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Abstract

We present a nested algebraic Bethe ansatz for one-dimensional s05,- and sp,,,-symmetric
open spin chains with diagonal boundary conditions. The monodromy matrix of these spin
chains satisfies the defining relations on the extended twisted Yangians X ,(s02,,s05,)" and
X, (8Pon, 5p5, )", respectively. We use a generalisation of the De Vega and Karowski approach
allowing us to relate the spectral problem of s04,- or sp,,,-symmetric open spin chain to that
of gl -symmetric open spin chain studied by Belliard and Ragoucy. We explicitly derive
the structure of Bethe vectors, their eigenvalues and the nested Bethe equations. We also
provide a proof of Belliard and Ragoucy’s trace formula for Bethe vectors of gl -symmetric
open spin chains.
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1. Introduction

The Bethe ansatz is a large collection of methods to find the spectrum and common
eigenvectors of commuting families of operators (transfer matrices) occurring in the theory
of quantum integrable models. It was Faddeev’s Leningrad school of mathematical physics
which reformulated the spectral problem of quantum integrable models into a question of
representation theory of certain associative algebras with quadratic relations, now generally
known as quantum groups [FST, FT]. More precisely, the spaces of states of such models,
called quantum spaces, are associated to tensor products of irreducible representations of
these quantum groups. The commuting operators are then images of elements in the com-
mutative subalgebra, known as Bethe subalgebra, on the quantum space. By acting with
appropriate algebra elements on the vacuum vectors one then constructs the so-called Bethe
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vectors that depend on sets of complex parameters. In the case when these parameters sat-
isfy certain algebraic equations, known as Bethe equations, the corresponding Bethe vectors
become eigenvectors of the commuting operators. In this form, the Bethe ansatz is called
the algebraic Bethe ansatz. The general conjecture is that the constructed eigenvectors form
a basis in the space of states of the model, see reviews [PRS3, S12].

The algebraic Bethe ansatz has been very fruitful in the study of gly-symmetric integrable
models [KuRs, BeRa, PRS1, PRS2, GMR]. Finding eigenvectors and their eigenvalues pro-
vides the necessary first step in the study of scalar products and norms [HLPRS1, HLPRS2,
Ko], correlation functions and form factors [[zKo, KKMST1, KKMST2, KMST, KMT, SI1].
The study of the soy- and spy-symmetric models so far has been less productive. One of
the obstacles is that the R-matrix in this case is not quite of a six-vertex type, which is
the key property used in the study of the gly-symmetric models. Another obstacle is that
not every irreducible highest weight soy- or spy-representation can be lifted to a repre-
sentation of the corresponding quantum group, such as Yangian or quantum loop algebra.
Moreover, the lifting itself is often not straightforward and requires use of the fusion proce-
dure or some other method, such as a spinor or oscillator algebra realization [AMR, GRW3].
Consequently, the study of one-dimensional soy- or spy-symmetric spin chains has mostly
been restricted to the cases when the quantum space of the model is a tensor product of
fundamental representations (“fundamental models”). The nested algebraic Bethe ansatz
for fundamental periodic spin chains in the orthogonal case was addressed by De Vega and
Karowski [DVK] (see also [Rs2]) and in the symplectic case by Reshetikhin [Rs1]. The latter
paper uses a combination of analytic and algebraic methods to study periodic spin chains
with more general quantum spaces. The fundamental open spin chains in the symplectic
case were addressed by Guang-Liang, Kang-Jie and Rui-Hong [GKR] and, more recently,
in the orthogonal case by Gombor and Palla [Go, GoPa]. The algebraic Bethe ansatz for
the ortho-symplectic (supersymmetric) closed spin chain was studied by Martins and Ramos
[MaRal]. The analytical Bethe ansatz for orthogonal, symplectic and ortho-symplectic open
spin chains was studied by Arnaudon et al. in [AACDFR1, AACDFR2].

In the present paper we study the spectral problem of soy- and sp-symmetric open spin
chains with more general quantum spaces and certain diagonal boundary conditions. The
R-matrix of the spin chain is that introduced by Zamolodchikov and Zamolodchikov [ZaZa]
(see also [BKWK]) for son and by Kulish and Sklyanin [KuSk] for sp,. We focus on the
case when N = 2n. We choose the left boundary to be a trivial diagonal boundary. The
right boundary is chosen to be a diagonal boundary corresponding to symmetric pairs of
types CI, DIII, CII, DI and CDO in terms of the Cartan’s classification of symmetric spaces
(the precise details are given in Section 2.3). Our approach relies on the decomposition
C?" =2 C?®C", which allows us to rewrite the R-matrix as an End(C"®C")-valued six-vertex
matrix and thus apply conventional algebraic Bethe ansatz methods, subject to necessary
modifications, to solve the spectral problem of the chain. The space of states is given by a
tensor product of symmetric irreducible so4,-representations or by a tensor product of skew-
symmetric irreducible sp,, -representations. We use fusion procedure to extend these so0y,-
and sp,,,-representations to those of the Extended Yangians X (s0s,) and X (sp,,) studied in
[AMR]. The monodromy matrix of the chain satisfies the defining relations of the extended
Twisted Yangian X (gan, g5,)"™ studied by the second named author in [GR], introduced
in Drinfel’d J presentation in [DMS]. The key idea is to use the symmetry relation of



X (g2n, 95,)™, which allows us to rewrite the exchange relations involving the D operator
of the transfer matrix in terms of the A operator, thus effectively reducing the problem to
that of the gl,-symmetric open spin chains studied by Belliard and Ragoucy in [BeRa]. Our
main results are Theorems 5.21 and 5.29 stating eigenvalues of symplectic and orthogonal
Bethe vectors and the Bethe equations. Here by a symplectic Bethe vector we mean a Bethe
vector for a sp,,-symmetric open spin chain. An orthogonal Bethe vector means a Bethe
vector for a §0y,-symmetric open spin chain. The eigenvalues of Bethe vectors and Bethe
equations for fundamental chains in this paper agrees with the results obtained in [GoPa]
and [AACDFRI1]. The differences amount to a factor of 2@%72_‘7 which we have introduced in
the definition of the transfer matrix (Definition 5.16, see also (3.20)), and additional factors
which appear in the definitions of the reflection K-matrices (given by Lemma 3.10). We
also present in Section 4 a detailed survey of the algebraic Bethe ansatz for a gl -symmetric
open spin chain studied in [BeRa], since it is a prerequisite to our approach to sp,,- and
509,-symmetric open spin chains. Our main objectives in this survey are Theorems 4.13 and
4.15. Theorem 4.13 rephrases the relevant to the current paper results obtained in Section
6 of [BeRa]. Theorem 4.15 states a trace formula for Bethe vectors of a gl,-symmetric open
spin chain. This formula may be viewed as a special case of the supertrace formula given
by Theorem 7.1 in [BeRa], which presented only an outline of the proof. In the current
paper we provide a detailed proof of the trace formula under consideration. However, we
were unable to find (reasonably simple) trace formulas for Bethe vectors of the sp,, - and
509,-symmetric open spin chains, and hence have limited ourselves to providing examples
of the explicit form of Bethe vector with a small number of excitations. These are given in
Examples 5.23 and 5.32.

We note for the reader that the approach presented in this paper may be used for any ir-
reducible representations of sp,, and s0s, that can be extended to representations of X (sp,,,)
and X (s09,,). In Section 5.8 we have demonstrated this in case of the so-called SOy, / (U, xU,)
and SP,,/(U, x U,) magnets, in the periodic cases studied in [Rs1].

The paper is organized as follows. In Section 2 we introduce the notation used in the
paper and provide details of the symmetric pairs that describe boundary conditions of the
open spin chains. In Section 3 we set up the algebraic description of the spin chains. We recall
the definition of the orthogonal and symplectic extended Yangians and twisted Yangians,
and relevant details of their representation theory. We then present the fusion procedure.
We also recall the necessary details of the Molev-Ragoucy reflection algebra and present the
six-vertex block-decomposition of the extended twisted Yangian. In Section 4 we present the
nested algebraic Bethe ansatz for an open gl -symmetric open spin chain first addressed by
Belliard and Ragoucy in [BeRa]. Section 5 contains the main results of this work. We first
derive technical identities that provide key steps of the algebraic Bethe ansatz. We introduce
a creation operator of (multiple-)excitations and describe its algebraic properties: we derive
the exchange relations for the creation operator and the monodromy matrix that lead to the
so-called wanted and unwanted terms. We then present the nested algebraic Bethe ansatz.
We provide the complete set of Bethe equations and examples of the Bethe vectors. We end
this section with a brief discussion of the SOy, /(U, x U,) and SP,,/(U, x U,) magnets and
the nearest-neighbour Hamiltonian operator for the fundamental open spin chain.

Data management. No new data was created during this study.
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2. Preliminaries and definitions

2.1. Lue algebras

Fix n € N. Let gl,, denote the general linear Lie algebra and let E;; with 1 <14, < 2n
be the standard basis elements of gl,,, satisfying

[Eij7 Enl = ikl — 0 By

The orthogonal Lie algebra soy, or the symplectic Lie algebra sp,, can be realized as a
Lie subalgebra of gl,, as follows. For any 1 < 4,7 < 2n set 0;; = 0,0; with 6, = 1 in
the orthogonal case and 6; = d;~, — d;<,, in the symplectic case. Introduce elements Fj; =
Eij — 0;;Eop—jt1,2n—i+1 satisfying the relations

[Fijy Fra] = 0uFa — 0y + 05505201401 Fr2n—it1 — 0i50i2n—k41Fon—j110, (2.1)
Fij +0iiFon_ji12n—iv1 =0,
which in fact are the defining relations of the Lie algebra sos, or sp,,. Namely, we may
identify 0y, or sp,, with spanc{Fi; : 1 <4i,j < 2n} and we will use b, = spanc{Fj; : 1 <
i < n} as a Cartan subalgebra. It will be convenient to denote both Lie algebras sos, and
§Py, simply by gan.
For any n-tuple A = (A1,...,\,) € C" we will denote by V(\) the irreducible highest
weight representation of the Lie algebra go,. In particular, V() is generated by a non-zero
vector £ such that

Fi;&€=0 for 1<i<j<2n and

The representation V' (\) is finite-dimensional if and only if

ANi— ANy €Z, for 1=1,...,n—1 and
A1+ €Z, it gop, = 509,
)\n € Z+ lf QQn = 5p2n

The subalgebra of g,, generated by the elements F;; with 1 < ¢,5 < n is isomorphic to
the Lie algebra gl,. We will be interested in the following restriction of V(\):

VA ={veV(\): Fiv=0 for 1<i,j<n} (2.3)

The vector space V()) is an irreducible representation of gl, C go,. It is finite-dimensional
if V(A) is.
Given a Lie algebra g its universal enveloping algebra will be denoted by U(g).
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2.2. Matriz operators

We need to introduce some operators on C¥ @ CV, where the tensor product ® is defined
over the field of complex numbers, ® = ®¢, and N = n or N = 2n (it will always be clear
from the context which N is used). Let e;; € End(CY) be the standard matrix units and
let e; be the standard basis vectors of CV. Then P will denote the permutation operator
on CY @ CV and we set Q = P = P® where the transpose t is defined by (e;)! =
Oijen—jr1,N—iy1; explicitly,

N N
P = Z €ij & €y, Q= Z 0ij€ij @ EN—it1,N—jt1- (2.4)

i,j=1 i,j=1

Let I denote the identity matrix on CV @ CV or CV (again, it will always be clear from
the context which I is used). Then P? = I, PQ = QP = +Q, Q* = NQ, which will be
useful below. Here, and further in this paper, the upper sign in + and F corresponds to the
orthogonal (or “+7) case and the lower sign to the symplectic (or “—") case. Also note that
P(e;;®1) = (I ®e;;)P. Taking the transpose of this, we obtain a pair of relations for @) and
any M € End(C"):

QM®I)=Q(I oMY, MeDQ = (I M")Q. (2.5)
Note that the transposition ¢ can we equivalently written as
M= JM"J

where 1 denotes the usual transposition of matrices, i.e., e/; = e;;, and J = D iy € N—it1-
For a matrix X with entries z;; in an associative (or Lie) algebra A we write

—_——

N
X, = Z[@)...@]@%@[@---@I@xijeEnd((CN)®k®A.
-1

,L’]Zl S

Where appropriate, we will use the notation [X];; to denote matrix elements x;; of a matrix
operator X. Products of matrix operators will be ordered using the following rules:

s 1
HXi:X1X2--'Xs and HXi:XsXs—l"'Xl' (26)

i=1 1=s

Here k > 2 and 1 < s < k; it will always be clear from the context what k is.
We will denote the generating matrix of gl,, by £ = Zl<i<j<2n e;; ® Ejj and the gener-
2n -
ei; ® Fij.

ating matrix of go, by F' = zz‘,j:1

2.3. Symmetric pairs

The symmetric pairs that we are interested in are of the form (goy, g5,), where p is an
involution of go, and g5, denotes the p-fixed subalgebra of gs,. The involution p is given
by p(F) = GFG™! for a particular matrix G € End(C?"); we will use the matrices G in
agreement with those in Section 2.2 of [GRW1]. This allows us to view g5, as the subalgebra
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of gon generated by the elements F/, = Fj; + (GFG™");;. Its generating matrix is given
by FP = F + GFG™!. We also recall the further refinement of Cartan’s classification of
symmetric spaces introduced in cit. loc. that reflects the explicit form of G listed below and
differences in the study of representation theory of twisted Yangians.

Let p and ¢ be such that p > ¢ > 0 and p + ¢ = 2n. In the list below, for each Cartan
type, we indicate the corresponding symmetric pair and give our choice of matrix G:

o CI : (9271’ ggn) = <5p2nvg[n) and G = Z?:l (6ii - €n+i,n+i)-

e DIII : (92n7ggn) = (5027179[71) and G = Z?:l <€’i’i - en—‘ri,n-i-i)-

o CII : (g2n,85,) = (8P, 5p, ® sp,) such that both p and ¢ are even and p > ¢. The
matrix G is

2n—3 3
G = €ii — Z(eii + €an—it12n—it1)- (2.7)

i=g+1 i=1
In this case the subalgebra of g5, spanned by Fj; with 4 +1 < 4,5 < 2n — 1 is
isomorphic to sp, and the subalgebra of g5, spanned by Fj; with 1 < 4,7 < 4 and

2n — g +1 < 4,7 < 2n is isomorphic to sp,.

e DI : (gan,05,) = (502,,50, @ s0,) such that both p and ¢ are even and p > ¢q. We
choose G to be the same as for CII case, i.e. given by (2.7). Hence the subalgebras so,
and so, of g5, are defined analogously.

e CDO : (@21, 95,) = (920, 920) and G = 1.

Note that we have excluded the DI case, when both p and ¢ are odd (called DI(b) in
[GRW1]). In this case the matrix G can not be chosen to be diagonal. Also note that the
last case, CDO, can be viewed as a limiting case of types CII and DI, when p = 2n and ¢ = 0.

3. Setting up symmetries and representations of the spin chain

3.1. The Yangian X (ga,)

We briefly recall necessary details of the Extended Yangian X (gs,,) and its representation
theory, adhering closely to [AMR]. We will drop “Extended” part of the name to ease the
notation. We then use the fusion procedure of [IMO] and follow arguments presented in Sec-
tions 6.4 and 6.5 of [Mo] (see also Section 2 in [MoMu]) to extend symmetric representations
of 509, and skew-symmetric representations of sp,, to representations of X(gs,). They are
examples of the so-called Kirillov-Reshetikhin modules of X (gs,) [KrRs]. A multiple tensor
product of such representations will serve as the bulk quantum space of the open spin chains.

Introduce a rational function acting on C*" @ C*"

1 1

Q, where kK=nzFI, (3.1)
u—K

called Zamolodchikov’s R-matriz [KuSk, ZaZal. It satisfies the unitarity and cross-unitarity
relations

R(u)R(—u) = R(u)R'(u+ k) = (1 —u™?) -
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and is a solution of the quantum Yang-Baxter equation,
R12(u — U) ng(u — Z)R23('U — Z) = R23(U — Z)R13<U — Z) ng(u — U). (32)

We introduce elements tl(» D with 1 < ;7 < 2n and r > 0 such that t = ;5. Combining

t(r)

these into formal power series t;;(u) = - t;;/u™", we can then form the generating matrix

T(u) = 335 e ® ty(w).

Definition 3.1. The Yangian X(g2,) is the unital associative C-algebra generated by ele-

ments tg)

with 1 <i,7 <2n and r € Z>q satisfying the relation
R(u —v)Ty(u)Ta(v) = To(v) T1(u) R(u — v). (3.3)

The Hopf algebra structure of X (ga,) is given by
) — Ztm @ty (u S:T(u)— T Hu), e:T(u)— 1. (3.4)

We now collect several useful facts about the algebra X (go,). The matrix 7'(u) satisfies
the symmetry (cross-unitarity) relation

Tw)T (u+ k) =T (u+r)T(u) = 2(u)l, (3.5)
where z(u) is a formal series in u~! with coefficients central in X(gs,). Let ¢ € C and
f(u) € C[[u']]. The shift and twist automorphisms of X (ga,) are defined by, respectively,

T. : T(u)— T(u—c), pr o T(u) — f(u)T(u). (3.6)

We will make us of the following anti-automorphisms of X (ga,):
sign : T'(u) — T(—u), tran : T(u) — T (u), rev : T(u) — T"(u). (3.7)
Next, we recall the definition of the lowest weight representation of X (ga,).

Definition 3.2. A representation V' of X(gan) is called a lowest weight representation if
there exists a non-zero vector n € V' such that V = X(gon)n and

tij(u)yn=0 for 1<j<i<2n and t;(u)n=N(u)n for 1<i<2n, (3.8)

where \i(u) is a formal power series in u™" with a constant term equal to 1. The vector 1 is
called the lowest vector of V' and the 2n-tuple A\(u) = (A (u), ..., Aan(u)) is called the lowest
weight of V.

The Yangian X(gs,) contains the universal enveloping algebra U(gs,) as a Hopf subal-
gebra. An embedding U(gs,) < X (g2n) is given by

1 1 1
Fij — Ti(j) = %(t( ) gijtgn)fjJrlaniJrl) (3.9)



for all 1 <14,5 < 2n. We will identify U(gs,) with its image in X (gs,) under this embedding.
However, in contrast to the Yangian Y'(gl,,) of the Lie algebra gl,,, there is no surjective
homomorphism from the Yangian X(go,) onto the algebra U(gs,). As a consequence, not
every irreducible finite-dimensional representation of gs,, can be extended to a representation
of X(g2n). The fusion procedure allows us to extend any symmetric representation of so0,,, and
any skew-symmetric representation of sp,, to a representation of X(gs,). In the remaining
part of this section we briefly recall the main aspects of the fusion procedure starting with
the vector representation of go,.

The vector representation of go,, on C?" is a highest weight representation of weight A =
(1,0,...,0) and the highest vector e; given by the assignment Fj; — e;; — 0;;€2,—j+1.2n—it1-

The assignment
1
o : tij(u) — 5z‘j + 561‘]‘ - H—Heijezn—j+1,2n—i+1

equips C?" with a structure of a X(ga,)-module. Since we are interested in the lowest
weight X (go,)-modules, we need to compose the map g with the anti-automorphisms sign
and tran. We also include the shift automorphism 7.. Denoting the resulting map by
Q. := 0o sign o tran o 7, we have

Oc fz‘j(u) = 5z‘j - Eeji + mezj €an—it+1,2n—j+1-
It follows that

1
0(T(u) = R(u—c), (T (u)e—o(T(—u)) = @(T(u)) @(T"(u+ k) =1 (=0
This allows us to view the space C*" as an irreducible lowest weight X (gs,)-module with
weight A(u) given by

1 1
/\Q(U) =...= )\2n_1(u) = 1, /\gn(u) =14 —-. (310)

u—c U—cC—kK

/\1<U> =1-

We denote this module by L(\).. We will use this notation for all irreducible finite-
dimensional representations of g, that can be equipped with a structure of a X (gs,, )-module.

Consider the tensor product space (C?")®* with k& > 2. Each C?>" carries the vector
representation of go, so that the vector space (C?*)®* is a representation of go,. The Brauer
algebra B (£2n) acts naturally on this tensor space and commutes with the action of go,, see
e.g. Chapter 10 of [GmWa]. The Brauer-Schur-Weyl duality allows us to obtain irreducible
representations of ga, by studying primitive idempotents in B (+2n). Recall that irreducible
representations of By (£2n) are labelled by all partitions A = (A1, Ag, .. .) of the non-negative
integers k, k — 2, k — 4, .... Denote by X the partition conjugate to A, e.g. if A = (2,1,1),
then N = (3,1). Then the vector space (C?*")®* decomposes as

Lk/2]

= P oLy

F=0 A-k—2f
M +A<2n



in the orthogonal case, and as

Lk/2]

(C2m)F = @ @ Vi @ L(\)

f=0 Ark—2f
2\, <2n

in the symplectic case; here V) and L(\) are irreducible representations of B;(£2n) and
gon, respectively, labelled by the partition A. We will focus on the symmetric representation
labelled by the partition (k) and the skew-symmetric representation labelled by the partition
(1,...,1) of k. Assume that k£ > 1 in the orthogonal case and 1 < k < n in the symplectic
case. By Theorem 2.2 of [IMO] (see also Example 2.4 (iii) and Section 4 therein) the
corresponding primitive idempotents act on the space (C?*)®* via operators Hf defined by

k
1 , .
O =1 and I = - ] (Rh(q:(z —1))--- Ri_l,i(qq)) it k> 2. (3.11)

=2

The subspace Li = IIF(C*)®F is a gy,-submodule of (C*")®* isomorphic to the highest
weight representation L(\) of weight A = (k,0,...,0) in the orthogonal case and of weight
A= (1,...,1,0,...,0), where the number of 1’s is k, in the symplectic case. The highest
vector in the orthogonal case is

§=e1® - Qe

In the symplectic case it is

£E= Z sign(o) e,(1) ® -+ @ eo(r),

ceBy

where &y, is the group of permutations on the set {1,2,...,k}.

By combining the comultiplication in (3.4) with the map g. and an appropriate choice of
the shift automorphisms, we obtain a representation of X (gs,) on the vector space (C?")®*
given by the assignment

T(u) — Ro1(u— ¢)Roa(u — ¢ F 1) - Rop(u — ¢ F k£ 1) € End((C*)®*+1) (3.12)

4

where the “zero” space denotes the matrix space of T'(u).

Proposition 3.3. The subspace L C (C*")®F is stable under the action of X (ga,) defined by
(3.12). Moreover, the representation of X (gan) on LkjE obtained by restriction is an irreducible
lowest weight representation of weight A\(u) given by, for 1 <i <mn,

Ai

i
)\i(u):1_u—c’ )\2n_i+1(u):1+u—c$k‘i1—/{’

(3.13)

where X = (k,0,...,0) in the orthogonal case and X = (1,...,1,0,...,0), with the number
of 1’s being k, in the symplectic case.



Proof. Using the explicit form of the idempotent Hf and the Yang-Baxter equation multiple
times we find

Roi(u—¢)Roa(u —cF 1) -+ Rop(u — ¢ F k £ DILE
= HfROk(u—c:Fki 1) Roa(u—cF 1) R (u — ¢,

which implies the first part of the proposition. Since U(gs,) C X (g2,) we have X (g2,)(e1 ®

- ®ey) = L. By Lemma 5.17 in [AMR] adapted to lowest weight representations, the
tensor product of lowest vectors e; ® --- ® e; is again a lowest vector of weight given by the
product of the individual weights with respect to the action (3.12), namely Hf;é Ai(u F j),
where \;(u F j) are those given by (3.10). This implies the second part of the proposition
for the orthogonal case. For the symplectic case we refer the reader to the proof of Theorem
5.16 in [AMR]. 0

These representations of X (gs,) will be denoted by L(\).. We define the Lax operator
L(u) of X(gon) by T'(u) - L(N)e = L(u — ¢) L(A\).. It will be useful to know that
k_l u¢7, I_uil uTk

t _ pt :
Lu)L(u+r)=L(u+kK)L TEDE = Tu uEREl

’:l

-1 (3.14)
which follows from the relations R(u) R (k + u) = R'(k + u)R(u) = (1 —u~2)I and (3.12).

Remark 3.4. In the present work we do not need to know the explicit form of the Lax
operators L(u). We nevertheless provide an example of £(u) in the case when gy, = sp, and
k = 2. Then II; = 5Ry5(1) projects the space C* @ C* to the 5-dimensional subspace L,
an irreducible highest-weight representation of sp, of weight A = (1,1). Choose

_ 1 _ 1 _ 1 _ 1
U,Q—%el/\eg, U,1—7§€1/\€3, ’U1—7§€2/\€4, ’U2—7§€3/\€4,

1
UOI§(€2®€3—€3®€2—€1®€4—€4®61)7

where a Ab=a®b—b® a, to be an orthonormal basis of L,. Let z;; € End(L, ) denote
the matrix units of End(L;) with respect to the above basis, namely z;v, = d;,v; for
all 7,7, k. Then the Lax operator can be written as L(u) = Zm.’k’l Cijri(w)e;; ® x where
Cijri(w) = (€f ® vy) Ro1(u)Roa(u + 1) (e; ® vy). In particular,

=" (1-2p+P)).

u— 2 U

where

P = % ((e12 — €34) ® (o1 — T10) — (€13 + €24) @ (To,—2 + T20))
+ €33 @ (T_1,-1 + To2) + €44 @ (11 + Ta2) — €14 R (1,2 + T2 1) + €23 @ (21,2 + T21)

and P is obtained from P using the transposition rule €ij @ Ty — €5_i5—; @ T_j_y.
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8.2. The twisted Yangian X ,(gan, 95,)™"

We now focus on the Extended twisted Yangian X,(go., g5,)™ and its representation
theory adhering closely to [GR, GRW1, GRW2]. As before, we drop the “Extended” part of
the name to simplify the notation. We introduce an additional “shift” parameter p € C in
the definition of X,(gan, g5,)" which will play a role in the algebraic Bethe anstaz discussed
in Sections 4 and 5.

Recall the definition of the matrix G from Section 2.3. Introduce a matrix-valued rational
function

)tw

dl —uG 1
= ﬂ where d= 1 tr G, (315)

so that d = 0 for symmetric pairs CI and DIII, d = n/2 for CDO0, and d = (p — ¢)/4 for CII
and DI.

G(u)

Definition 3.5. The twisted Yangian X,(g2n, 85,)™ is the subalgebra of X(g2.) generated
by the coefficients of the entries of the matriz

S(u) =T(u—5)G(u+8)T"(a— %) where U =K —u— p. (3.16)

The “p-shifted” twisted Yangian defined above is isomorphic to the one introduced by
one of the authors in [GR]. The isomorphism is provided by the map ¥(u) — S(u + §).
(Note that ¥ (u) is used to denote the special twisted Yangian in [GR].) The Lemma below
is due to Lemmas 4.1 and 4.3 in [GR].

Lemma 3.6. The matriz ¥(u) defined in (3.16) satisfies the reflection equation and the
symmetry relation.:

Ru—v)X1(w)R(u+ v+ p)Xa(v) = Lo(v) R(u 4+ v+ p) X1 (u) R(u — v), (3.17)
Y(u) — (@) N tr(G(u + §))5(a) — tr(X(u)) - I

U— U U—UuU—K

Yi(u) = (£)X(a) £ : (3.18)

where the lower sign in (%) distinguishes symmetric pairs CI and DIII from the remaining
ones.

The relations (3.17) and (3.18) are in fact the defining relations of X,(gay, g5,)™. Their
form in terms of matrix elements o;;(u) of X(u), for p = 0, can be found in (4.4) and (4.5)
of [GR] (note that indices i, j, k,l are indexed by —n,—n +1,...,n — 1,n in [GR]). In this
work we will utilize a special “block” form of the defining relation; these are discussed in
Section 3.3.

We want to obtain a more compact form of the symmetry relation (3.18). Introduce a
rational function

1 for CI, DIII,

g(u) = 2u — /<;~:|: 1+ p for CII, DI when p = ¢, (3.19)
u—1U—kK

_— fi D II, DI wh )
w(Glu+ 2)) or CDO0 and CII, when p > ¢
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Note that in the last case we have

u—1u—kK (u—k+5)(u—d+5)

tr(G(u + %)) d(2u —n+ p)
Define the matrix
S(u) = g(u)2(u) € X, (820, 2,)™ ((u™)). (3.20)
Lemma 3.7. The matriz S(u) satisfies the “compact” symmetry relation:
St(u) = —(1 T ) @)+ 2 W) L (3.21)
u—1u u—u u—U—K
Proof. Substituting (3.20) to (3.21) gives
Stu) = _9(@) (1 + ;) Y(k—u—p) £ > u)~ tr(Z(?)) ! (3.22)
g(u) u—1u u—uU  uU—U—kK

For symmetric pairs CI and DIII we have g(u) = 1 giving

For symmetric pairs CII and DI when p = ¢ we have instead g(u) = 2u — k + 1 + p and so

S (Fi) = T

Thus for the above symmetric pairs (3.22) becomes

tr(X(u)) - I

U—=0—kK

1 ¥ (u)
Stu) = ( ()1 Nk —u—p)+ -
= (% 22 ) S ump
which is equivalent to (3.18), since the above cases have tr(G(u)) = 0.

Let us now focus on all the remaining symmetric pairs. By Lemma 2.2 in [GRW1] the
matrix G(u) itself satisfies the symmetry relation (3.18), namely

Glu+b8)—Grk—u—25)

2

G'u+8)=Gr—u—5) =+ -
N tr(G(u+5))G(k —u—5) —tr(G(u+5))- I
u—1u—K '
Recall (3.19). Taking the trace of both sides we find

u—1u—K 1 2k + 2 _ 1 g (u)
— 1 =11
2u+p ( ¢u—ﬁ+u—ﬁ—/~$)g(u) < $u i U — K 9u)

and rearrange to

_%(H: 1~)=(1¢u1~+ g (u) )



This allows us to rewrite (3.22) as

1 -1 Y tr(X T
¥ u) = <1 F -+ J ~(u) )E(K —u—p) =+ (u)~ — r( (?))
u—1u uU—U—K u—u  u—uU—kK
(@) + Y(u) — %3(71) N tr(G(u + ’2—)))2(1}) —tr(X(u)) - I7
u—1u U—1uU—K
which coincides with the symmetry relation (3.18), as required. O

The “compact” symmetry relation (3.21) is more convenient than (3.18) in the context of
the algebraic Bethe ansatz for the X ,(ga,, g5,)"-chain. This will become evident in Sections
5.4 and 5.5, where the so-called exchange relations are obtained.

Next, we focus on the lowest weight representations. We will rephrase some of the
statements given in Section 4 of [GRW1], where the highest weight representation theory of
X, (g2n, 85,)™ was introduced.

Definition 3.8. A representation V of X ,(gan, 95,)" is called a lowest weight representation
if there exists a non-zero vector n € V such that V = X,(g2n, 85,)™'n and

ogijuyn=0 for 1<j<i<2n and o;(u)n=p(w)n for 1<i<n, (3.23)

where j1;(u) are formal power series in u~' with the constant term equal g;;. The vector n is

called the lowest weight vector of V', and the n-tuple u(u) = (u1(w), ..., un(u)) is called the
lowest weight of V.

Symmetry relation (3.18) implies that 7 is also an eigenvector for o, (u) with n < i <
2n. Given an n-tuple p(u), we will often make use of the corresponding n-tuple f(u) with
components defined by (cf., eq. (4.10) in [GRW1])

pi(w) = u+p—i+1)u(u)+ iuj(u) (3.24)

Our focus will be on the lowest weight X,(g2n, g5,)“-modules obtained by tensoring
lowest weight X (ga,)- and X,(g2n, 95,)“-representations. With this goal in mind we need
the following rephrase of Proposition 4.10 in [GRW1].

Proposition 3.9. Let £ be the lowest vector of a lowest weight X (gn)-module L(A(u))
and let n be the lowest vector of a lowest weight X ,(gan, 85,)"-module V (u(w)). Then
X, (920, 85,) (€ @ n) is a lowest weight X,(gan, 85,)" -module with the lowest vector & @ n
and the lowest weight v(u) with components determined by the relations

with 7;(u) defined by (3.24).

Proof. The proof is very similar to that of Proposition 4.10 in [GRW1] and is essentially
the same as that of Proposition 3.17 stated in Section 3.5 below; we refer the reader to the
latter. O]
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We will restrict to the cases when V' (y(u)) is a one-dimensional representation of X ,(g2., 85,)™.

It will be interpreted as the boundary quantum space of the open spin chain. The Lemma
below rephrases Lemma 2.3 in [GRW1] and Lemma 5.4 in [GRW2].

Lemma 3.10. Let a,b € C. Then the matrices
a

14
u+2

K(u) =G — I (3.26)

when n > 1 and G is type CI, or n > 2 and G s of type DIII, and

K(u)——(l—uig) ((“uig)eﬂ‘ (”w))

b a a
+(1+u+§) ((1—u+§)633—(1+u+§)644), (327)
when n = 2, and

(woatp)luta-2d+4) () 2utp o 2utp (3.28)
(u—d+5)> u—a+§ H u+a—2d+ 5 man Jo A

K(u) =

when n > 2 and d = § — 1, are one- or two-parameter solutions of (3.17) satisfying the
symmetry relation (3.18) (with ¥(u) replaced by K (u)).

The non-zero matrix elements of K (u) in (3.26-3.28) are power series in u~* of the form
gii +u ' C[[u™]], so that K (u) € G +u'C[[u!]] with G type DI with p = 2 for (3.27-3.28).
This implies the following statement.

Proposition 3.11. (i) The assignment ¥(u) — K(u) yields a one-dimensional representa-
tion of X ,(gan, 95,)™ of weight u(u) given by, in the case-by-case way,

e for CI and DIII by (3.26):

() = =) =1 - (3.20)
2
e for DI whenn=p=q=2 by (3.27):
a b
() ( +u+§)( u+g—’)’
) , (3.30)
=1 1—
pi2(u) (+u+§)( u+§>’
e for DI whenn >2, p=2n—2,q¢=2 by (3.28):
(uta+8)(uta—2d+35)
:ul(u):_ 2 )
(u—d+2)
> (3.31)
(W)=, = (u)_(u—a+§)(u+a—2d+§)
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(ii) The assignment X(u) — K(u) = G(u + §) with G(u) defined by (3.15) yields a one-
dimensional representation of X,(82n,85,)™ of weight p(u) given, case-by-case, by

e for CII when p > q and DI when p > q > 4:

wi(u) = i—u—2 for 1<i<n, (3.32)
e for CDO:
pi(u) = ... = pp(u) = 1. (3.33)
38.3. Block decomposition of X (gan) and X,(g2n, 95,)™

In this section, inspired by the arguments presented in [Rsl, DVK] (see also Section 2.3
in [GMR]) we demonstrate a block decomposition of the Yangian X(g2,) and the twisted
Yangian X ,(gon, 85,)". We decompose the 2n x 2n dimensional matrices 7'(u) and S(u) into
n x n dimensional blocks as follows:

0=z o ) 0= (ew o) o

Our goal is to derive algebraic relations between these smaller matrix operators (blocks),
which is the crucial first step of the algebraic Bethe ansatz for a X,(gan, 95,)-chain. We
will denote the matrix elements of A(u) by «;;(u) with 1 < i,j < n, and similarly for
matrices B(u), C'(u) and D(u), and their barred counterparts.

Recall that C>* =~ C? @ C™. Let e;; with 1 <4, j < 2n denote the standard matrix units
of End(C?"). Moreover, let x;; with 1 < i,j < 2 (resp. e;; with 1 < ¢,5 < n) denote the
standard matrix units of End(C?) (resp. End(C")). Then, for any 1 < i, j < n, we may write

€jj = X11 ® €45, ©entij = T21 @ €45, €iptj = T12 D €45,  €ppint; = T22 & €. (3.35)

Hence any matrix M € End(C?") with entries (M);; € C can be written as

2
M =" 24 @ [M]as € End(C*) @ End(C"),

a,b=1

where [M]a = 27,1 [Mliyn(-1)jtnp-1)€; are blocks of M, viz. (3.34). Now let M €
End(C** @ C*"). Then we may write

2
M= )" 24 ®2eu® [M]asea € End(C*® C?) @ End(C" @ C"),

a,b,c,d=1

where [M]apeq are obtained as follows. Writing M = Zf?kl:l[M lijkieij ® ey we have

n

[M]abea = Z (M tn(a—1),j4n(b—1)k+n(c—1)+n(d—1) €ij @ €ki- (3.36)
i =1

15



Denote the R-matrix (3.1) acting on C2" @ C2" by R(u). Viewing R(u) as element in
End(C?®C?)®End(C"®@C")[[u~"]] and using (3.36) we recover the familiar six-vertex block
structure,

R(u)
= Ri(k —u)  Ulu)
R(u) = Ulw) Bk —u) : (3.37)
R(u)
The operators inside the matrix above are each acting on C* ® C" and are given by
Rw)=T—+P, U =-1ps1 g (3.39)
B u o u—rk '
N

where both the transpose t and the projector () = Zij:l ei; ® ez; are of the orthogonal type
(recall the notation © =n — i+ 1), and [ is the identity matrix. These operators satisfy the
following unitarity relations

Ru)R(—u) = (1 —u )1, R'(u)R'(n —u) = 1. (3.39)

In a similar way, the matrices T} (u) and Ty(u), as elements of End(C? ® C?) ® End(C" ®
C") ® X(gan)[[u"']], take the form

1(u Bi(u _ 2(u)  Do(u
h=lew  Dw | P Ao(u) Ba(u)
Ci(u) Di(w) Gl ol
3.40

where A;(u) means A(u) ® I € End(C" ® C") ® X (ga,)[[u"!]], and similarly for the other
blocks. Substituting (3.37) and (3.40) to (3.3) allows us to rewrite the defining relations of
X (g2,) in terms of the matrices A(u), B(u), C(u) and D(u). The relations that we will need
are:

C1(u)Q(u — v). (3.45)

In particular, the coefficients of the matrix entries of A(u) generate a Y (gl,) subalgebra of
X (gan). The same is true for D(u). We will recall the necessary details of the Yangian
Y (gl,,) in Section 3.4 below.

We now repeat the same steps for the twisted Yangian X,(ga, g5,)". We substitute
(3.37) to (3.17) and view the matrices Si(u) and Ss(u) as elements of End(C? @ C?) ®
End(C" ® C") @ X,(g2n, 85,)™((u™")), so that they take the same form as in (3.40). This
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allows us to write the defining relations of X,(gan, g5,)™ in terms of the matrices A(u), B(u),
C(u) and D(u). The relations that we will need are:

Rl — 0) Av(u) R(u + 0+ p) Aa(v) = As(0) R(u + v + p) As(u) R(u — 0)

— R(u —v)By(u)Q(u+ v+ p)Ca(v) + Ba(v) Q(u + v+ p)Cy(u) R(u — v), (3.46)
o) R(u+ v+ p) Bu(u)Qu — v) = R(u — v) By () Q(u + v + p) As(0)

— Bo(0)Q(u~+ v+ p) A1 (u)Q(u — v) — Ba(v)Q(u+ v + p) D1 (u) Q(u — v), (3.47)
R — 0)Ch () Ru+ v+ p) Ay(0) = Ay (0) R (@ — 0)Cs () R(u — v)

— Q(u—v) Ay (u) RN (@ — v) Cy(v) — R — v) Dy (u) Q(u + v + p)Cy (v), (3.48)
R(u — v) By (u) R (@ — v) By(v) = Ba(v) R (@ — v) By (u) R(u — v). (3.49)

It remains to cast the symmetry relation (3.21) in the block form. Observe that

’ D'(u) +B'(u)
S*(u) = ( +CHu)  At(u) ) 5 (3.50)

which allows us to immediately extract linear relations between the operators A(u), B(u), C(u)
and D(u), of which we will need the following two only:

D'(u) = — (1 + - i a)A(ﬁ) + f(_“i t:ff(g)z KI, (3.51)
Bt(u) = (:F - — a)B(ﬂ) + fﬁ“i (3.52)

Let V be a lowest weight finite-dimensional representation of X,(ga,, g5,)™ and let VO C
V be the subspace annihilated by the operator C'(u). Then operators A(u) in the space V°
satisfy the defining relations of the extended reflection algebra By*(n,r), cf. (3.46). We will
recall the necessary details about the algebra B5*(n,r) in Section 3.5 further below.

3.4. The Yangian Y (gl,)

We now briefly recall necessary details of the Yangian Y (gl,,) and its representation theory
adhering closely to [Mo]. We will often use the superscript ° to indicate operators associated
with the algebra Y'(gl,,). This is to avoid the overlap of notation with operators associated
to the algebra X (gs,) and having the same name.

We first recall the R-matrix R(u) = I — u~'P stated in (3.38) and called the Yang’s
R-matriz. 1t is a unitarity solution of the quantum Yang-Baxter equation, i.e., (3.2). We
then introduce elements t;?j(r) with 1 < 4,5 < n and r > 0 such that tfj(o) = 0;;. Combining

to("’)

these into formal power series t7;(u) = > ., t;; u™", we can then form the generating matrix

T°(u) = 3200 €ij ® t5;(w).

Definition 3.12. The Yangian Y (gl,,) is the unital associative C-algebra generated by ele-
ments tf](r) with 1 <i,j <n and r > 0 satisfying (3.3) with the R-matriz R(u) =1 —u™'P.
The Hopf algebra structure of Y (gl,,) is given by the same formulae as in (3.4).
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Note that analogues of the (anti-)automorphisms (3.6) and (3.7) hold for the algebra
Y (gl,). The symmetry (cross-unitarity) relation is replaced with an identity for quantum
determinant and quantum comatrix, which we will discuss a bit further below. We first recall
the definition of the lowest weight representation of Y (gl,,).

Definition 3.13. A representation V' of Y (gl,,) is called a lowest weight representation if
there exists a non-zero vector n € V' such that V=Y (gl,)n and

o

(Wé=0 for 1<j<i<n and t;(u)=X(u)é for 1<i<n,

where A\ (u) is a formal power series in u™' with a constant term equal to 1. The vector n is
called the lowest vector of V', and the n-tuple \°(u) = (A (u), ..., A%(u)) is called the lowest
weight of V.

Given a lowest weight representation V' of Y (gl,,) and a lowest vector £ € V' the action
of the inverse matrix 7°7!(u) on ¢ is defined as follows. Introduce the quantum determinant
qdet T (u) of the matrix 7°(u) by (see Definition 1.6.5 and Proposition 1.6.6 in [Mo])

qdetT°(u) = Z sgn(o) tcl’a(l)(u —n+1)-- oo (n) (w).

O'EGn

1

In particular, qdet T°(u) is a formal power series in =" with coefficients central in Y'(gl,,) and

constant term 1. Define quantum comatriz T°(u) with matrix elements tAfj (u) by T°(u) T° (u—
n+ 1) = qdetT°(u). Then the inverse matrix 7°~!(u) with matrix elements ¢3(u) can be
defined by
o - o -1 7o
tig(u) = (qdetT°(u +n — 1)) -t (u+n —1).
It follows from the definitions of qdetT°(u), T°(u) and ¢ that
to(w)é=0 for 1<j<i<n and tG(u)=A(u)§ for 1<i<n
with the “inverse-weights” \?°(u) defined by

N (u) = AN(u+1)-- X (ut+i—1)
X () A (i — 1)

(3.53)

The latter expression follows from the fact that matrix elements £3;(u) equal (—1)™*/ times
the quantum determinant of the submatrix of 7°(u) obtained by removing the ith column
and the jth row, and application of the quantum determinant to &, see Proposition 1.9.2 in
[Mo]. (Also see the proof of Theorem 4.2 in [MoRa], where an analogue of formula (3.53)
for the highest weight was obtained.)

The Yangian Y (gl,,) contains the universal enveloping algebra U(gl,,) as a Hopf subalge-
bra. An embedding U(gl,,) — Y(gl,) is given by E;; — tf}l) forall 1 <i,j <n. We will iden-
tify U(gl,,) with its image in Y'(gl,,) under this embedding. Conversely, the map tf}l) — E;j
and tf}r) — 0 for all 7 > 2 defines a surjective homomorphism ev : Y'(gl,,) — U(gl,,) called the
evaluation homomorphism. We compose the map ev with the anti-automorphisms stgn and
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tran and the shift automorphism 7.. Denoting the resulting map by ewv,. := evosignotranor,
we have
ev, : tfj(u) — (51-]- — EJZ(U — C)_l. (354)
By the virtue of the map ew,, any gl -representation can be regarded as Y (gl,,)-module.
Moreover, any irreducible gl, -representation remains irreducible over Y (gl,,), by surjectivity
of ev.. We will denote by L°(A°). the Y (gl,,)-module obtained from the irreducible represen-
tation L°(A°) of gl, via the map (3.54). Clearly, L°(\°). is a lowest weight Y (gl,,)-module
with the components of the lowest weight given by

o

A(u) =1— for 1<i<n.

u—=c

We will mostly be interested in the representations L°(A°). when A{(u) for 1 < i < n
coincide with those in (3.13). Formula (3.53) implies that the “inverse-weights” of the lowest
vector of L°(\°). are given by

u—c u—cIFk:I:1<l+ i )

NP (u) = (3.55)

u—c:Fk:' u—c=x1 u—cFk+t1
8.5. Reflection algebra B5*(n,r)

We now focus on the extended p-shifted Molev-Ragoucy reflection algebra B;*(n,r) and
its lowest weight representation theory, adhering closely to [MoRa]. (We use notation 5*
instead of B used in loc. cit. to avoid overuse of the tilded notation.) We will need to prove
some additional statements that are necessary for the algebraic Bethe ansatz along the way.
We start with introducing the non-extended reflection algebra B,(n, ).

Definition 3.14. The reflection algebra B,(n,r) is the subalgebra of Y (gl,) generated by the
coefficients of the entries of the matrix

B°(u) = T°(u)G°T° ! (—u — p) where G° = Z €ii — Z €ii-
i=1

The reflection algebra defined above is isomorphic to the usual one studied in [MoRa].
The isomorphism is provided by the map B,(n,r) — B(n,n —r), B°(u) = —B(u —§). The
matrix B°(u) satisfies the reflection equation (3.17) with the R-matrix R(u) = I —u~'P and
the unitarity relation

B°(u)B°(—u—p) = 1. (3.56)
The reflection equation and the unitarity relation are in fact the defining relations of B,(n, ).
Their form in terms of matrix elements b7;(u) of B°(u), for p = 0, are given by formulas
(2.7) and (2.8) in [MoRa]. We will recall them in a suitable form in Section 4.1.

We now turn to the extended reflection algebra B5*(n, ). We will use the same notation
B°(u) to denote the generating matrix of By*(n,r).

Definition 3.15. The extended reflection algebra B5*(n,r) is the unital associative algebra
generated by the coefficients of the entries of the abstract generating matriz B°(u) satisfying
the reflection equation and its constant part being equal to the matriz G°, that is bfj(u) =

95 + 2721 bfj(r)u_’”.
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By the same arguments as in Proposition 2.1 in [MoRa|, the product B°(u)B°(—u — p)
is a matrix

B*(u)B*(—u— p) = f*(u)1, (3.57)

where f°(u) is an even series in ™" with coefficients central in B5*(n, ). In fact, the algebra
B,(n,r) may be viewed as the quotient of B*(n,r) by the two-sided ideal generated by the
unitarity relation (3.56). It is important to note that the algebra B5*(n,r) has the same
coalgebra structure as B,(n,r),

A () = Y ()t (—u — p) @ by(u).

a,b=1

Definition 3.16. A representation V' of B5*(n,r) is called a lowest weight representation if
there exists a non-zero vector § € V' such that V = By*(n,r){ and

V(w6 =0 for 1<i<j<n and bj(u)é=p(w)§ for 1<i<n,

where p;(u) are formal power series in u™' with constant terms equal to 1 if i < n —1r and
—1if 1 > n —r. The vector £ is called the lowest vector of V', and the n-tuple u°(u) =
(uS(w), ..., po(w)) is called the lowest weight of V.

We note that any representation of V' of B,(n,r) may be extended to a representation of
B*(n,r) by allowing the series f°(u) to act as the identity operator on V.
The Proposition below is an analogue of Proposition 3.9 for the algebra B:j"(n, T).

Proposition 3.17. Let & be the lowest vector of a lowest weight Y (gl,,)-module L(A(u)) and
let 1 be the lowest vector of a lowest weight B5*(n,r)-module V (u(u)). Then BS*(n,r)(§ ®n)
is a lowest weight ByX(n,r)-module with the lowest vector £ @ n and the lowest weight 7°(u)
with components determined by the relations

Vi (w) = 5 WAy (W) AP (—u—p) for 1<i<n (3.58)
with 79 (u) and @ (u) defined by (3.24).

Proof. The proof is very similar to that of Proposition 4.10 in [GRW1]. We will use the
symbol “=” to denote equality of operators on the spaces C(§ ® 1) or C¢. We begin by
showing that b7;(u) - (§ ® ) = 0 for all i > j. We have

AW ) = Y i)ty (—u—p) © b (u).

1<a<b<n

Since ty(—u—p)§ = 0if b > j, we can assume b < j implying a < b < j < i and ¢7,(u)§ = 0.
The defining relations (4.33) in [MoRa]

n

12,0 150 = —— 7 (Bt )15 (0) — 65 (0) 5, () (3.59)
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further imply #;,(u)ty(v) = 0 unless a = b. Hence it suffices to show that #;,(u)ty;(v) = 0
for i > j and a < j. By (3.59) we have, for all a < j,

t§a<u>t — Zt i (U tbj

Summing both sides over 1 < a < j we obtain

%
S]

—
S
~
H~
|||

J
O O
za a

implying 5, (u)t;;(v) = 0. This proves that A(bg;(u))(§ @n) = 0 for all 7 < j.
It remains to compute A(bg;(u))(§ ®n) for all 1 < i < n. By similar arguments as above
we deduce that ¢;,(u)t},(v){ = 0 whenever a < b. Therefore,

AB(u)) (€ @) Zt )t (—u— €@V, (wn = () @0, (3.60)
where b%,(u) is the operator defined by the formula

=N ()t ()t (—u — p).

Define the operator A;(u) = 32" 2 (u)t’%(—u— p). We first show that A;(u)€ = uf(u)€é for
some formal series uf(u) € C[[u™!]]. From (3.59) we obtain that, for all a < i,

t?a(u)tizoi(_u - 2u+p (Z tzk’ tk’z Zt tka( )) : (361)

Summing both sides over 1 < a < 7 we obtain

i—1

Aiw) = 158w = )+ 5 Au) — o S Ba(u),

2u+p 2u+pa:1

where B,(u) =Y ;_, tl%.(—u — p)txa(u). We have thus shown that

2u+p—1+1 1
Ai(u) = X (u) A2 (—u—p) — B (u). 3.62
) = XRWN ) = 5 S Bl) (362
In a similar way we find that, for 1 <i <n,
i—1
2u+p—i1+1 , 1
Bi(u) = N (u) A\ (—u—p) — Aq(u).
u B0 = XN ) = 5> )
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A simple induction on i shows that B;(u) = A;(u) for all 1 < i < n. This allows us to rewrite
(3.62) as

2ut+p—i+1 , 1
Ai(u) = A7 C(—u—p) — Aa(u). 3.63
A = XN =) - 5 Y A (3.63)

Recall the notation (3.24). Using induction on i once again we deduce that A;(u)& = pf(u)é
with the series pf(u) determined by

iy (u) = (2u + p) A7 () A (—u — p), (3.64)

Since B;(u) = A;(u) = pf(u), we may rewrite (3.61) as 2, (u)tl(—u—p) = 2u1+p (g (uw) — po(w))
yielding the identity

b5, = 15 () X (w) AP (—u —

2u+p2ua g (u) = g (u)) -

We have thus shown that A(b;(u))(§ ® n) = 77 (u) (£ ® ) with the series 77 (u) given by

the r.h.s. above. Next, using uf(u) = 1<ﬁ;( ) = St e (u )) and the above

2u+p—1+
expression for f(u) we rewrite the series 77 (u) as

i—1
2U+p—2+1 o ~e 1 o ~e
ey ) 5 S
i—1

1 2u+p—i+1
— °(u) uy (u). (3.65
2u+pa;1#a( )Mb( ) 2U+p ;:ua a ( )

(2u+p—i+1)3:(u) =

Induction on ¢ then shows that

Z% ! Zua ip(a) + 2P LSS e,

2u+p 2u—+p

By combining this with (3.65) and (3.64) we obtain

(2u+p—i+1)3:(u +Zva <2u+p—l+1)#z( >+Zﬂz<u>> X ()X (—u — p)

which, by (3.24), coincides with (3.58). O

Remark 3.18. The components 7 (u) of the lowest weight 7°(u) in the explicit form are given
by the formulas

L () X5 () X (—u — p)

o i o 10
S(u) = i (u) A (u) A (—u — p) — : , 3.66
970 = ()X (W)X (—u = p) Z 2t (3.66)
i—1
3.67

J=1

For p = 0 these agree with formulas (4.38) and (4.39) in [BeRa].
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Proposition 3.19. Let M be a lowest weight B;X(n,'r’)-module. Forany 1 <k <n-—1
define a subspace M®) C M by

MB =Ly e M1 (u)v =0 fori>jandj < k}.
Then operators

L (
b (u) = b3 (u + 51 + 4y Z il 2u — p 7) , (3.68)

where k < 1,7 < n form a representation of the algebra B(n—k;Jrl,r—k:—l— 1) or g(n—k—i— 1,0)
in M®) forr>k—1 orr <k—1, respectively.

Proof. The k =1 case is trivial. The k = 2 case follows by the same arguments presented in
the proof of Theorem 4.6 in [MoRal, yielding bg) (u) = b5 (u+3) + 6ij 3o b (u+3%). The
k > 3 case then follows by a simple induction. O]

The Proposition above in fact rephrases Theorem 3.1 in [BeRa] for the algebra B,(n, ).

Remark 3.20. We note the reader that an analogue of Proposition 3.19 for the “non-extended”
reflection algebra B,(n,r) would require operators bg?) (u) in (3.68) to be multiplied by a
suitable series in u~' with coefficients central in B,(n,r) to ensure that the corresponding
generating matrix B°(*)(u) satisfies the unitarity relation in the space V*)

For any a € C define a matrix-valued rational function

a

Ko(u):GO—u+£
2

I. (3.69)

It is a one-parameter solution of the reflection equation (3.17) with the R-matrix given by
(3.38). We thus have the following.

Proposition 3.21. (i) Let r = 0. The assignment B°(u) — I yields a one-dimensional
representation of B,(n,0) of weight

pi(u) =...=po(u) = 1. (3.70)

(ii) Let 1 < r <mn. The assignment B°(u) — K°(u) yields a one-dimensional representation
of B,(n,r) of weight u°(u) given by

a a

(3.71)

4. Algebraic Bethe ansatz for a B;*(n, r)-chain

This section provides the necessary prerequisites to our main results stated in Section 5.
Here we study a spectral problem in the space:

M =L @V() =L\, @ @ LA\, @ V()
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where L°(A®).. is an arbitrary lowest weight evaluation Y (gl,)-module (irreducible and
finite-dimensional) and V' (u°) is a one-dimensional B5*(n,r)-module described by Proposi-
tion 3.21. In particular, the space M® is a lowest weight B;*(n,r)-module of weight 7°(u)
with components 77 (u) determined by (recall (3.24), (3.53) and Proposition 3.17)

_u—cj—)\gj)

4
T () = i () [TV @A () with A7 () (4.1)

U — ¢4

and pf(u) given by (3.70) and (3.71). We say that M° is a (full) quantum space of a
B5¥(n,r)-chain, a gl,-symmetric open spin chain with (trivial left and non-trivial right)
diagonal boundary conditions. The spectral problem for such a chain was first addressed by
Belliard and Ragoucy in [BeRal, thus we will keep this section concise and provide the key
steps in the proofs only.

The main result of this section is Theorem 4.13 stating eigenvectors, their eigenvalues
and Bethe equations for a B5*(n,r)-chain with the quantum space M°. This provides a
necessary step in solving the spectral problem for a X ,(gay, g5,)"-chain in Section 5.6 (in the
symplectic case) and Section 5.7 (in the orthogonal case). We note the reader that Theorem
4.13 may be viewed as a special case of the results presented in Section 6 of [BeRa].

We also provide a trace formula for Bethe vectors. This formula may be viewed as a spe-
cial case of the supertrace formula given by Theorem 7.1 in [BeRa]. This is the second main
result of this section. We note the reader that only an outline of the proof of Theorem 7.1 in
[BeRa] was given; here we provide a detailed proof of the trace formula under consideration.

4.1. FExchange relations

For any matrix A = Y7, a;;e;; with e;; € End(C") and any 1 < k < n define a k-
reduced matrix A® =377 a,-jegﬁ)kﬂ’j_kﬂ with egf) € End(C"*1). We use this notation
to define k,l-reduced R- and R-matrices acting on the spaces %(k) >~ Crk+1 and Vb(l) =

Cn—l+1 by

kel u N Y - (k] k1) (ki
R((lb )(U) T u—1 <I(§b - EPOEI) )>v R((zb )(U) = Pa(b )R((zb )(U)
Note that P eg-l) —0ifk<landi+Fk—1<0, and R;™(u) and R™ (u) are
identity operators. We denote the k-reduced generating matrix of B5*(n,r) in End(l/;(k)) as

D (1) and decompose it as

DO () = (a(k)(u) B]éi()u) ) 42)

We also set
k=1 (@) k-1
A (1) o D) (4 1 k=1 o (u+ 551
DY (u) = DP (u+ £51) Z s, (4.3)
) o a® (u + &) R
a® (u) = a® (u—|— g) + 2:: m’ B®(u) := B (u i g) (4.4)



leading to the following recursive relations:

i

(D], = (D%t ), + o (DS D+ ] (9
() = [DW (u+ 1)), = [DED(u+1)],, + ﬁaw (wtl),  (46)
[bc(zk) <“)} 114 [B(k)( 2)}1 (4.7)

for1<i,j<n—k+1and1<1[<n—k Wenotethat operator ﬁék) (u) is a generalisation
of Sklyanin’s D(u) operator (see Section 5 in [Sk]) for arbitrary rank.

Lemma 4.1. Let M be a lowest weight B5*(n,r)-module. For any 1 < k <n — 1 define a
subspace

MW = {&e M : b5 (u)é =0 fori > j and j < k}. (4.8)
Let = denote equality of operators in the space Va(k) ® Vb(k) @ M®) . Then

A

B® (0) B (u)

a

~

B® (w) B (0) RGTH (0 — w), (4.9)

5”“WBW@”E(U]5fi§ZiZi;fP)

2u+l+p  ~m

Sk ~
BM (w)a® (v)

©)a® (W) + —— BP ) DEV @), (4.10)

C(v—u)u+tp) " vtutp
R R —u—1 1 .
DY () B ) = U DOH U LED) ) B0y 4w )

(0 —uw)(v+u+tp)
x DD () R (0 — w)

2u—14+p)Qu+14+p) & Pt Lk e Lrit)
_ (204 p)(2u + p)(v+ u + p) B;S )(U)R((LbJr + )(2U+p)p£b+ + )@(k)(u)

20—=14+p ~wmw (k+1,k+1) A (k+1) (k+1,k+1)
B R, 2 D¢ Py 4.11
+(U—U)(2U+,0) b (U) ab (U+p) () ab ’ ( )
i ™ (0) DY (w) = DI (u)a® (v) +
. 1
(v—u)(2u—1+p)

A

tra P (B () P (0) = BO () 6 ()

v—Uu
(B )P () = BP ) CP () ) - .
(4.12)

Proof. The k =1 case (MM = M) is a restatement of the defining relations of B(n, 7).
When £ > 1 we additionally need to use Proposition 3.19.

4.2. Quantum spaces and monodromy matrices

Choose mq,...,m,_1 € Zzo, which we call excitation numbers. Let k =1,...,n—1. For
each my,, assign an my-tuple u® = (ugk), . uv(q]i,z) of complex parameters and a set of labels
ab ={a},... af, }. We will use notation frorn [BeRa] to denote multi-tuples:

wl® = (W ), a'*:=(a',... a"). (4.13)



We will say that M° is a level-1 quantum space and denote it by M™. Then for each
2 < k < n we define a level-k quantum space M (k) recursively by

M® =w® & (kD)0 (4.14)

a

where
Woli =V @ eV,

mk 1
and (M*=1)0 is level-(k — 1) vacuum sector defined by
(ME0 = {¢ e M*D b3 (u)€ = 0fori > jand j <k —1}. (4.15)

Proposmons 3.17 and 3.19 imply that the space M® is a B (n—k+1,r—Fk+1)-
B, ,(n —k+1,0)-module for k <r+1ork>r+1, respectlvely. In particular, for £ > 2,

M® =W @ (Cel V)em—2 g ... @ (CelP)em
® L(k_l)()\(l))cl R ® L(k—l)()\(f))q @V (u)

where

LEDA), = {& € L°(AD),, 1 t5,(u)§ = 0for i > jand j < k — 1}

are evaluation Y (gl,_,.,)-modules. (In the case when L°(A®)) = C", i.e. the bulk quantum
space is a tensor product of fundamental gl,,-modules, L*~D(A\®)_. = C.)

Definition 4.2. We will say that Dc(bl)(v) = Dél)(v) is a level-1 monodromy matriz. For
each 2 < k < n we recursively define a level-k monodromy matriz, acting on the space M®),
Via

mg—1
o (00
M L AT

where D( ke (v uF) s defined by (4.5),
[Dalz/)l...k72 (U; u(l...k—2))] = [ﬁc(j;:})k—2 (U + %; u(l...k—Q))]
204 p

144,145
(D0 (o + § 42

ij

+ (4.17)

11
for1<i,j<n—k+1.

Proposition 4.3. Let = denote equality of operators in the space v & M® for any 2 <
k<n. Then

D((zl;)l v (vs wllke 1 = ( H I_IR/L”+1 v—l—u —|——k_;_j—|—p))

j=k—11i=1

k-1 1
b (T IR0+ =) )

j=1i=m;
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Introduce a rational function

g, ( ) (k)

i=1 (v+ UE ) +p)(v — (419)

The technical lemma below will help us to prove Proposition 4.3.

Lemma 4.4. Let A (v) € End(Va(k))[[v_l]] be a matriz operator such that [A((lk) (v)|1+i1 =0
fori>1. Set

AL () (HR (vl 1)+p>A<k ( [T R (v —u 1>)>_

i=mp_1
Then, for 1 <i,j<n—k and £ = (e k))®mk . EWﬁ .
[A‘(’];)kfl(v; u(kil))]llg - [Agk)(v)] 1S [Ag;)k,l(v; u(kil)>]1+i,1f =0, (4.20)

(B) (. ) (b1 _ 1 k
[Aggr (03 u' ))}1+i,1+j€ ~ A (v;ulkD) <[Aa )(Uﬂ 144,145

1 — A= (v;ul—)
20—-1+p

+ 6,
Proof. The first two identities follow from
[RSZ;@I(U” né =4 [Ri’;;,)l(v)} 1+z’,1g = 0.
To prove the third identity we need to use

k.k v
[R( kzl(v)] L4idegS = m%ﬁ,

aal

VU 1

(w—1u—-1) wvu

[R((lltz’le (U)] 14,1 [Rilz’;le (U)] 1,1+j€ = 6705

1

giving
k) (e (e _ oy (ki
(M (v u® 1>)}1+i,1+j€ = A (0wt <[M§k>(v)}1+i,1+j — 6 f (v; utk 1))[M0(Lk)(v)]u>§

where

mME—1 i—1

=2

A simple induction on my_; then yields

1 — A= (v;u=1)
20-1+4p

flo;u®Y) =
implying the third identity. O]
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Proof of Proposition 4.3. It is sufficient to prove that (cf. (4.17))

1 mj
D el -2) z<n I kﬂ+l>v+u<f>+—k-;-j+p>)
—k—92i=1

HHR’”“ R ol B CE2)

j=li=m;

We will use induction on k to prove the claim. The k& = 2 case follows from the definition and

provides a base for induction. Now assume that the statement holds for D ol )k o (v; u(t-R=3)),

Note that

k,l) 0] v )
[R((zb (U)L‘jel = v—1 5ij€g (423)
for 1 <i,5 <n—k+1and any k£ > [. Combining this with Lemma 4.4 we obtain
- 1
[D(k:l)k 2(,0 + % u(l...k—?))} = < H > [D(k—l)(v + l)]
aa’F— ! — k—=1-1. a 2 ’
! g A (v + 557 ul) H
1
A 1 A
[D(kzl)k,g (U -+ %, 'U/(l'“k72))} . L= ( k—1—1 > ([Dc(r,kl) (U + %)} i ;
B i A (v B u0) e
LA o+ 5u™™)
+ 0 20+ p [Dc(n )(U—i_i)}n

for 1 <14,5 <n —k+ 1. The identities above together with (4.17) and (4.5) imply

1
A (k) o (Lk— 2 (k)
[Daalmk—Z (v,u (lH A— v—l— k 21 l;u(l))> [Da (U)L’j

2

which is equivalent to (4.22), as required. ]

The Corollary bellow follows from Propositions 4.3 and 3.19 and a virtue of the Yang-
Baxter equation.

Corollary 4.5. Let = denote equality of operators in the space Va(k) ® Vb(k) Q@ M®) for any
2<k<mn. Then

R(’z,k) (v— w)D(k) 3 (,U; u(1...k71)) R(lz,k) (v+ w)Dl(;a)l - (w; ,u(l...kfl))

a aal---k—1 a
= nga)l o l(w;u(l...kfl))R(lz,k)@ " w)DEL’;)lmkil(U;u(l...k—l))R((llz,k)(U _ w).

a

In other words, matriz entries of the level-k monodromy matriz satisfy the defining relations
of the algebra B,(n—k+ 1,7 —k+1) or B,(n—k+1,0) in M® forr >k—1orr <k-—1,
respectively.
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4.8. Transfer matrix, creation operators and Bethe vectors

We are now ready to introduce transfer matrices and creation operators acting on the
level-k quantum space M),

Definition 4.6. The level-k a-operator is the first diagonal entry of the level-k monodromy
matriz, namely

A

g (vul7D) = [D]

aal---k—1

(v + %;u(l...k—l))} (4.24)

11°

Definition 4.7. The level-k transfer matriz for a B;X(n, r)-chain is obtained by taking trace
of the level-k monodromy matriz, namely

(k) (v; u(l...kfl)) = tr, Bilz)lmkil (v B %; ,u(l...kfl))

20-=n+p @ k. (l.k—1 A (k+1) b (Ldeet
= m - 71(1)— §,u( )) -|—traDaa1mk71(U_§)u( ( )))
4.25

Our goal is to find eigenvectors (Bethe vectors) of the level-1 transfer matrix 7(Y)(v) and
the corresponding eigenvalues. With this goal in mind we introduce a lowest weight vector
with respect to the action of the level-n monodromy matrix,

n™ = (e@)@mn—l Q- ® (ef))@@ml @ne M.
This vector will serve as a vacuum vector for constructing Bethe vectors.

Lemma 4.8. The level-k a-operator acts on vector n™ by

k—2 ~o
~ (k) k. (Luk=1)) (n) _ 1 Ve (v) (n) 1.96
g (V5w ) (1_[/\—(11—%;u<i>)>2@—k+1+p77 - )

=1

Proof. Recall that n is a lowest vector of weight +°(v) with components 77 (v) determined
by (4.1). It follows from (4.3) and (3.24) that

k-1 o ~0
D) (k=1 () _ [ A0 7; (v) (n) _ Y (v) (n).
P =55 L V’C(U)J“;Qv—wrup KT
All that remains is to apply Proposition 4.3, Lemma 4.4 and identity (4.23). [

From now on we will view B-operators (cf. (4.2)) of the nested monodromy matrix

A

Dg;)hk (U; u(l---k—l)) as row-vectors, that is

~

B, o (vsuF ) € (VD) @ Bnd(MW) o).
These row-vectors will give rise to level-k creation operators and level-k Bethe vectors. Since

M®) is a finite-dimensional vector space, we can evaluate the formal parameter v to any non-
zero complex number.
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Definition 4.9. The level-k creation operator is defined by
%(kl k u(l k HB e 1 ‘k);u(l...k—l))‘

Note that operator %Eﬁ)k (u(l“'k)) is a row-vector with respect to all tensorands in W kH).

Definition 4.10. The level-k Bethe vector is defined by

n—1
o*) (u(k...n—l); u(l,...k—l)) - H %(Zl)l (u(l...i)) _n(n).
i=k

k—1)

where u(t are viewed as fized parameters.

The level-1 Bethe vector &) (u(l"'"_l)) e MW is a vector in the level-1 quantum space.
For arbitrary uw(* "1 it is called an off-shell Bethe vector.

Ezample 4.11. Recall (4.7). Given e(kJrl € V(k+ observe that

B((zk)a1 N 1( (). u(l k— 1))6§k+1) [szk)al N 1( (k)+l.u(1...k—1))]11+j
:<egk)> D(lz)1 N 1( ()+ g (k= 1))6§li)1_
Let n>2,m; >1and my=---=m,_; =0. Then
o) (ugl), o 7%2) = Bi?(ugl)) e lejl (uf}ﬁ) . (6(2))®m1 ®@n
= DD + D] (DG @+ 1],
Let n >3, mi=my=1and mz3=---=m,_1 =0. Then

) (2 A1) (DY A2)), (2 3 2
B ) = B B - 0 P o
2)1 « Dy AL (1
= (e( )) ® (e( )) ~D£L%) (ug )4 3
R(z 1(u1 —|—u§1)+ 1+p) 15(2%) (u§2)+ 3 Rfé,j%) (u@— u§1)+ 3 ~e§2) ®e§2) ®n

u§)+u§)+——|—p ug)—ugl)—l—%

uP 1) ' W@ M1 ' 2
32 (,,) e 1 A (@) 1y] O
(10684 D]~ L 1074 D]

1 R .
= L@ 1 <(U(12)_ “gl)'i" %) [D((z? (ugl)—l— %)] 12 [D¢(121) (u(12)—i— %)} 12
1 2



uP+ a4+ L+ p
Ty,
(2) 1,1
I B B T T Y C PO N AR (@), 1 ,

u§2)+u§1)_%+p[Da} i +2>]13[Da§ (i +3)]p | -

Letn>4, mi=my=mg=1and my =---=m,_1 = 0. Then

2 3 S(1 1 S(2 2 (3 3 4 3 2
W), o2 1?) = B B ) BY ) - 0 0 e @

3)\# 2)\ Dy A
:(€§)> ®(e( )) ®(e( )) ~D()(u()+%)

(D3 (u”+ 5)] 5[0 (u”+ )],

ay

X R 2221)( ﬁ )—l— ug )+ + ,0) D( )(u§2)—|— Z)R(éfi (uf)— u§1)+ %) (4.27)
x R (uf? + uf+ 3+ p) RE2 (u? + o+ 1+ p) (4.28)
X D(g) (ug ) )R(i 21( 3 _ u§1)~|— 1) R(3 2)(u(3) u§2)+ )
-é)®é’®é)®n (4.29)
Acting with (653))* on lines (4.28) and (4.29) gives, up to an overall scalar,
w3+ p

[lj(i) (u§3)—i— %)]1 ( ) ® 6(2) ®n

u+ul+ 5+
1 A(3) (. (3) 1 AG3) (, (3) e @ e
— [ ——[DD WP+ 1], + (DD (u¥ + )] ®e? @1
(ugs)_ ug2)—|— % [ a’ 2/l u§3)+ u§2)+ % P 2/ 122

Writing the above expression as Aj - e( '® 6(2) ®n+As- eéz) ® 652) ®n and acting with (652))*
and (4.27) we obtain, up to an overall scalar,

uP+uP+§+p “

B ([f?i? (63 + 3)] 1y A . [f?f? (uy”+ %)]zgf‘h + [Df? (u52)+%)}23A2) e

( ) 1) _
—I—u +p ~

1
€y XN
uf) — ugl)—k % u§2)—i— ugl)%— % +p
~2) (o (2) | 1 ~(2) (2) 1
[D(ﬁ (ur”+ 3)] 1,42 [D (ur”+ 3)] ;541 (2)
T e, 0,1 @) M 1 e @0
ul +u1 +§+p _ul +§

Finally, acting with (egl))* : ﬁili) (ug )4+ 1) yields, up to an overall scalar,

@, . )
Uy Fui =5t pPram, 1), 1 AR (@), 1 @) (@4 1
<ug)+u§)+§+p[D“1( “ +5)}11([Da§ (w4 3)] A + [D (w1 5)]13‘42)

D@+ DA DY WP+ D)],4 +[D(2><§>+%>}23A2)

A 15!
—[Di?(uﬁ”+%)]u< e

[0 (" +3)] 140 [DF (w7
)

: [Di?(ui”+%)hg< o (1

u+uM+ 14 p

)

W\+
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The total overall scalar is A~ (u?) + 3 ugl))A* (uf’) + 3 ugl))A* (ug?’) + 1 u%Q)).

Set Sy 7= Gy, X o+ X &y, For any o) € &, with k <1 < n— 1 define an
action of Gmk ,,,,, my,_, ON CI)(k)<u(k---7L—1)) by

o k=) oy u((jk(;;'n*l) = (u(k), e ,ugzl), . ,u("*l))
where we have set ’UQ(,Z()U = (Uf,lzz)uy cee uff()”(ml)). The relation (4.9) together with the identity

Rilli)l (u)n™ = n™ implies the following Lemma.
7]

Lemma 4.12. The level-k Bethe vector ®® (wlk-n=1: y(1-*k=1) s invariant under the ac-
tion of G,y -

The Theorem below is the first main result of Section 4.

Theorem 4.13. The level-1 Bethe vector ) (u(l"'”*l)) is an eigenvector of T (v) with
the eigenvalue

A (v; u(l...n—l)) — 2v—n+p AT (v o %; u(l)) 71 (v) LA (v -1, u(n—l)) (V)

20—1+p 20+ p 2 20—n+1+p

n—1 ~

W—n+p  _ 1 e G i (v)
A= (1 — =1 DY A+ (1 — 14 i
+i2;21)—i+p R Ut e by wray
(4.30)
provided 4

Res AW (v+ Z;ul-"D) =0 (4.31)

oralll<i<m;andl1<j<n-—1.
f j J

Remark 4.14. The equations (4.31) are Bethe equations for a B5*(n, r)-chain. Their explicit
form is

TR0 +5) 7y e =l - )+ 14 )
T +8) 1 (0 =l - D+l - 14
T - P w5+ )
() = = ) Y =5 p)
T = D ™ 4 ) (432)
(0 = w0 ™ = 34 p) |

for 1 <j <my and 1 <k <n —1 assuming mg = m,, = 0. For example, when n = 2, we
have k = 1 and the r.h.s. of (4.32) equals 1.
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Proof of Theorem 4.13. Using Lemma 4.1, symmetry &,,, ., , of @¥) (uk-n=1; g 0-+=1)
and standard arguments, we obtain

@,(Ikl)kﬂ (U . g; u(l.,.k—l)) ok (u(k...n—l); u(l...k—l))

<A+(U 2;u(k)) gsfllﬂl)k (u(l...k))dc(lkl)mkil (v & e 1))

29
mg,
1 A —
= Rey AT (w5l V) B (u(lwk)(k) k) N (T V)
/U—E—u(k) (k) ;" -k
=1 2 i
. w4 p

2

— Res A~ (w;u®

; (0 =5+ 4+ p)2u — 1+ k + p) woul® (wiu™)
aal-k o)

% gggcl)k (u(l(k)k)(k) )tra P+ (ugk); u(l...k))) KGaR)) (u(k—i-l...n—l); u(l...k))
2

(4.33)

and

trg DU (0 — B @b D) ) (gylken=1) g (Lk=D))

= (A_(” — 5 a®)BY (w0 tr, DY, (v — By (-0))

2 —
—Z vontp O Res A" (w; u(k))
2U—k+p)( §+uz —|—,0) w—m(k)
X %Eﬁk (u(l(k)k)(k) ﬁ) &/é]i)k—l (UE ); u(l...k—l))
z z 2

mi

_ Z (2% +p)(2v—n+p) Res A~ (w; u(k))
T (2u—k+p)v—%— ugk))(Qu(k) n+k+p) wsul

1.k k
aa UE)

% ggikl)k (Uilg};jk)(k)_w )t D(k+1) ( (k); u(L..k))) G+ (u(kJrl...nfl); u(l...k)).

(4.34)

Here ng) € 6,,, denotes a cyclic permutation such that

0 ()

k k
u), = By 06 ) ()

(
O 1 S T TN T R 12 pee s U ).

Below we indicate key identities that were used in obtaining (4.33) and (4.34). For this we

need to introduce additional notation. Set a’;,? = (ak,... ,affl,aﬁl, o ,aﬁlk) and ufﬁ) =
J
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(ng)a e 7U§-ki)1, Ug-]i)l, . Umk) Then let

Ak+1) (o (1.k) k+1 Jet1) (k )
Daa(;lfuk ('U, u (k) 7,l<k) (H R (’U + U ( ) + p)>

J )
2
< DA (04 (H R ) e

‘:mk ? ]
and (k) (k)
my
A= (w u%)) - H (w—u" £1)(w+u~" £1+p)
B e w+ul 4 p)
i#£j
so that ®
2, £ 1+
Res Ai(w; u(k)) ] ® pAi (u§-k); u“?l)).
w—)u;k 2Uj —+ P 1'[j

Also note that Tk
t aR(kJrl,kJrl) P(k+1,k+1) _ Uu—n .I(k+1,k+1)'
r ab (U) ab u—1 b

To obtain the second terms in the r.h.s. of (4.34) we used

2w 4 14p w—k—1+p

Res A (w; u(k)) =

x AT (uf ). uf/&) tr, Rilzjfrl,k+1)(20 k4 P)nggl’kﬂ)-

To obtain the third term in the r.h.s. of (4.33) we used the second equality below, and to
obtain the third term in the r.h.s. of in (4.34) we used the third equality below:

aal -k

Res : A~ (w; u(k)) tr, D(Hl) ( (k); uil(k)k))

k
’LU—)’LLZ-

MO .
_ _2 1+ pA ( u(k) )tra (R(k+1,k+1) (2%@) n p) P+ (ul(k); u® ( )) (k+1,k+1)>

2u (k )+p 7/,(-k> aak aa(lz;?k ng)7 1k aak
2u£k)—n+k—|—p (k) k ~(k k k
- ( ) A” ( u((i>)Dak:11-)--k (ug )7u( (?@) (k))
2 + p ,‘/7’ 1 ¢If 9 ’dz
_uﬁém—n+k+p.%—k—l+p
2ul™ + p 20—n+p
— k k k+1,k k k k 1 k
<A (u( ) u;&)) e (Ria? (2o - k+P)D( ::) (“5 sl (?a ¢<k>)P( . H))
1
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Combining (4.33) and (4.34) gives
70 (1 Lk =1) ) (g1 gy (1)

N 2v—k+p

+ A (v _ %,u(k)) t GDC(LZTI)]C( g;u(l k)))q)(k—i-l)( (k+1..n 1)7 (1 k))

S By g®) (k)

_ZFnk(Uvui )93 1 k(“ *) )0 k)

i=1 k3 [t
2w — k

X Res wont +pA+(W;U(k))d(’i)...k_l(w;u(l'"k_l))

woul® 2w+ p N

+ A (w; u(k)) tr, ZA)(H},) (w; uf,l(iﬁk))>q)(k+1) (u(k+1.‘.n71); u(L..k)) (4.36)

where
(20 —n+ p)(2u + p)

=t —w(v—E4+u+p)Ru—n+k+p)

When k = n — 1 and n = 2, using (4.24) and (4.26) we have that @*+1 (gkHl-n=1) =y

and

Fok(v,u) =

~/° w + l N ~° w _|_ l
Oy = WD) pB () )y = B D)
2w+14p o; 2w+ p
yielding
70 () ()
wm( — LyW) i) + A (v — l.u(l))%o—(v) oD (u)
2v—1—i—p 2 20+ p 2z 20— 1+p
2w — 1 F(w+ 3
S o) R (ML s D
UHUED 2w+ p 2w+ 14+p
o 1
1 Y (w + 3) /. (1)
+ A (w;u) w+,02 )‘D()( NE )
=AM (v — %; u(l) Z Fg 1 ( ) Re%) AW (w; u(l)) oW (u(l()l) FOIR %).
w—su,

This completes the proof when n = 2. Assuming 1 < k < n and n > 2 introduce notation

e 20—n+p 7 (v)
A® (o3 u U%_E:mw4+pA( v U (- ”M%mwj+1+p

A~ __ n—=1.,,(n-1) 7;(1))
A e T,

and notice that, forall k <[l <n—1and 1 <7< my,

ReS A(k) (w —+ k?_;l’ u(k_lvk)) — ReS A(l) (w’ u(l---n—l)) )
w—)ugl w—)ulm
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Hence, when £k =n — 1 and n > 2, using similar arguments as before and symmetry of the
Bethe vector, we find that

7_(nfl) (’U, ,u,(l...an)) (I)(nfl) (,ul(nfl)7 ,u,(l...an))
n—2 -1
_ e 20—-n+p 2. (n—
= (jlllA (U—%;u(J))> <2U_n—|—1—|—pA (U—T27u( 2))

« AT (v . nT—l u(n—l)) o1 (v)
’ 20-n+2+p

+ A (v _ n—1. u(nfl)) ﬁZ(U) )q)(nl) (u(nfl); u(l...n72))

27 20—-n+1+p

Mmp—1

n—2 -1
=3 Funca (0.0 (HA- (- ﬂ+“;u<ﬂ>)
i=1 =1

20— 1 NO_ w + n—1
X R?iu (lgw—ﬁ A~ (w + %;u(n—z))A+ (w;u(”_l)) %2 1( D) )
W=, P w+1+p

3o (w + 2L e
4+ A (w; u(n—l)) Y, (2w +p2 )>(I)(n_1) (Ui(n_ll)) v,anl; u(l‘..n—2))

i

n—2 -1
= (H A (v —1; u(j))) ALY (; =20 D) G (D). g (1n=2))

j=1

provided R?s ) AWM (w; u(l“'"*l)) =0foralll <i<m,_;. Next, when 1 <k <n-—1and
w—)uin7

n > 3, using negative inductive arguments we obtain

() (U; u(l...kq)) o®) (u(k...nq); u(l...kfl))
k—1 -1
= <HA (U — %‘; u(j))) Ak (U; u(k—l...nﬂ)) H*) (u(k...nq); u(l...kfl))
j=1

provided Resl A (w + %;u(l‘“”_l)) =0foralll <7< myand k <1 <n—1. Finally,

'UJ*)’U,,L
when k£ =1 and n > 2, we obtain

T(l)(v)q)(l) (u(l...n71)> — A (v; u1...n71)®(1) (u(1...n71))

provided Re% AW (w + %;u(l'"”_l)) =0foralll<i<mandl <1l <n-—1, which
w—ru;

completes the proof. O

4.4. A trace formula for Bethe vectors

A trace formula for Bethe vectors for a gl,,,,-symmetric open spin chain was given in
Theorem 7.1 of [BeRa]. Below we state a specialization of that theorem for a gl,-symmetric
open spin chain, namely a B;*(n, r)-chain.
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Theorem 4.15. A Bethe vector for a B*(n,r)-chain can be written as

oy (i (o 0)

i=1 j=1
1 m®
<nm S
b=i—1 c=1
1 .
x D(z (4) (H H R;Z:rl (2) (b)+ %))))
b=1 c=m/(®

X (€n7n—1>®m<n71) ® te ® (621>®m(1) T], (437)

where the trace is taken over the space V = Vi @ - ®@ Vi = (CM*™ with m =

@ (n=1)

Yo "m @ vector n is a lowest vector in MY | and the matriz operator IN)SZZ) (ugl)) 15 defined
J

DY) =D e ® [D)(w)],,, € End (Vi) ® By (n,r)[(”) 1)
c,d=i

Proof. We will make use of both the full expression of the Bethe vector,

n—1 m;
q)(l) (1..n— 1 HH N 1 ,’U,(l A= 1)) n(n)7
=1 j=1
as well as a recursive definition,
@(z)(u(zn—l)u(lz 1 HB y 1 (1 G- 1)) (D(i+1)(u(z+1 n—1), u(l z))
) a a i ’

Recall that the auxiliary space labelled by aé is a copy of C"~*. Our first step, however, is to
reconsider each such space as embedded within a copy of C" . As a slight abuse of notation,
we use the same labelling for these spaces. With this, we are able to write the following,

B(z)al N 1( §i);u(1...i 1) Z ek al N 1( (z)+ 27u(1..171))]ik

k=i+1
—erDW (u§i>+%;u(1...z‘—1>) er@al (u‘gi);u(l‘..i—l)).

7 a;’almzfl al i—1

Acting with ej € V% on the level-(i + 1) Bethe vector, we have
J

(ej)ai @(i‘i‘l) (u(i+1mn_1); u(lZ)) — 07 (438)

J
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as U (1m0 44(1-9) helongs to the vector subspace in which each Vi is treated as a

copy of C"~%. As such, we may write the following expression for the level-1 Bethe vector

n—1 m;

q;(D(u(lmnfl)) _ (e;_l)@vmn_l Q- ®m1 H H : al . u (4) +1 u(1 ..¢71)> .n(n)'

=1 j=1

From this expression, it is relatively simple to recover the form of the trace formula given in
[BeRa)]. Consider now the expression, which we denote by ¥® (w(-"=1; 4(--=1)) "obtained
from vector @ (w(-"=1; 4-=D) by inserting a permutation operator between the first
two excitations as follows,

WO (D) = ()2 DO @l 4 4w D) Py DO () + i)
% H[)C(Ll) (ugl) + %;u(l...z;l)) . plitD) (u(iJrl...nfl);u(l...i))'
i=3
This leads to the following sequence of equalities,

P (@) (u(i--n—l); u(l--~i—1)) — (e:)®mi paziaéljc(g(ugi) + %; u(l...i—l))ﬁii)( (4) + L 1., ..i—l))

X H sz? (uy) + %; u(l“'i*l)) . (I)(i+1)( (i+1..n— 1), ee 2))
j=3
= (ef)®m Dl(l)( (4) +1 L. gy (1= 1))D(z)<ug) + 1L 1., (0 ..i—l))

M NG@ o @) 1, (Li=1) | g+ (o, (+1.n—1),  (1...0)
xHDaj_(uj L (DY L D) (g HLn =), gy (1)),
j=3
The expression subsequently vanishes, due to (4.38). Such an argument applies to any
permutation of the spaces Vi, provided each permutation operator is inserted between the
J

D operators associated with the auxiliary spaces on which it acts. Therefore, we may insert
R matrices at these positions in the formula for the Bethe vector,

(V) = D) ()" @ ()

n—1

n—1 m; 7—1
<1 (HR(?Z-(uy)—|—u(z)+1+,0))D(l)1 (@) 4 LDy ),
; J

a-ak

NOING:
where f(u*""V) =[] H I Lyt e

MONmOI
.7
From here we insert the expression for D((;i)almi,l(uy) + L a7 from (4.18),
J

ﬁaz)al L 1(u§)’ (1...i— 1 = (H Hsz-l-l (b)—f—zéb—i—p))

b=i—1c=1

i—1 1
A (e i (3,b+1 (%) i—1—
Di;‘-)@'))( [T ri? () =l + =5 b)>,

b=1 c=my
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yielding
(I)(l) (u(l...nfl)) — f(u(l...nfl))(ei>®m1 R ® (6* >®mn,1

n—1
n—1 m; Jj—1
[HH1 <HR +1+p)>
=1 j= k=1
1
H HR(Z b-l—l) z gb)‘i‘ % +p)>
b=i—1c=1
e (L))
b=1c=my

From here the result is obtained simply by noting, for a matrix M, ef Me; = tr(e;; M). O

)*-chain

5. Algebraic Bethe ansatz for a X,(g2n, ggn

This section contains our main results. We study a spectral problem in the space
M := LW, @ L), ®...® LAY, @ V(u), (5.1)

where each L(A?),, is viewed as a lowest weight X (g,,)-module obtained by the restriction
described in Proposition 3.3 with k set to k;, ¢ to ¢; and A to A, and V() is the one-
dimensional X ,(gay, g5,)"-module described in Proposition 3.11. The generating matrix
S(u) (cf. (3.20)) of X,(g2n, 85,)™ acts on this space as

S(u) - M = g(u) (H Li(u—c; — g)) K (u) (H L —¢; — g)) M, (5.2)

where £;(u) are the fused Lax operators of X (ga,), K (u) are given by Lemma 3.10, and
@ = K —u— p. By Proposition 3.9, the space M is a lowest weight X,(gan, g5,)"-module of
weight y(u) with components defined by (3.25) with u;(u) as in Proposition 3.11 and A;(u)

given by
l
u) =\ (w) (5.3)
j=1

with weights )\Ej) (u) asin (3.13). We say that M is the (full) quantum space of a X ,(gay, g5,,)™-
chain, a @go,-symmetric open spin chain with (trivial left and non-trivial right) diagonal
boundary conditions. The image of S(u) on M given by (5.2) is the monodromy matriz of
the open spin chain.

Our approach to the spectral problem of the X,(gan, g5,)"-chain is as follows. We start
by defining creation operators that create top-level excitations in the quantum space. They
correspond to the root vectors associated to the roots in ®T\®'* where ®* is the set of
positive roots of go, and ®'* is the set of positive roots of the canonical gl, C gz,. We then
determine the exchange relations for creation operators. The exchange relations allow us
to identify the nested monodromy matrix which turns out to be a monodromy matrix for
a B,(n,r)-chain. Our main results are Theorems 5.21 and 5.29, which state eigenvectors,
their eigenvalues and Bethe equations for a X,(gan, g5,)"-chain with the quantum space M
is symplectic and orthogonal cases, respectively.
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5.1. Creation operator for a single excitation

We begin by reinterpreting the B operator of the generating matrix S(u), viz. (3.34), as
a row vector in two auxiliary spaces, V;* ® V* = (C")* ® (C")*, with components given by
the matrix elements 6;;(u).

Definition 5.1. The creation operator for a single (top-level) excitation is given by

Barar (u Z e ®e;® b7i(u) €V;, @V, ® Xp<92naggn)tw((uil))- (5.4)

1,5=1

The exchange and symmetry relations involving the B operator may now be rewritten
using the above notation. In general, we may switch between the two notations using the
following relation, in matrix elements,

(X B Z $zkﬁkl yl] = (ﬁaa( ) a)l]? (5.5)

1<k, l<n

where X,Y are matrix operators with entries in C((u™!)) and may act nontrivially on the
additional auxiliary spaces. The Lemma below states some useful properties of the creation
operator.

Lemma 5.2. The (top-level) creation operator satisfies the following two identities:

Bavar (U1) Bagas (U2) Rayay (—u1 — uz — p) Raya, (ur — )
= /Bdlal (u2)6&2a2 (ul)Ra1d2<_u1 — U2 — p) Ra1a2 (ul - u2)7 (56)

B&lal (U) Qala '

v —0

Bdlal (U) leaQala - < + 1— ﬁ) ﬁleal <@)Qa1a + (57)

Proof. The operator B(u) satisfies the same exchange relation as the equivalent operator in
[GMR], with an additional shift of x. Following Lemma 3.2 in [GMR], with p replaced by
p—k, we arrive at (5.6). To prove (5.7) we work from (3.52). Acting from the right by Qq,q,
and using the equalities XﬁlQala = XuQaa = PayaXa,Qaya, We obtain

al (U) Qala )

v —0

1
PalaBa1 (U) Qala - ( 11— m) ( )Qala

Implementing (5.5) then yields the desired result. O

5.2. The AB exchange relation for a single excitation

Our next step is to rewrite the AB exchange relation (3.47) in terms of the creation
operator (5.4). Typically, the Bethe ansatz method would also require us to consider the
DB exchange relation. However, the operators A and D will enter the exchange relations
under a trace. Because of this the symmetry relation (3.51) will allow us to rewrite all the
relations involving D operators in terms of the A operators only. Indeed, the Lemma below
allows us to rewrite the trace of the monodromy matrix tr S(u) = tr A(u) + tr D(u) in terms
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of the A operator only. We will often make use of the following notation. For a function f
we define a symmetrization operation by

{f ()} = f(u) + f(a). (5-8)

We also introduce the rational function

plu) = ——. (5.9)

Lemma 5.3. We have

trS(a) tr S(u)

_u_ﬂ_i_li:u_ﬁ_ﬁ:{p(u)trA(u)}u.

Proof. Adding A(u) to both sides of (3.51) and taking the trace we obtain

tr S(u) = <1i ! ) tr(A(n) — A(a)) — FED S

U — U U—U—K

Rearranging this, and dividing by (u — @ £ 1), we find
trS(u)  tr(A(u) — A(a))

~ Y

U—UuU—kK u—1u

which, by (5.8), proves the second equality. The first equality is obtained by sending u +— ,
and noting that the r.h.s. remains unchanged. O]

Applying Lemma 5.3 to (3.51) we obtain a new symmetry relation for the A and D

operators: . _(1 . ;)A(ﬂ) N Alu) {tr(A(U)) : [}“' (5.10)

u—1u uU—1u u—1u

This symmetry relation allows us to obtain a D-independent form of the AB exchange
relation.

Lemma 5.4. The AB exchange relation (3.47) may be equivalently written as
Aa(V) Bar (4) = By (1) S, (v30) + UT + U, (5.11)
where

S (viu) = RL (u—v) R (@ —v) Ag(0) R, (u— v+ V)R (a—v+1),  (5.12)

aajal aia

vt = ) g B - 0 A R DR @ u k), (51
ajal 1 ~ t ~ t
U= i%@am@m (1 £ a)Aa(u)Rala(u G+ 1)RL (1), (5.14)

The matrix S((lld)lal(v;u) is the nested monodromy matrix for a single excitation. The

matrices U are the “unwanted terms” (written in our equations as “UWT").
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Proof of Lemma 5.4. The first step is to rewrite (3.47) in terms of 3,4, (u). We obtain, using
(5.5),
Au(0) Bayay (u) B o (u + v + p) Ry (5 — u+v)
- ﬁﬁldl (U) ala(u - U) Rzla(N - U) Aa(U)
— Baas (v )QamPalaRZla@ — ) Ag, (1) Ugyo(u — )
- /Bdlal (U)Q&ICLPGIGUGIG(U + v+ p)D ( )Rtala(’{ — U+ ’U).
Since @ is a rank n projector, R'(u) is invertible for u # n, with inverse R'(n — u) =
R'(k — u 4 1). Multiplying the expression above by the appropriate inverses, we have
Aa(v) 5&1111 (u)
= Bﬁlal( ) ala(u - U)szla<~ - )A ( )Rzla(u == ]')Rfila(a == 1)
ﬁa1a1( )QawpamRt (~ U)Am (u) Uala( )Rt (u == 1)R21a(ﬁ == 1)
(
) S,

aia aia

Balal U)QmapmaUala(u + v + p)D ( )Rzla(ﬂ — U :l: ]_)

= Bayar (u v;u) + U+ UP, (5.15)

aa1a1 (

where
- _651101 (U) QﬁlapalaRtala(a - U) Aal (u)Uam( )szla(u == 1)R21a(a —v=E 1)?

_ —/Balal (U)Q&mPalaUala(U + v+ p)D ( )Rflla<l~b —v=x 1)

So far the first term, the “wanted term”, matches the desired expression (5.11). We must
now manipulate U4 + UP to match the remaining terms. First, note that

Uu— v) R — v £ 1) = (‘uljviu_f_&)@_%)

P 1 1 k=E1
__u—v+<(u—v)(u—vi1)iu—v—ﬁ(l_u—vi1)>Q

P 1 L1
__u—v+<(u—v)(u—vi1) u—vil)Q

_ PRI(£1)
B u—v
Thus,
A 5;162( ) Qe Para B (1 = ) Au, () Paa L (1) R (il — 0% 1)
521(1_& ) Qaa L (i — 0) Au(u) R (1) R (i — v+ 1), (5.16)

With UP, our strategy will be to use the symmetry relation (5.10), allowing us to combine
the term with U4. We first make the following manipulations in preparation:

= _6&1111 (U)QfllapamUala(u + U+ p)ana(a == 1)D ( )
_ 1 Qala Qma
_5?11111 (U)Qflla ( - ) (1 + U—0F 1)Da1 (’LL)

u+v+p U —v
= o 0) (e FaaOe G _AEL, L)p )

u+v+p uU—v u—ovF1 utv+p u—0
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The final term may be factorised as follows:

kt1 n 1 K(u—0F1)

Cutv+p u—0  (utv+p)(u—10)
Thus,
Q&la :l: Q&lanla _ ’%lea _ )Da1 (U)
u+v+p u—10 (u+v+p)(u—1)
szlaQala - Q&ch~>Da1 <U)

u—7 uU—7

= —Barar (V) ( -

= —fBaa (v) ( +

_ 5a1a1( ) ( + Qalana Q&la)Dal (u)

Although this expression is now a lot simpler, the D,, (u) operator is acting on the auxiliary
space V,,, rather than V, as desired. To remedy this, we use the following identity:

QaraDa; (1) = Qaya tra(QaraDay () = Qaya t1a(Qara Dy (1) = QayaQara Dy (1) Qayas
where we have used that tr,(Qu,q) = I,,. Therefore, using also Qa4 Dy, (1) = Quy0 DL (),

UD /Ba1a1 (~)Qa1aQa1aDt( )(1 T qua)'

u—v

Applying the symmetry relation (5.10) we obtain

:Fﬁdlal(z))QalaQala(_ (H: 1 ~>Aa(ﬂ) Ay(uw) {tr(A(U))N-Ia }u>(1¢Qa1a).

U — U— U U — U U— U

UP =

Since all terms in U4 4+ UP contain A, (u) or A,(@), we reorganise the sum U4 + U accord-
ingly. Define

o= Bl B G 0) A0 B 1) R (5 1)
- Quun (T 1 Qu

v =200, 0,0 (12 5 ) A - B D) 15 n),

so that U4 + UP = U* + U~. It remains to match the expressions for U and U~ with
those in the desired expressions (5.13), (5.14). With U~, we simply use Qq,, tr(A(2)) =
QayaAa()Qq,q to obtain the required form,

- = el QQO(l "

u—v

)A (@) R (u— i 1) Y (+1).

We now turn our attention to U*. Using again the trace property of Qu,q,

Barar (v)

u—v

U —1u
Ut = =52 Qo Ry, (1 — 0) Aa(u) Ry, o (£1) G 4 (0 — v £ 1)

Qe Y B (1)1 Q).
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The Qa0 and R} ,(£1) matrices are present in both terms as desired. The simplest way
forward is to expand the remaining matrices in terms of projectors, then match term by

term. Indeed,

R e

1 ( : —uifL)@alaAa(u) R4

Uu—v\u—v

1 1 1

o (1 t Au(0) Bl 0 (1) Quy
_Balal( )Qala(u—UA ( )Rala( )+ (u )(u—@:‘:l)
u—vt1
+ (w—w)(u—v)(u—0F 1)Qa1aAa(u) ala(:l:1>Qa1a)

S <u il 1))Qa1af4a(u) ala(il>Qa1a)

Although all the terms have been fully written out, it is still not clear that this is equal to
the desired expression. The discrepancy arises due to the terms on the last line. These terms
contain two ()z,, operators, and so elements sandwiched between these operators appear as

a trace. This leads to the following identities

leaQalaAa(u)QalaQ&m = Q&laAa(u)leaa

5.17
deQalaAa(u)de = deAa(u)QamQ&W' ( )
Then, expanding the R}, (1) matrices,
o = Pl R ) AR, (1)
+ B&lal( )(alQélaQalaAa<u>Q&1a + O‘QleaQalaAa(u)Qalanzla)7
where we find
o~ o — 1 i u—v=x1 B 1
L T T w—9F1) @-—du—0w-5F1) (u—o)u—a)
So
6& a (U)
=+ — 1a1 A t
U U — v Qala ala( ) ( )Rala( )
q: leaQalaAa(u)Qala + szlaQalaAa(u)QalaQ&la
u—a u— 1 '
Writing
1 1 u—uFl 1 ( 1 )
-~ = poll = - = 1 + ~ |
u—u u—u u—uFl u—uzFl u— U
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and using (5.17) we obtain

_ /B&IG«I(U) ¢ QaraAa(1)Qa;aQaya
U+ - U — v (Qala ala( )A ( )Rala( ) u — U, :F 1
+ thaQamAa(u)tha + Q&WAG(U)Q&W Q&mQamAa(u)Qamena)
(u—a)(u—aF1) u—uF1 (u—a)(u—aF1)
= 00 Rl ) () B (1) R (5w 1),
which matches (5.13), as required. ]

From Lemma 5.4, to obtain most elegant form of the unwanted terms, written as a residue
of the “wanted term”, we must symmetrise over v — 9. We will employ the notation (5.8).

Lemma 5.5. The AB exchange relation for a sz'ngle excitation 1is
{p( } Bayar (1) = Baya, (u {p aa1a1 )}v
1 5a1a1 w
+ ){p(v) (v )} Res {p(w) O(Lla)lal(w;u)} :

p(u u —v w—rU
Proof. Evaluating the residue, the desired expression is

{p } Ba1a1( )
= @im ){p(v) B, o (u — 0) Ry 0 (i — 0) Aa(0) Ry o (u — v £ 1) R (0 — v £ 1)}

+{ (v )ﬁm1< )} Qara RL, (@ — 1) Ag(w) R (F1) R (7 —u + 1) (5.18)
+{p(v)%l(v)} R (u— 1) QaaAa(@) R: ,(u— @ £ 1)RE (£1).

We will work from (5.11), and obtain this expression. Multiplying (5.11) by p(v) and sym-
metrising over v — ¥ reveals that the “wanted term” and U™ term are already of the correct
form, while U~ is of the form

(00} = {0220 0,0, (12 L)L @ R - a2 DR 2

From here, we will use the identity (5.7) to construct Rf(u — @), and arrive at the desired
expression. We must split the r.h.s. into two portions, on one of which we will use the to
construct the “identity” part of the R'-matrix. Combining this with the other portion will
result in the desired R'-matrix. It turns out the correct proportions to take are given as

follows:
1 1 1 1 1 1
(11— )= —(1+ - 4+
u—170 u—1u u—170 u—v  u—v u—1u
1 1 u—v
= 1+
u—f;( u—v$(u—v)(u—ﬁ)>
1
= —( 1+ ! F 1 —.
u—"70 u—v (u—v)(u—a)
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Then,

{p(v)U~}" = :E{p(v> Birar (v) (u —v % 1 . 1 ~) }v

u—7v u—uv uUu—"mu
X QélaQala a( )Rzla( )szla( )

Applying (5.7) to the first of these terms, we have

L {p(v) s ) ( v 1)} Qs10Qore

= 2O (B (12 L) o 0) Qg + )
i{p u_ﬁa;alu)_v)((U—f)il)(il—vi{})+%fl>}Qala

o) (<u—@il><v—ﬁ¢1>i<u—”i”)}vczala

v
p(v) (u—v)(u—0) v—"70

{rio;
F T _ﬁvu ) 5 (@ S ”)) } Qure

p(v Pores ) }Qm.

uUu—vv

Therefore

{p<v>U—}”={p<v>M} Ry (ot — 0)Qura Aa(i) R (u— i 1) RS (£1), (5.19)

U—v
which agrees with the last term in (5.18). O

Lemmas 5.4 and 5.5 provide us with an insight into the expression for the nested mon-
odromy matrix of the spin chain. The next step is to generalize the result of Lemma 5.5 for
an arbitrary number of excitations.

5.8. Creation operator for multiple excitations

Choose m € N, the number of (top-level) excitations, and introduce m-tuple u =
(ug,ug, ..., uy) of formal parameters and m-tuples @ = (ay,...,a,) and @ = (ay,...,ay)
of labels. For each label we associate an auxiliary vector space, Vz,,V,,, ..., Va, . Vs, , each
isomorphic to C". Then we define a tensor space Ws, and its dual W;, by

Wia=Va, @V @@ Vi, @Va, Wii=Vi@Vi®---Vi @Vi.  (520)

Definition 5.6. The creation operator for m (top-level) excitations is given by

Baa(u) == H (ﬁ&iai (us) H Roja; (U — Uﬂ) € Waa © X(g2n, 85,)" ((ur !, uh).

i=1 j=i—1
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Note that Baq(u) satisfies the following recursion relation:

@ilal...amam(ul, e ;Um) = Balal...am,lam,l(ub - 7Um—1)5amam(um)

X Rapy s (U — Um—1) -+ Raya,, (U — u1).

Our next step is to obtain an identity relating Szq(w) with Baq(®icsitr1), where w;y; 11 denotes
the m-tuple obtained from w by interchanging u; with u;,; for any 1 <i <m — 1. For this

purpose, we define
. u
= P )
R(u) = — PR(u)

The normalisation here is chosen such that R(u)R(—u) = I.

Lemma 5.7. The creation operator for m (top-level) excitations obeys the following R-
symmetry

Baa(w) = Baa(Wicsit1) Raasy: (Wi — Uiv1) Ry, (Wi — i)

for1 <i<m-—1.

Proof. The operator B(u) satisfies the same defining relations as those in [GMR], with an
additional shift of . Following the same argument as in Lemma 3.2 of [GMR], with p — &
instead of p, we arrive at the same conclusion. Finally, the normalised R allows us to write
R~Y(u) = R(—u). O

5.4. The AB exchange relation for multiple excitations

We now generalise the single excitation nested monodromy matrix S(gla)lal(wul) intro-
duced in Lemma 5.5 to multiple excitations.

Definition 5.8. The nested monodromy matriz for k (top-level) excitations is given by

k k

S(glfb)lal...&kak (U7 ul’ tte ,Uk-) = (H Rgla<ul - U)) <H RZZG,('&’Z - U))

i=1 i=1

1 1
x A, (v) <H R, (u; — v+ 1)) <H R, (; —v+ 1)) :
i=k i=k
We will often omit the aja; ... agay from the subscript, writing simply Sél)(v; ULy ooy Up)-
Lemma 5.9. The following identity holds

chl)(U; Uy ... ,kal)

o () T R i~ w)

j=k—1

VR

1
= (ﬁ&kak<uk) H Rqa, (ty, — uj)> S((ll)(v; gy .. ug) + UWT,

j=k—1

where UWT denotes the “unwanted terms” that do not contain A,(v).
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Proof. Working from the definition of S((ll)(v; U, ..., Ug_1), and commuting matrices which
act on different spaces, we use Lemma 5.4 to obtain

1
S vy, ... up 1)(5%% u) H Ra,a _uj)>

j=k—1

Baka’“ Uk (HR ) (ﬂR;a(ﬂz - U))

x RL (uk—v)R U —v)Ag(v) R

apa

X ( H R (ui— v+ 1)) ( H R (i — v+ 1)) ( H Riyja, (i, — W))

+UWT.

aka( aka( k_vj:1>R (ﬂk_vil)

To obtain the result, we must move the rightmost product of R-matrices to the left, using
the Yang-Baxter equation. The first move is simply commuting the rightmost product of
R-matrices to the left, through the product of R'-matrices, as there is no intersection of
spaces on which these products act non-trivially.

Next, we write

1 1
R. (i —v £ 1) ( I Blo(ui— v+ 1)) ( I Raa (i — uj)>
i j=k—1

=k—1

= [(ﬂ Raa(u; —v £ 1)) Raya(ly —v £ 1) ( H Rya, (il — uj))] ‘

-

From here, repeated use of the Yang-Baxter equation allows us to swap the matrices on the
left with those on the right. Indeed, the Yang-Baxter equation is

Raia(ui —vt 1) Raka(ak == 1) Rai@k (ﬁk — uz) == Raiak (?lk — Uz) dea(ak —v=E 1) Raia(ui == 1)

Note that after performing each swap, the R-matrix swapped to the left commutes with the
remaining product of R-matrices on the left, and similarly for the R-matrix swapped to the
right. Thus

R. (i —v£1) ( .H R (ui— v+ 1)) < I Rajan(iin — uj)>

j=k—1

H Raa, (i — J))Raka U —v+1) <HRW1 Z—U:l:l))
k—
:<HRMk —uj))<HRgi —vil))R S, —v 1)

i=k—1

ta




So far we have

Lh.s. = By (un (HR ) (f[R;a(ai —@)

XRQW(W—U) Ryl — 0) Aa(v) Ry, o (g — v £ 1)

( H Ry (i — )( f[ —vi1)><ﬁRgia(ai—ui1)>

+UWT.

Note that the product of R-matrices that we were moving commutes with R, ,(t,—v) Aq(v) R}, ,(up—
v+1). Then, moving further leftwards, we must use the Yang-Baxter relation again. Specif-
ically, we use

Ry o (i — ) Re, o (un — 0) Raya, ik — ) = Raga, (i — ) R, o (u — v) R o (6 = v),

llk(l( apa

(HR i >akauk—v (Fllea’a’“ - ’))

— < H Raa, (U — )> R, o (up — ) (1:[ Rl (i — v))

giving

=k—1 =1
Therefore,
1
Lhs. = ﬁakak U <H R ) ( H Rajak(/ilk - u])) nga(uk - U)
j=k—1
1 1
X (H R (i — v)) Aq(v) R (u;— v+ 1)) <H R (i —v+ 1))
i=1 i=k i=k
+UWT
1 k
ﬁakak Uk < H Ra;ak )) (HRgia(ui - U))
j=k—1 =1
1 1
X (H R (i1 — m) Aq(v) (H Rl (u;— v+ 1)) <H R (i — v+ 1))
i=1 i=k i=k
+UWT
1
= Bapa, (U < H Raa, <)>S§1)(v;u1,...,uk)+UWT
j=k—1
as required. N
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We may apply this result inductively to the creation operator for m excitations fBaq(u).

Corollary 5.10. The AB exchange relation for multiple excitations has the form
{p(v) Aa(v)}’ Baa(u) = Baa(w) {p(v) SV (v;u)} + UWT (5.22)

where Sc(ll)(v;'u,) is the nested monodromy matriz for m excitations defined by (5.21) and
UWT denotes the terms that do not contain A, (v). O

5.5. Fxchange relations for the nested monodromy matriz

We introduce a vector space M), which we call the nested vacuum sector, and a matrix
S(I)(U w,u), called the generalised nested monodromy matriz, acting on this space, with
w = (wy,ws, ..., wy) and w = (ug, us, ..., uy,) being m-tuples of non-zero complex param-
eters. We show that Sc(ll)(v; w, u) satisfies the defining relations of the algebra B5*(n,) in
the space M. This allows us to identify Sc(bl)(v; w,u) as the monodromy matrix for the
residual B;*(n,r)-chain, in a suitable sense. The space M () is then reinterpreted as the
(full) quantum space of this residual chain, which we have studied in Section 4.

For each bulk vector space L(A®).. in (5.1) denote by L°(A®),, the subspace consisting
of vectors annihilated by the operator C'(u) of the generating matrix T'(u) of X (ga,), namely

LY, = {Ce LOD),, : tyigy(u)-¢ =0 for 1<k 1<n} (5.23)

Lemma 5.11. The space L°(A\®),, is an irreducible lowest weight Y (gl,,)-module.

Proof. Relation (3.43) implies that L°(A®)., is stable under the action of A(u). Then (3.41)
allows us to view L°(A®).. as a Y (gl,)-module. Thus we only need to show that L°(A®),,
is an irreducible Y (gl,)-module. Let & € L(A®).. be a lowest vector and note that & €
LO(\®),.. Set L := Y(gl,)¢ and note that L C LO()\( ))e,. Since there are no more lowest
vectors in LO(A®),., it follows that L = LO(A®),.. O

Introduce a vacuum sector MY of the full quantum space M by
M® =L\, @ - @ L°(\9), @ V(1) C M.
The Lemma below is an analogue of Lemma 3.8 in [GMR].

Lemma 5.12. The operator C(u) of the matriz S(u) acts by zero on the space M°. Conse-
quently, M° is stable under the action of the operator A(u) of the matriz S(u). O

Recall (5.20). We define the level-1 nested vacuum sector by
MY =Wz, @ M. (5.24)

Here an overlap of notation with A/ defined in Section 4.2 is intentional. It will be shown
below that M) can be viewed as the (full) quantum space for a residual Bg*(n, r)-chain.

Next, we define a generalised nested monodromy matrix which differs from the one in
Definition 5.8 by an addition m-tuple of complex parameters, w. These parameters will play
a prominent role in Section 5.7.
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Definition 5.13. The generalised nested monodromy matrixz is defined by

S (v;w, u) = (HRW ) (HRW )
v)(HRfm(wi —v+ 1)) <HR§W(11,- —vt 1)). (5.25)

Matrix S$"(v; ) defined by (5.21) is recovered by setting w; = @;. It will be useful to
know that (3.39) allows us to rewrite (5.25) as

SW (v; w, w) (HR ) <ﬁRZia(wi—v))

(HRaawererp)) <HRaauz+v+p)> . (5.26)

Set 7 = 0 for types CI, DII and CDO, and r = n — & for types DI and CIL
Proposition 5.14. The mapping

B/‘jx(n,r) — End(M(l)) ® Xp(gzn,ggn)t“’, B:(v) — Sgl)(v; w,u) (5.27)

equips the space MY with the structure of a lowest weight BSX(n,r)-module with lowest
weight given by

£
5 (03w, w) = g(0) 5 () (HA&“ (v =520 - )), (5.28)

N . Sv—u+1 v—wi+1 v—wFl+1 v—@Fl1+1
Talv;w,u) = g(v)iig (0) | ]] v—w  v—w v Fl o—wmFl
i=1 ’ ! ' '

¢
X (H AD(w— )N (5 — )) (5.29)

for1 <j <n—1with g(v) defined by (3.19), p;(v), pn(v) defined in Proposition 3.11, and
)\gl)(v - £), ;\(l) (0 — %) given by

N|x

IR

V) =1-— ik A () =1+ y (5.30)
J v—c J v—c; Fktl—k ’

for1 < j <n, where \O) = (k;,0,...,0) in the orthogonal case and \) = (1,...,1,0,...,0),
with the number of 1°s being k;, in the symplectic case.

Proof. We start by proving the Proposition in the case m = 0. Relation (3.46) with
Lemma 5.12 imply that A(v) satisfies the reflection equation on M°. That is, for any
¢ eM,

Rap(v — 2) Aa(v) Rap(v + & + p) Ap(2) - ¢ = Ap(2) Rap(v + 2 + p) Aa(v) Rap(v — ) - €

o1



The remaining terms, which contain C'(u) as the rightmost operator, vanish due to Lemma 5.12.
It follows that M is a lowest weight BS*(n,r)-module, with weights obtained from (3.13)
and Proposition 3.9. The m > 0 case is then immediate from Proposition 3.9 and (5.26), as
the auxiliary spaces are regarded as dual vector evaluation representations of Y (gl,) with
shifts of u; or w; for 1 < i < m, and lowest weight vector e;. O

Proposition 5.14 implies that M) can be viewed as the (full) quantum space for a residual
B5*(n, r)-chain (since Sél)(v; w, u) satisfies (3.57) but not (3.56)). We end this section with
a lemma which will assist us in finding the explicit expressions of the unwanted terms. Recall
that R(u) := = PR(u).

Lemma 5.15. The following identities hold:

Ru)ey ®e; = e @ey,
R&iai+1(ui+1 - Ui)Skz(?H w, U) = Skl(U; w, ui<—>i+l>Rai&i+1(ui+1 - Ui),

Raiai+1 (wi-i-l - wi)Skl(U; w7 u) = Skl (Ua wl(—ﬂ-‘rla u) RaiaH_l (wi-l—l - wl)

Proof. The first identity follows from the definition of R(u). To obtain the second identity
we need to move R, (u;+1 — u;) rightward through the products of R-matrices in the

definition of S((ll)(v; w,u) in (5.25). In each product we must use the (braided) Yang-Baxter
equation once. For R, (uir1 — u;) in the leftmost product,

Ri a0, (g1 — ) RE o (us—0)RE (i —v) = RS (w1 —v) RS, (ui—0) Raa,,, (Ui —u;),

and in the rightmost product,

Raay, (wisn —wi) R, o (i —v £ )R (4 —v £ 1)

= RE, (@ — 0 £ DRE (W1 — 0 £ 1) Ragay,, (wig — w).
Applying these identities, we obtain the second identity. The third identity is obtained
similarly. n

5.6. Transfer matriz and Bethe vectors for a X,(sp,,,sp5,)" -chain

We are now ready to introduce the transfer matrix acting on the quantum space M
defined in (5.1) and find its eigenvectors, the Bethe vectors.

Definition 5.16. The transfer matriz 7(v) € End(M)[v,v™] is the representative of

trS(v)
20—-2Kk—p

on the space M.

From arguments given in [Sk| (see also Section 2.2 in [V1]) the reflection equation (3.17)
implies that transfer matrices commute,

[7(w), 7(v)] = 0.

Lemma 5.3 allows us to deduce the following symmetry properties of the transfer matrix.
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Corollary 5.17. The transfer matrix satisfies the following equivalence relation:
7(0) = 7(v) = {p(v) tr A(v)}".

Recall the generalised nested monodromy matrix S(gl)(v; w, u) defined in Definition 5.13,
and the nested vacuum sector M) from (5.24). By Proposition 5.14 we regard M) as
the (full) quantum space of a residual B¢*(n, r)-chain. Let &M (u*~""Y;w, u) denote the

level-1 Bethe vector constructed from Sél)(v; w, u) according to Definition 4.10.

Lemma 5.18. The level-1 Bethe vector satisfies

Rﬁi&z‘+1 (wz - wi—i—l) (I)(l)<u(1...n—1); w, u) - (I)(l)(,u/(lu.n—l); Wityi+15 u),

Rami+1 (uz - ui—i—l) (I)(l)<u(1...n—1); w, u) = (I)(l)(u(l...n—l); w, ui<—>i+1)'

Proof. The level-1 Bethe vector is constructed from a linear combination of products of
matrix elements sy (v;w,u) of the generalised nested monodromy matrix acting on the
highest weight vector. The result is therefore immediate from Lemma 5.15. O]

Recall the creation operator fzq(w) for m excitations from Definition 5.6. In what follows
we will use the notation ugn) = — 5 =u— 2

u + a to mean (ug +a,...,u, + a).

and m,, := m. Additionally, we will use

Definition 5.19. The (top-level) symplectic Bethe vector is defined by

T(u") = Baa(ul™ + 5) - dW (g L-n=b; 5 w™ — p,u™ 4 £)

— ﬁ&a(u) . q)(l) (u(l...n—l); ’[I,7 u)7
where @ = (T, ..., Uy) with U; = K —u; — p.

As with the B;X(n, r) case, G = Gy, X - X6, X G, acts on the symplectic Bethe
vector by reordering parameters. The invariance of the Bethe vector under this action can
then be shown by combining Lemma 5.7 and Lemma 5.18.

Corollary 5.20. The symplectic Bethe vector is invariant under the action of G,,. [

Recall the notation A*(v;u®) in (4.19) and in addition define

H(v+ui +2+p) (v —u™ +2)
: .

(n)

+2 (n) —
A (v, u'™) | . —
i=1 (U + uz + p) (U uz )

The Theorem below is our first main result.

Theorem 5.21. The symplectic Bethe vector W(uY™) is an eigenvector of the transfer
matriz T(v) with eigenvalue

A(v;ut-m) = {p(v) AW (v; u(l“‘”)) } (5.31)
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AD (g; 7Y = 2v ”+PA+(U L) 7(v)
’ 20—1+p 2’ 20+ p
—20—n+ P A 7i(v)
— e N A s i@y —
+;2v—z+p T g )211—2'—1-14—,0
A~ _ n—1 (n—1) A+2 _ K (n) ’Yn('U)
+ (U 27u ) (U 27'U/ )QU—n—f—l—i-p
and
¢ ¢
~ ~o i . W~
OEFOREON | BYRCEE | BYCEE)
i=1 i=1
for 1 < j <mn, provided
Res_) A+ Ful")y =0 and Re(s) A + & u-") =0 (5.32)

VU
J

for1<j<m;, 1 <i<n—1and1<k<m,.

Remark 5.22. The equations (5.32) are Bethe equations for a X,(sp,,, sp3,)"-chain. Their

explicit form for ug-i) with 1 <4 < mn — 2 is the same as in (4.32). Those for ug-n_l) receive an

additional factor due to the top-level excitations,

(
J
~ n—1 n— n—1 n—1 n—1
T (! >+75)iﬂ<@ >—u->—4x@ >+® Y14 p)

B Mp—2 (ugn—l) . ugn—Q) + %)<u§n—1) + En—2) + % + p)
o Y = = Y Y = )
(Y =l D)@Y a1 p) (539
X .
o (o = = )+ = 1)
The top-level Bethe equations, for u ), are
Fu@l™ w5y @l =™ 1 2) (Wl ™ 24 p)
%Ag—@m—pn?x@“—@“—zx<>+¢”—2+m
i#]
mp-1 , (n) (n—1) (n) (n—1)
_ (uj” —u + Dy +u; +1+p) (5.34
§ o < 34)

n—1) — 1)(u n)—l—u( )—1+p)'

Proof of Theorem 5.21. In order to prove the theorem, it will be necessary to calculate an
expression for the unwanted terms. As such, we will first expand on the exchange relations
of the twisted Yangian, studied in Section 5.4. Recall Corollary 5.10,

{p(v) Au(v)} Baa () = Baa(w) {p(v) SV (v;u)}” + UWT.

o4



Let Xp denote the subalgebra of X,(sps,,sp5,)™ generated by elements of the B block

matrix, i.e. sl(-szﬂ- with 1 < 4,7 < mn, k > 1. The closure of Xp is guaranteed by (3.49).
Then, considering repeated applications of Lemma 5.4, it is possible to write UWT above
such that, in each term, elements of the Xp subalgebra appear to the left of the expression.

That is, there exist B" € W, ® Xp((v™1)) such that

ta{p(v) Aa(0)}" Baa () = Baa(w) tra{p(v) S5 (vi u)}’

Since we will not need the exact form the Bj; k, we define the combination

n

Ur(v;u) := Z (B;;’k@ij(uk) + Bi;’kouij(ﬂk)),

ij=1

where we have made explicit the dependence on v and w. From Lemma 5.5 we obtain an
exact expression for the unwanted terms for a single excitation. Applying this to the leftmost
creation operator 33,4, (u1), followed by Lemma 5.9, we are able to extract an expression for

Ul(v;u):

U (viu) = — {p(v)w}v

Uy — v

x H (ﬁ (g J]:IIR%GZ - — )) Res tr {p(w) S0 (wsw)}". (5.35)

From here, to find U*(v;u) for 2 < k < m we make use of Lemma 5.7. Specifically, by
repeatedly applying transpositions, we may apply any permutation ¢ € &,, to the pa-
rameters w. Let u, denote (u(1),...,Usm)), and let o5, denote the cyclic permutation
(k,k+1,...,1,m,...,k—1). Then

Baa(t) = Baa(Uo,) Ralow] (w) Ra[ow] (@)

where Rq[o] () is the product of R matrices necessary to implement this cyclic permutation,

Ra[ak] (u> = H ( H RaiaiJrl(uj - uj+1)>'

With this permuted creation operator, repeating the arguments used to find (5.35) yields

1

p(ur) pales T
X Res {p(w)try S (w; ue,) }* Ralok](w) Ralok] (@), (5.36)

W—r UL
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and therefore a full expression for the unwanted terms,

ta{p(v) Aa(v)}" Baa() = Baa(w) tra{p(v) SV (v; u)}’

1 p) N 1
+ ; p(uk) {mﬂfual (U)} ]i! <B&iai(uak(i)>j111Raj&i(_uﬁk(j)_uak(i)_p)>
X lges tr, {p(w)S W (w; uy, )} Ralok] () Raloy)(@).

Acting now with this expression on the level-1 Bethe vector gives the full action for the

transfer matrix on the top level Bethe vector with uz(»n) =u; — %,

() - W) = Baa(w) tra{p(v) SO (v )} - OO (" D; @, )

G | p(v) v m 1
’ ; p(“k) {uk - Uﬁalal (U)} ]‘_! <BazaZ Yo (d) ]1:[ aaaz ~Uoy,(j) " Uok (i) — P))
x Res tr, {p(w) SO (w; uy, )} Ralon] (w) Raoy) (@) - 2V (w"7Y; a1, u)

= faa(u)tr {() (UU)} oW (ul" 4, )

k=1 =2 j=i—1
X Res tr, {p 1S (w; Uy )} W (w-mV @, u,,).

W— UL

The last equality follows from Lemma 5.18. From the full expression (5.31), the condition
(5.32) for the parameters u!’ is equivalent to Res, oA (v + Z;ul-") = 0 with ul =
u; — 5, as these poles are not present in A (§ — %; u(zl"'”)). Therefore, from Theorem 4.13,
using weights from Proposition 5.14,

7(v) - \I](u(l...n)) _ A( ) (1...n))qj(u(1...n))

o )

m 1
H (Bazaz Uak(z H Rajaz —Ugy () uak(i)_p)> '(I)(l) (u(l 1, uUk?“Uk)

1=2 Jj=i—1
where A(v; u(t )) = {p(v )A(l)(v7 (1-n))1* as required. Note that, owing to Corollary 5.20,
we have A(v;u*™) = A(v; u' (n) ) for any 0™ € &,,, . Therefore, ¥(ull™) is an eigen-

vector of 7(v) with eigenvalue A(v; u®™) provided Res A(v;u*™) = 0, or equivalently
VUL

Res A(v+ g;u(l'“”)) =0, for 1 <k <m,. m

(n)
v—uy,

Ezample 5.23. The symplectic Bethe vector with m top-level excitations and m; = ...
my,_1 = 0 is given by



For mi = m, =1 and my = ... = m,_; = 0, the on-shell symplectic Bethe vector, that is,
when the parameters satisfy the Bethe equations, takes the form

(u(n) — u,(nfl))(u(”) —+ u(nfl) —+ p)

(I s9], ),

o ;?nfl(u(n_l) + nT_l)
(u) —u=D — 1) (u™ + w1 4 p 4 1)

x <[B(u(”)+§)]n2 + [B(u<">+g)]n171)) -, (5.37)

U (u™ yD) =

)

where A= (v) refers to the level-(n—1) nested version of the A operator of S(v) obtained
via (4.3).

5.7. Transfer matriz and Bethe vectors for a X (502,505, )" -chain

We now focus on the orthogonal case. We define the transfer matrix 7(v) acting on the
quantum space M defined in (5.1) in the same way as we did in the symplectic case. However,
the definition of the orthogonal Bethe vector will differ from its symplectic counterpart in
Definition 5.19. Indeed, looking at Proposition 5.14, the weights 7, (v; @;u) do not have
poles at v = w;, and so making the same ansatz as in the symplectic case would yield
Bethe equations that are trivially satisfied. Such an ansatz therefore must be identically
equal to zero. To remedy this we use a limiting procedure proposed in [DVK]. Recall that
M (w7~ p: ) denotes the level-1 Bethe vector constructed from S5 (v; w; u) according
to Definition 4.10.

Definition 5.24. The level-1 orthogonal Bethe vector is defined by

@ggﬂ(u(l“'"’l), u;a, () = lin% q)(l)(u(l"'”’z), (u(”’l), u— 5 —e€)u—PBeu+ ac).
e—
In the above definition, as well as parameters u’"~Y  the Bethe vector includes m
additional excitations at level-(n—1), with parameters %; — § — € = § —u; — p — €. The shift

of £ = 1(n — 1) is simply to account for the parameter shifts in the nested Bethe ansatz
for the B;*(n,r)-chain. Parameters v and 3 have been introduced to control the limit as
€ — 0. These parameters should be thought of as additional Bethe parameters, which will
eventually be determined by the Bethe equations. We obtain the same parameter symmetry

as Lemma 5.18.

Lemma 5.25. The level-1 orthogonal Bethe vector satisfies

Ra,a41 (tig1 — Ui)RaiaiH (u; — Ui+1)‘bz(i1¢)n(u(l"’n_l)a u; o, 3)

_ (1) 1.n—1) ~ .
= Q5 (u( )a Wicyit1; Oicsints Bicrit1)-



Proof. We use Lemma 4.12 to write

Bl (w7 @ @, B) = D) (w0, B).
Then
Razdo (i1 — ) Rogary (w5 — i) lim O (utm72) (w4 — & — €); 4 — Be;u + ac)
— lim Ralal+1<uz+1 —u; + (B @H €) alahq( — w1 + (g — aip1)e€)

e—0 )
W

w2 (D G — 5 — €)@ — Beu + ae)

1 1 1..n—2 n— ~ K . .
= 11_13(1) il )(u( )a (U( )7 U—5 - €); Wicrit1 — Bicrit16 Wicrip1 + Olisig1€),

where the last equality follows from Lemma 5. 15 as in the symplectic case. Then, using
Lemma 4.12 to exchange u — £ — € with u;.;11 — & — €, we obtain the desired result. O

Corollary 5.26. The level-1 orthogonal Bethe vector satisfies
(s s w) B, (u ", @ e, B)

lim

= AD (v w2 (D) G — 5 w) ) (u D i a, B)

lim
with
A(l)(v w1 u) 2v n+pA+(v 1 u(l)) T(v)
’ T 20—1+p 2 20+ p
n—1 ~
2v—n+p i1, (i—1) i 7i(v)
_ i1 (@ At (=i u®
+Z; 2 —i+p A G R Ut B )20—i+1+p
- n—1 -1 n n n n ,Ay/n(v)
+A (U_T,’U,(n ))A+(U—§7w—§)A+(U—§,u—§)2v_n+1+p (538)
provided
Re(s‘) A(l)(v—i— %;u(l“‘”’2), (u™ Y @ — g);ﬂ,u) =0 for 1<j<my 1<i<n-—1,
vy
(5.39)

lim Res AW (v; T N (A y 5 —e)su— Be,u+ ae) =0 for 1<j<m.
e—0 v—=u;—e
(5.40)

Proof. By Theorem 4.13 and Proposition 5.14, vector ®M(wl-"=2 (w=D @ — & — ¢);
@ — Be;u + ae) is an eigenvector of the nested transfer matrix 70V (v; @ — Be;u + )

with eigenvalue AV = AW (y;ut-"=2 (u=D a4 — 5 —€e;u — Be;u + ae) provided

Res o AD =0for1 <j<my1<i<n-1andRes, 5 «_ ., 21AD =0 for
'U—)u]- +§ V—=U;— 5 —€ P}

1 <7 < m. Taking the e — 0 limit gives the wanted result. O]

Direct evaluation of the residue and the limit in (5.40) yield the following Bethe equations
for 1 <7 <m,
QUj—TL—Fp—FQ;?n,l(ﬂj) . _1—Oéj 1 A*(uj—"T,u(”_l))
2uj—n+p  u(ly) 1= B AT (uy — 5, ul ) A (uy — 25w D)
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For any collection of Bethe roots (!~ the above equations can be thought to constrain

a in terms of 3. With this perspective, for any m-tuple u, as the equations depend on «;
and f; only through the combination (1 — «;)/(1 — §;), there is a 1-parameter family of
eigenvectors of the nested transfer matrix with the same eigenvalue. We conclude that any
choice of B must give the same nested Bethe vector. In particular, there will be two choices
of interest:

1 .
Oéj:O, széj and Oéj:].—l_(&::(sj‘, ﬂjzo,
J
with eigenvector A
o) (u+"=V 4:0,8) = &) (" 4§, 0). (5.41)

Note that this equality has only been shown to hold “on-shell”, i.e. when the w1 satisfy

Bethe equations. We are now ready to define the top-level orhtogonal Bethe vector. In what

follows, we will write ugn) = = U — ”T_l, v:=—v — pand m, :=m.

Definition 5.27. The (top-level) orthogonal Bethe vector is
U(ul";8) = faa(w) - Ol (ul "V, @0, )
= Baa(u™ + 5) - @jp (w0, @ + £:0,6)
with 6; defined by, for 1 < j <m,,

n) u(n 1))

(5.42)

2u +p—1 7@\ + & 1 A*(u
d; =1+ P (T ) (Z
]

27+ p+ Lapa() + 5) AT — w9 A, w0

]

We now have an G,,, := G,,,, X--- x G, _, XxG,, action on the orthogonal Bethe vector
by reordering parameters. The invariance of the Bethe vector under this action can then be
shown by combining Lemma 5.7 and Lemma 5.25.

Corollary 5.28. The orthogonal Bethe vector is invariant under the action of G,y,. [
The Theorem below is our second main result. Recall (5.38).

Theorem 5.29. The orthogonal Bethe vector W(u'™);§) is an eigenvector of the transfer
matriz T(v) with eigenvalue

A ad-my .— {p ( (1..n—2) (u(n*1)7ﬂ(n)>;a(”) _|_g,u(”) +%) }v (5.43)

provided

Re;s) A + 3 ul") =0 (5.44)

for1<j3<m;, 1 <i1<n—2, and

:)//n—l(ug'nil)‘k g) mﬁ1 (ugnfl)_ugnfl)_‘_ 1)( gn 1)+u(n 1)+p+ 1) 1
~ n—1 P n—1 n—1 n—1 n—1 - _ n—1 n—
g @ oDl o 1) Al i)

(5.45)
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fOr 1 S] S Mp—1, and

Yn(u (n)+§) ﬁ(u§”)_u§n)+1)(§)+u()+p+1): 1 10
Foor(@ +5) iy (0 = = D 4 4 p— 1) A (0 4§, ul)

Jor 1 <j < my.

Remark 5.30. The equations (5.44-5.46) are Bethe equations for a X,(s0s,,505,)"-chain.

Their explicit form for ugi) with 1 <7 <n—3andi=n—11is the same as in (4.32). For
1 = n — 2 there is an additional factor, corresponding to the extra excitations at level n — 1,

2 (ugnﬂ) + 22) ml"—f (u§-"72) — u,("*z’ + 1)(u§n72) - u§"*2) +1+p)
n—2 n— n—2 n—2 n—2 n—2
s (T L T T T )
My — n—2 n—3 n—2 n—3
T " D " )
n—2 n—3 n—2 n—3
i=1 (U§ ) UE )—%)(U§ )—|—u§ )—%—Fp)
. Mp—1 (ugan) B u’gnfl) + %)(ugan) + Z('nfl) + % + p)
2 1 2 1
o (0 ™Y = D " — )
mn ( (n—2) () | 1y¢,,(n—2) () | 1
(O u;  +3)(u +u; " 45+
< ) fx J 2 /) (5.47)
J 2

The sets of parameters u(™ 1) and w™ correspond to the two branching Dynkin nodes of
§05,, and are often denoted u(™) and u() .

Remark 5.31. For n = 2, the Bethe equations (5.45) and (5.46) decouple into two sets of
Bethe equations for open sly spin chains, and can be solved separately. This is consistent
with the isomorphism soy = sly @ sl,. Similarly, for n = 3, the isomorphism sog = sl is
borne out in the Bethe equations (5.45), (5.46) and (5.47).

Proof of Theorem 5.29. The calculation of unwanted terms is identical to the symplectic
case. In particular, using Lemma 5.25 we find

7(v) - U™ 8) = Baa(w) {p() 7V (v: @y w)} - O (w"D 4:0,8)

lim
1 { p(v) }U
+ ﬂ&1a1<1})
;p(u') uj — v
X H (ﬂalal O'J(Z H Rakaz uU] u”j(i)_p))
k=i—1
X Res {p 7D (w; Uy, Uy, ) } ‘Pz(ml( (1“"_1),110].;0, ds,).
w—u;

Recall notation uﬁn) = u — 5. Corollary 5.26 applied to the wanted term together with the
identity

Ei(sw AW (§ — i un=2) (40D gy ™) |5 gy | 5) =
J
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for 1 <j7<m;and 1 <i<n-—2yields (5.43) and (5.44). The above identity does not hold

for i = n — 1. Thus the Bethe equations (5.45) for ug Y are obtained by evaluating directly

1 n—1. 1..n—2 n—1) =(m)\. 5n K n r\ __
Ujﬁs—n Al )(v _ T,u( ) (™Y @™y g™ + 5’,“( ) ¢ 5) -0
J

and the help of
A (0, @A 0= 3 — DA (o ot - 1) = A 0,0,

The top-level Bethe equations (5.46) for ugn) are obtained from equating to zero the
unwanted terms. However, some care must be taken so as not to exchange the order of the
residue and limit. Using the same arguments as in the proof of Corollary 5.26 and assuming

(5.44) and (5.45), so that (5.41) holds, we write

Res {p(w) 7 (w; Go,; u0,) }* @l(zgl(u(l"'”’l),aoj;0,50j)

w—>uj

= lim Res (p(w)T(l)(w;’&aj — 05,6 Ug,)
e—0 w—ruy :
X <I>(1)(u(1"'"’2), (u(” D Uy, — 5 — €); Uy, — 05,6 Uy, )

+ ()TN (B; G U, + 85,€)
% (1)(1)(,,11(1..%—2)7 (u(" 1) U, — 5 — €): Uo,i Us, + 50]'6))'

This expression equates to zero if

lim Res <p(w)A(1)(w w72 (y (”’1),11—%

e—0 w—u;

s - S Yn (W)
XA+(w—§,u—§)A+(w—§,u+5e 5)2w_n+1+p)=0.

Note that the terms that contain a pole at u; are A™ (w —5u— %) and AT (w -2 a— %)
AT (v, w), A*(v, ) = Ai(v w) and

Now evaluate the residue and use identities A* (7, w) =
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(n);

p(w) = —p(w). Then, upon rewriting w;’s in terms of u; ’’s, we obtain

: - (n) n—1 — (n) n + (n) 1 n 1
15%(1\ (05", w")A™ (g ™ 4 ) A (0 = ul + §e + 3)
(@™ + ) ﬁ W a1 Wl 4 p
2u§-n) +p—157 ulW — ugn) u§") + u§"> +p—1

— A (@, D) A (™ A (Wl + L™ 4 §e — 1)

:yn(ag,”) + g) Mn ugn) — ugn) -1 u§~n) + ugn) +p o
X o W _ =0 (5.48)
upim o+l ut s utu
i#]
Observe that
(n) . (n)
i A ( u(”)+e)A+(u§")—%,u(”)+56+%)=5j2“ (;)Lp 1 2u; (%)—[H—l
e—0 2u;’ + P 2u; 7 + 1%
x ﬁ uf —u —1u +u 4 p 1 uﬁ”) —uf" (") +u” +p+1
i ul —a W w1 Wl —dl™ 1 W 1l g
and
(n) _ (n)
hmA+(u§n)’u(n) n e)A‘(u§") +Lum 48— 1) = gj2uj (J)FP 1 2u; (J)F p+1
=0 Quj" +p 2uj" +p
(n) un)+1u( )+u(n)+p+1 u(n)_ugn) u(n)+u(n)_|_p_1
X H ™ 1 o m _ o ™, '
, tu; +p ouy —u + 1wty +p

Z

lsﬁj
Hence taking the e — 0 limit in (5.48) gives
(n) | kY ma , (1) (n) (n) (n)
n +Z u; L ug e+
A” (U§"), u")s; ) ((n)J L H ’ ) (n) (n) ’
2u; " +p—10 u -y +u;  +p—1
i#]

. %(,(n) +5) ™ — ™ -1 ugn) +u™ +p

— AT (! w D)4, J : =0.
(e ) 2(”)+p+1H uf — w4 p 1
i#]

Recall that 6; = —4,/(1 — 6;). We may thus rewrite the equality above as

P +u o411 A ut )
P ™~ )@ ™ p—1) L= A (™, uen)
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Substituting the definition of §; from (5.42) and using A*(ugn) — L uV)A- (ulM 41

u("72)) —
j
1 we obtain (5.46), as required.

Example 5.32. The orthogonal Bethe vector with a single top-level excitation and m; =
... =my_1 =0 is given by

2u™ + p
1 1 [
1—60 2u™+p+1

x ([A<”1>(a<") + 1]

1 2u™ + p
_ . B(u™ + &
1-9 2u(”)+p+1[ W™+ 5],

A A=) (g 4 1
X ([A<"”(a<"> + )], — [ 2 Ll)) -1,

2ul™ + p

2u™ +p—1 A
T(u) = ( P B 1+ )], [AC Y@ + 1),

+ B(u™ + g)}n—l,l

22 2u + p

where A1) (v) refers to the level-(n—1) nested version of the A operator of S(v) obtained
via (4.3). Note that the level-(n—1) excitations contribute only diagonal elements, which
do not modify the vacuum vector. Hence the expression above may be simplified by using
(5.42) and

,7vn—1 (a(n) + %)

(@™ +3) _
2u +p—1

2u(™ + p

(AT @], = o [ATTIEY 4 )], = Uk

resulting in

n &/nfl(ﬂ(n) + E) n K n K
U(™) = S +p—21 [S@™ +5)], 1 =[S+, 5 ) 0

5.8. SO, /(U, x Uy,) and SPy,/(U, x U,) magnets

In this section we focus on orthogonal open spin chains with the bulk quantum space
being an ¢—fold tensor product of the highest weight so0,, representations L(\) of weight
A= (k,...,k tk) with k € %Z+, and symplectic open spin chains with the bulk quantum
space being an ¢—fold tensor product of the highest weight sp,,, representation L(\) of weight
A= (k,..., k) with k € Z,. Such spin chains were called SOy, /(U, xU,) and S P, /(U, xU,)
magnets in [Rs1]. We will consider both chains simultaneously.

Define operators F;; by Fi; L(A\) = F;;L(\) and set F = 2127;:1 e;j @ Fi;j. The generating
matrix F satisfies the quadratic identity

F?=k(k+ k) + KF. (5.49)

Remark 5.33. For go, = 505, and k = % an explicit realisation of the operators F;; in terms
of anti-commuting variables is given in the proof of Theorem 5.16 in [AMR].
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Define a Lax operator

qw:1+uf£. (5.50)

Lemma 5.34. We have 2
R(u — 0) L) La(v) = Lo(v) L1 (u) R(u — v), (5.51)
amﬁeﬂy:qmc%w+wzzﬂu+@£@y:f%%%%ﬁfL (5.52)

Proof. Relation (5.51) follows from Lemma 3.4 in [IsMo]. We only need to show that the
quantity U in that Lemma equates to zero. Indeed, using symmetry F* = —F and identity
(5.49) we find

U= Q(Fi+r)Fo—Fo(Fi+r)Q = Q(Fah— F3) = (Fak = F3)Q = Qk(k+ ) —k(k+r)Q = 0.
Relation (5.52) follows by a direct computation using similar arguments. O

Consider space M defined in (5.1) and replace each L(A®),, with a ¢;-shifted X (s0g,)-
module of weight A\®) = (k;, ..., ki, £k;) with 2k; € Z,, or a c-shifted X (sp,,,)-module of
weight @) = (k;, ..., k;) with k; € Z,. (Recall (5.23) and note that L°(A®),, = C unless
Jon = 509, and AV = (k;, ... k;, —k;), in which case L°(A\®),, = C".) Then Proposition 5.14
holds except (5.30) should be replaced with

0 A 0 A
U _ J 3 (2 _ J
A =1t o= ) = (5.53)

Finally, Theorems 5.21 and 5.29 also hold.

5.9. Hamiltonian for the fundamental open spin chain

In this section, we discuss the case in which each bulk quantum space is the fundamental
representation of gy, and each ¢; = —k/2, i.e., M = (C?)®¢. Additionally, set p = 0. Let
K (u) denote the K-matrix associated to a one-dimensional representation of X,(g2n, 65,)",
as listed in Proposition 3.11. Additionally, let K*(u) denote a solution of the dual reflection
(obtained by substituting v — @ and v — © in the reflection equation, so that K*(u) =
K(a@)). Note that in the above Sections we have taken K*(u) = I. For such an open spin
chain, the transfer matrix given in Definition 5.16 takes the form

L 1
) = 52—, (Kz:(u) (121 Raxu)) Ko(w) (1} Rai<u>) ) -

Prior to extracting a Hamiltonian, we may cancel the poles at u = 0 and v = by multiplying
by a certain rational function in u to obtain

t(u) = tr, (K;*(u) (H Baxu)) K, (u) (H Baxu)) ) , (5.54)
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where

Riu) = — =W gy = MR W KU U pnd(C e O ),

K K K K

and K(u), K*(u) are normalised such that K(0) = K*(k) = I, with trK(x) and trK*(0)
both non-zero.

Proposition 5.35. The following Hamiltonian commutes with T(u):
-1
H°=H)+Y H} +HY, (5.55)
i=1

where
o tra (K;(0)HY,)

HO —
L tr K*(0) '

HJO% = %]Ké(O), Hioi-i-l =P+ QMH-

’ K
Proof. Observe that R(0) = P, and K(0) = I, so Proposition 4 in [Sk] allows us to extract
a nearest neighbour interaction Hamiltonian for the system. O

The Hamiltonian (5.55) is equivalent to the one considered in [GKR]. The two-site
interaction term H;;,; is equivalent to that given in [Rs1]'.

An additional Hamiltonian may be extracted from t(u) by looking instead at the point
u = K. At this point, R(k) is equal to @, rather than P. Nevertheless, the following
procedure allows a nearest neighbour interaction Hamiltonian to be extracted.

Proposition 5.36. The following Hamiltonian commutes with T(u):
-1
H* = Hj+Y Hf\, +Hp, (5.56)
i=1

with ( ‘)

try (H K (K Qiis1

= @ _d Hf =P, SR
tra Ké(/i) ) 2,04+1 at+1 + K

Hy = H(K{'(r)',  Hp

Proof. We begin by differentiating t(u) at u = k to obtain

t/(’i) = tr, (K:/(’%) Qal e QaéKa(’%) Qa[ e Qal + Qal e QaZKZL(’%) QaZ e Qal

14
+ Z Qal e ]R;j(/{) e QaéKaOi)Qaf e Qal
j=1

¢
+ Z Qal T QaZKa(/{)Qaﬂ e ]R;,j(li> e Qal)-
j=1

1We believe there is a sign typo in (5.2) of [Rsl].
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Repeated applications of QQu;M,Qqi = Quitr M and tr, Q. = I allow us to reduce this to:
t'(k) = tra (ZK*’( )Qa1) try Ky(k) + tr K'(k)

+ Z tra Qa ]JrlQa]) tI‘b Kb( ) + tra ( :w(/i)Ka(K)QaZ)

/-1

+ ) trq (QajQajr1 Ry (1)) try Ky (k) + tra (QueKa (k) Riy ().
j=1

Since R'(k) = I — P/k + @/, it commutes with @) acting on the same spaces, allowing us
to apply the cyclicity of the partial trace. With this, and the identity Q. M, = Q. M}, we
obtain

t'(r) = (Ky'(x >)ttraﬂ<a< ) + trg K. ()

+ 2tr, K ( Z ”+1 Pjjw1+2tr, (Ka(“) ,ﬁa(“)QEa)'

From here we divide by tr, K,(x) and subtract appropriate constants to extract the Hamil-
tonian. ]

Remark 5.37. Note that in the case where both conditions on K and K* hold, the Hamilto-
nian H° + H* has nearest neighbour interaction in the bulk given by P, ;.
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