupole force is a quadrupole

potential which has the form

U
Q

{k}(R) =
h̄�{k}

2
ln

{

1 +

∣

∣	
Q

{k}(R)
∣

∣

2
/2

�2
{k} + Ŵ2

Q/4

}

. (8)

For red-detuned light �0 < 0, the quadrupole potential ex-

hibits a (trapping) minimum in the high-intensity region of

the beam which is detuned below resonance (where ω < ωa).

For blue-detuning �0 > 0, the trapping process takes place in

the low-intensity (dark) regions of the field. Furthermore, in

many experimental situations and when the detuning is large

and is such that (�{k} ≫ |	Q

{k}|) and (�{k} ≫ ŴQ), then the

quadrupole potential can be approximated by

U
Q

{k}(R) ≈
h̄

4�{k}

∣

∣	
Q

{k}(R)
∣

∣

2
. (9)

Having identified the optical forces including the quadrupole

potential and the quadrupole scattering force, we can now

proceed to explore the atom dynamics in the two kinds

of optical vortex mode, namely, Laguerre-Gaussian and the

Bessel-Gaussian modes, both kinds of which can now be

routinely generated in the laboratory often using standardized

techniques.

A. Laguerre-Gaussian modes

As pointed out earlier, the recent studies on twisted LG

light interacting with atoms, the traditionally weak optical

quadrupole interaction in atoms can be enhanced significantly

when the atom interacts at near resonance with such an optical

vortex [22,26]. Moreover, for an appropriate choice of the

winding number ℓ of the vortex, the atomic process involv-

ing the dipole-forbidden but quadrupole-allowed transitions

in atoms can take place [22]. In particular, this has been

examined regarding LG modes of high winding number ℓ

and/or radial number p. In the paraxial regime, the amplitude

of a LG mode is a function of the radial coordinate ρ [8,34–

36] and takes the following form:

u{k}(ρ)=ukℓp(ρ)

=Ek00

√

p!

(|l| + p)!

(

ρ
√

2

w0

)|l|
L|l|

p

(

2ρ2

w
2
0

)

e−ρ2/w2
0 , (10)

where L|l|
p is the associated Laguerre polynomial and w0 is

the radius at beam waist at Z = 0. The overall factor Ek00

is the constant amplitude of the corresponding plane elec-

tromagnetic wave. The phase function of the LG mode is as

follows:

θkl p(ρ, Z ) = skZ + lφ − s(2p + |l| + 1) tan−1(Z/zR)

+ s
kρ2Z

2
(

Z2 + z2
R

) . (11)

The third term in the phase function is the Gouy phase for the

LG mode, and the fourth term represents the curvature phase.

The parameter s = ±1 takes into account propagation in the

opposite directions along the ±z axes. With the amplitude of

the optical LG modes determined [4,22,37], the quadrupole

Rabi frequency is defined as follows 	
Q

kℓp
= |Ĥqp|/h̄ where

Ĥqp is given by Eq. (4). On substituting for the LG field

distribution, we can write

	
Q

kℓp
(ρ) =

[

uℓ
p(ρ)/h̄

]

(αQxx + βQyx + ikQzx ), (12)

where

α =
(

|ℓ|X
ρ2

−
2X

w
2
0

−
iℓY

ρ2
+

1

L
|ℓ|
p

∂L|ℓ|
p

∂X

)

, (13)

β =
(

|ℓ|Y
ρ2

−
2Y

w
2
0

+
iℓX

ρ2
+

1

L
|ℓ|
p

∂L|ℓ|
p

∂Y

)

. (14)

B. Quadrupole interaction with a doughnut mode

To illustrate the effect of the atomic quadrupole interaction

with the LG mode, we limit our considerations to the case

that has recently been discussed [22], namely, an LG doughnut

mode of winding number ℓ and radial number p = 0. In this

case, the last terms involving the derivatives in α and β given

by Eqs. (13) and (14) vanish as L
|ℓ|
0 are constants for all ℓ.

Also, we suppose at this stage that the atom is constrained

to move on the X -Y plane. This would be the case when we

discuss counterpropagating modes in which case there will be

no axial motion due to counteracting forces from the counter-

propagating beam. The quadrupole transition is then such that

Qxy = Qxz = 0 and the Rabi frequency Eq. (12) reduces to

	
Q

kℓ0(ρ) =
[

u
|ℓ|
0 (ρ)/h̄

]

Qxx

(

|ℓ|X
ρ2

−
2X

w
2
0

−
iℓY

ρ2

)

, (15)

with the corresponding quadrupole potential given by

Eq. (8). In the following, we focus on the specific case of

the Cs atom, which has been the subject of investigation

involving its quadrupole transition (6 2S1/2 → 5 2D5/2).

We have the following as specific parameters for Cs:

λ = 675 (nm), Qxx = 10ea2
0, ŴQ = 7.8 × 105 (s−1). The

beam parameters are w0 = 5λ, �0 = 103ŴQ, and for the

intensity, I = ǫ0cE2
k00/2 = 109 W m−2. The scaling factors of

the Rabi frequency and quadrupole potential are chosen to be

	0 = 1
h̄

( 2I
ǫ0c

)
1/2 Qxx

w0
= 136ŴQ, U0 = h̄

2
ŴQ, respectively.

Figure 1 displays the spatial distribution of U
Q

k
/U0 for the

doughnut vortex of winding numbers |ℓ| = 10 and |ℓ| = 100

for negative detuning (�0 = −103ŴQ) and at Z = 0. The

depth of the potential wells must be, at least, on the order

of the recoil energy to trap an atom. Indeed, for the case

considered here, we have U0 = h̄
2
ŴQ ≃ 3.8 × 105(h̄/s) and

the recoil energy for the Cs transition (6 2S1/2 → 5 2D5/2) is,

thus, ER = h̄2k2/2m ≃ 2.07 × 106(h̄/s). This indicates that

the depth of the quadrupole potential must be greater than
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FIG. 1. The spatial distribution of the scaled quadrupole po-

tential U/U0 for an atom in a Laguerre-Gaussian doughnut mode

with negative detuning (�0 = −103ŴQ). (a) For ℓ = 10, and (b) for

ℓ = 100. In both cases, p = 0. Note the significant increase in the

potential depth in the case of large ℓ. Distances are in units of the

beam waist radius w0 = 5λ, with λ = 675 nm. The scaling energy

factor U0 = 3.8 × 105 h̄s−1.

5 × U0, which can be attained for a Laguerre-Gaussian beam

with ℓ � 10.

From the experimental point view, winding numbers

as large as ℓ = 300 can be accomplished [32], and the

quadrupole potential in the LG mode exhibits enhancement

as the winding number increases. These features have already

been pointed out [22]. The scenario indicates that there should

be significant mechanical effects on atoms in the context of

quadrupole-allowed transition and twisted light. Exploring

the dynamics of atoms under such physical conditions is of

significant interest, and it is our main goal in this paper.

C. Bessel-Gaussian modes

We now consider the quadrupole interaction of the atom

with a nondiffracting Bessel-Gaussian mode for which the

phase function is written θkℓ and a Rabi frequency 	
Q

kℓ
. As be-

fore, the center-of-mass coordinate is given by R = (ρ, ϕ, Z )

in cylindrical polar coordinates [38], and we write for the

phase function in the paraxial regime,

θkℓ(ϕ, Z ) = kZ + ℓϕ. (16)

For the Rabi frequency, we have

	
Q

kℓ
(ρ, Z ) = [gℓ(ρ)/h̄][Qxxη + Qxyμ + Qxzσ ], (17)

where k is the wave vector and ℓ is, as before, the winding

number. The functions η, μ, and σ are given, respectively, as

η(ρ) =
(

1

Jℓ

∂Jℓ

∂X
−

iℓY

ρ2

)

, (18)

μ(ρ) =
(

1

Jℓ

∂Jℓ

∂Y
+

iℓX

ρ2

)

, (19)

σ (ρ, Z ) =
(

(2ℓ + 1)

2Z
−

2Z

Z2
max

+ ik

)

, (20)

Finally, the Bessel-Gaussian amplitude function gℓ(ρ) is

given by

gℓ(ρ) =

√

8π2k2
⊥w

2
0I

ε0c

(

Z

Zmax

)ℓ+1/2

exp

(

−
2Z2

Z2
max

)

Jℓ(k⊥ρ),

(21)

FIG. 2. The normalized quadrupole potential distribution and

contour for an atom in a Bessel-Gaussian mode and negative de-

tuning (�0 = −103ŴQ). In (a) and (b), ℓ = 15. See the text for the

parameters used to generate these figures. Distances are in units

of the beam waist radius w0 = 5λ, with λ = 675 nm. The scaling

energy factor U0 = 3.8 × 105 h̄s−1.

where Jℓ is the ℓth-order Bessel function of the first kind, k⊥
and kZ are the transverse and longitudinal components of the

wave vector, respectively, whereas k = (2π/λ) is the wave

number in real space, and I is the beam intensity. Here, as

before, w0 is the beam waist, and Zmax is the typical ring

spacing [39].

The central spot of the zero-order Bessel-Gaussian mode

(represented by J0) is a bright region (a central maximum).

However, all higher-order Bessel modes Jℓ for ℓ � 1 are

always dark on the axis and are surrounded by concentric

rings whose peak intensities decrease as ρ−1 [40]. For the

numerical computations, we continue to focus on the case of

the Cs atom and its quadrupole transition (6 2S1/2 → 5 2D5/2).

Once again, we assume that the atom moves on the X -Y

plane, the elements of the quadrupole tensor are chosen to

be Qxy = Qxz = 0, and we continue to use the scaling factors

of the Rabi frequency and quadrupole potential as 	0 =
Qxx

h̄w0

√

8π2k2
⊥w

2
0 I

ε0c
and U0 = h̄

2
ŴQ, respectively. The results of the

evaluation of the optical quadrupole potential distribution,

given by Eq. (8) and its contour plot, are shown in Fig. 2.

This corresponds to the Bessel-Gaussian mode Eq. (21) for

which ℓ = 15 and are plotted on the X -Y plane at a fixed value

of Z = 1
2

√
ℓ + 1/2Zmax and for the case of negative detuning

(�0 = −103ŴQ).

It is seen that the quadrupole potential of the Bessel-

Gaussian mode has a number of maxima and minima that can

be used to trap the atoms for which the transition frequencies

are appropriately detuned from the frequency ω of the light.

When compared with the case of the Laguerre-Gaussian po-

tential, we see that the Bessel-Gaussian potential has a more

complicated potential landscape with a number of trapping

potential sites of decreasing depths in the radial direction.

However, the deepest trapping sites closely resemble those of

the Laguerre-Gaussian potential.

IV. ATOM DYNAMICS

We now consider the atom dynamics under the influence

of the quadrupole potential when the atomic transitions are

dipole forbidden but quadrupole allowed. Recent experiments
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have succeeded in trapping cold sodium atoms in the annular

ringlike regions of space generated by counterpropagating

beams including twisted light (for a review, see Ref. [8]), and

the atoms were then made to rotate, generating a long-lived

current. The success of such experiments has implications for

the correspondence between ultra-cold-atom field and semi-

conductor electronic circuits where both exhibit analogous

behaviors [41–46]. It is reasonable to suggest that analogous

experiments could be realized in which Cs atoms and their

quadrupole transitions are trapped in the quantum well regions

of optical vortex modes. A trapping process within a two-

dimensional array will demand counterpropagating beams to

cool the axial motion to very small axial speeds.

Here, it suffices to consider the case of two counterpropa-

gating vortex beams, labeled 1 and 2. The collective effect of

the two beams is to generate the optical force acting on the

center of mass of the atom. Furthermore, the atomic motion

can be described within the classical framework with the total

force acting on the atom as the sum of the forces carried

by the optical vortices in the regime of allowed quadrupole

atomic transitions. Thus, the dynamics of the atom subject

to the forces due to the coaxial counterpropagating beams is

governed by the equation,

M
d2R

dt2
=

∑

i

[

F 1+2
sp (R, V) + F 1+2

Q (R, V)
]

, (22)

where the spontaneous and dissipative forces are given by

Eqs. (6) and (7). To illustrate the numerical solutions of

this equation that lead to typical trajectories, we consider a

Cs atom in two counterpropagating LG and Bessel-Gaussian

beams. The numerical solutions of this equation lead to typical

trajectories for the Cs atom in either two identical counter-

propagating LG or two counterpropagating Bessel-Gaussian

beams. We will also assume that the quadrupole transition

is such that Qxy = Qxz = 0 and the beams are assumed to be

independent of each other in that their phases are not locked.

A. Counterpropagating doughnut modes

We consider only counterpropagating doughnut LG modes,

namely, those for which p = 0 and in which there is one radial

node in the field amplitude function. The initial velocity of

the atom is chosen as V (0) = (0, 0), and the beams differ

not only in their directions of propagation, but they can also

differ in the values of the quantum numbers l1 and l2. For

illustration, we consider the case l1 = l2 = |l|. Also, in order

to trap atoms in the optical vortex, we consider the case of

negative detuning �0 < 0. The distances are measured in

units of the beam-waist w0, and we choose the initial position

as [X (0),Y (0)] = (−0.5,−2)w0.

Figure 3 displays the trajectory of the Cs atom in the

counterpropagating LG beams for which l1 = l2.

Other features of the trapping and dynamics can be seen

in the plots displayed in Fig. 3 for various time intervals.

It is seen that the atom remains confined on one side of

the potential well where it was initially positioned and exe-

cutes oscillatory motion within that side of the potential well

bouncing off the potential walls but does not retrace its

previous trajectory.

FIG. 3. The trajectories of the Cs atom in the quadrupole po-

tential generated by counterpropagating LG beams with negative

detuning and for l1 = l2 = 10. (a) For t = 100 s. (b) For t = 150 s.

The initial conditions are Vx (0) = Vy(0) = 0 and [X (0),Y (0)] =
(−0.5, −2)w0. The bold point represents the initial position, the

triangle head arrows represent the direction of the departure,

and the empty triangle head arrows describe the coming back di-

rection. The simple arrow represents the second departure. The other

parameters are given in the text. Distances are in units of the beam

waist radius w0 = 5λ, with λ = 675 nm.

Next, we consider the dynamics of an atom initially at

rest at the position [X (0),Y (0)] = (−4,−5)w0, subject to

counterpropagating LG beams with a negative detuning for a

large value of winding number ℓ = 100 and with the same

parameters as stated above. The trajectory of the atom is

shown in Fig. 4. It is clear that the large winding number ℓ

gives rise to a deeper trapping potential, and, again, we have

two crescentlike trapping regions. The results shown in Fig. 4

are similar to those of the previous case with a small value

of winding numbers ℓ1 = ℓ2 and negative detuning. However,

for the case of ℓ1 = ℓ2 = 100, the trajectory is rather different

FIG. 4. The trajectories of the Cs atom in the quadrupole po-

tential generated by counterpropagating LG beams with negative

detuning and for ℓ1 = ℓ2 = 100. The initial conditions are Vx (0) =
Vy(0) = 0 and [X (0),Y (0)] = (−4, −5)w0. The bold point repre-

sents the initial position, the triangle head arrows represent the di-

rection of the departure, and the empty triangle head arrows describe

the coming back direction. The other parameters are given in the

text. Distances are in units of the beam waist radius w0 = 5λ, with

λ = 675 nm.
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FIG. 5. The trajectory of the Cs atom in the quadrupole poten-

tial generated by counterpropagating Bessel-Gaussian beams k1 =
−k2 with negative detuning and ℓ1 = ℓ2 = 15, (a) with initial po-

sition [X (0),Y (0)] = (−1, −15)w0, and (b) with initial position

[X (0),Y (0)] = (−5, −15)w0.

from the small-ℓ case. The atom initially placed in one wing of

the potential wells moves in an oscillatory path. Once again,

the atom does not retrace its steps in the return journey as

shown in Fig. 4, but the return path is closer to the original

than in the case of smaller ℓ.

B. Counterpropagating Bessel-Gaussian beams

Finally, we consider the case of an atom initially at rest at

different initial positions [X (0),Y (0)], subject to counterprop-

agating Bessel-Gaussian beams with a negative detuning for

ℓ1 = ℓ2 = 15 with the same parameters used earlier. We now

have two crescentlike deep regions with a series of potential

wells which decrease in depth at increasing radial distances

from the center. The path of the Cs atom depends, of course,

on the initial position of the atom. In Fig. 5(a), we plot the

trajectory of the Cs atom when the atom is placed close to the

center of one of the twin potential wells, whereas in Fig. 5(b),

the atom is initially placed close to its right side. Note how,

in each case, the trajectory oscillates between the walls of the

potential well, but it does not retrace its steps on its return

journey.

V. CONCLUSIONS

This paper is concerned with the coupling of optical

vortices, specifically Laguerre-Gaussian and Bessel-Gaussian

modes, to dipole-forbidden but quadrupole-active atomic tran-

sitions, and we focused on Cs and its quadrupole transi-

tion (6 2S1/2 → 5 2D5/2). We have shown how the electric

quadrupole moments couple to the gradients of the com-

ponents of the electric field of the optical vortex at near

resonance, leading to atom trapping in the optical quadrupole

potential well accompanied by translational oscillatory mo-

tion within the well. The formalism leading to atom trapping

and dynamics required the specification of the optical forces

that generate the atomic motion. The quadrupole forces fol-

low the standard steady-state formats except that the Rabi

frequency has to be defined in accordance with the gradient

coupling. We have confirmed that the interaction is, indeed,

enhanced considerably, particularly, in the case of a Laguerre-

Gaussian mode with a relatively large winding numbers. This

enhancement with increasing winding number can be traced

back to the gradients of the electric-field components which

makes the Rabi frequency dependent on the winding number.

As specific cases awaiting future experimental investigations,

we considered the trapping and the dynamics of Cs atoms

in the optical quadrupole potential generated by two coaxial

counterpropagating optical vortex beams, illustrating the re-

sults using typical experimentally accessible parameters. It is

conceivable that further experimental advances would render

the effects as measurable and will lead to applications in the

context of quadrupole interactions in atoms and molecules

with structured light.
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