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Abstract—Many flow-related design optimization problems
like aircraft and automobile aerodynamic design are solved
via computational fluid dynamics (CFD) simulations. However,
CFD simulations are known to be resource-demanding and
time-consuming. Deep learning (DL) is emerging as a viable
means to accelerate CFD simulations by directly predicting the
outcomes of multiple simulation iterations. While promising,
existing DL-based models have to be re-trained whenever
the flow condition changes, which incurs significant training
overhead for real-life scenarios with a wide range of flow
conditions. This paper presents FLOWGAN, a novel conditional
generative adversarial network for accurate prediction of flow
fields in various conditions. FLOWGAN is designed to directly
obtain the generation of solutions to flow fields in various
conditions based on observations rather than re-training. As
FLOWGAN does not rely on knowledge of the underlying
governing equations, it can quickly adapt to various flow
conditions and avoid the need for expensive re-training. We
evaluate FLOWGAN by applying it to scenarios of simulating
both the whole flow field and selected regions of interest
(RoI). Compared to the state-of-the-art DL based methods,
FLOWGAN significantly reduces the prediction errors by
2.27% while exhibiting a better generalization ability.

Keywords-Flow fields prediction; Multi-source data process-
ing; GAN; Predictive performance.

I. INTRODUCTION

Computational fluid dynamics (CFD) simulations are the

fundamental methodology for aerodynamics related design,

analysis and optimization. Traditional CFD methods like fi-

nite difference and finite volume methods [1] must iteratively

solve the partial differential equations (e.g., the Navier-

Stokes equations [2]) of fluid flow. These high-fidelity CFD

methods can provide reliable and relatively cheap means of

analysis compared with experimental methods, and can flex-

ibly handle different boundary conditions. However, these

CFD simulation methods are known to be computation-

resource-demanding and time-consuming [3]. The expensive

*These authors contributed equally to this work.
†Corresponding author.

simulation overhead and resource requirement prevent itera-

tive design space exploration and hinder quick design choice

evaluation.

In recent years, data-driven approaches have been pro-

posed to speed up CFD simulations by employing deep

neural networks (DNNs) [4]–[6] to directly predict the

simulation outcomes. A DNN based approach works by

first learning successively higher orders of features from

flow data generated by a full-order CFD solver. The learned

model can then be applied to predict the flow fields of unseen

flow problems, by taking as input a representation of the flow

conditions and geometry shapes (e.g., often expressed as a

2D matrix which can be visualized as an artificial image to

serve as input to a DNN model), and predicting the perfor-

mance metrics (e.g., the velocity fields). By using a model

inference to substitute the many computation iterations that

a CFD solver requires, predictive modeling can significantly

reduce the turnaround time of generating flow data.

While promising, emerging approaches focus on flow

fields prediction under fixed flow conditions [4], [7] (e.g.,

by assuming the flow parameters are unchanged). The flow

conditions are typically quantified by these flow parameters

such as the Reynolds number1 and the angle of attack in

aerodynamic design. In practice, the flow conditions may

frequently change during design time. As a result, a model

trained for given flow parameters will become out-of-date

when the flow condition changed. Some of the recent studies

have attempted to deal with various flow conditions. These

methods apply extra conversion to flow parameters. How-

ever, these conversion methods either only work for a limited

set of specific flow parameters like the angle of attack [9], or

remain time-consuming for predicting the whole flow fields

because of using a point-by-point prediction approach [10].

1The Reynolds number [8] is widely used in CFD simulations for
predicting flow patterns in different fluid flow situations. It describes the
ratio of inertial forces to viscous forces in a flowing fluid.
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Figure 1: A high-level overview of the generator (G). Re represents the Reynolds number, AoA is the angle of attack. Mark is the result
of concatenating the airfoil parameters and flow parameters.

This paper presents FLOWGAN, a novel conditional gen-

erative adversarial network (cGAN) for flow field prediction.

FLOWGAN is designed to directly predict the outcomes

of Reynolds-averaged Navier–Stokes (RANS) simulations, a

widely used CFD simulation method, from various bound-

aries and flow conditions (including the airfoil geometry,

the Reynolds number, and the angle of attack). We design a

novel generator based on the U Net network [11] to generate

the predictions of flow fields and then utilize a multilayer

perceptron (MLP) to merge geometry information and flow

parameters at the bottom of the generator. While simple, the

MLP is flexible and proven to be effective on the test dataset

that contains simulations from various flow conditions. We

demonstrate how cGAN and the U Net architecture can be

combined to build a generative adversarial network (GAN)

to perform a one-to-one mapping from given boundary

conditions and the geometry shape to its corresponding flow

fields.

We evaluate FLOWGAN by applying it to a large-scale

airfoil dataset to predict both the whole flow filed and

specific regions of interest. Experimental results show that

FLOWGAN can effectively handle various flow conditions,

delivering better prediction accuracy over the state-of-the-

art methods. The key contribution of our work is a gen-

eral cGAN for flow fields that can adapt to various flow

conditions. FLOWGAN can be used to learn causal models

directly from experimental observations of flow fields where

the underlying physical progress is complicated or unknown.

II. RELATED WORK

To overcome the drawbacks of CFD methods, which is

time-consuming and resource-demanding. Many researchers

have done numerous studies on data-driven methods based

on traditional machine learning, including polynomial re-

gression, support vector machines, and artificial neural net-

works [12]–[14]. These methods show some success in

small-scale settings but cannot scale to the whole flow

field. When dealing with elaborate designs, the data building

progress requires extensive involvement of domain experts.

In this work, we tackle these issues by developing a pre-
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Figure 2: The flow fields data representation.

dictive model via deep learning methods. Our approach

transfers shape boundaries to image-like inputs that are

suitable for neural network training, which can simplify data

preparation and generate a prediction for the entire flow

fields.

For applying deep learning to fluid dynamics, [5] con-

struct specialized neural networks with embedded invariance

for turbulence modeling to predict the Reynolds stress tensor.

For unsteady flow over a circular cylinder, [15] predict the

flow fields using different deep learning networks to extract

both spatial and temporal features of the input flow field,

which could be considered as video prediction. [4] predict

steady flow fields around blunt objects under fixed flow

conditions by establishing an encoder-decoder convolutional

neural network. They use the signed distance function (SDF)

to represent geometries, which is more demanding than our

methods. [6] extend the work of [4] by introducing a fully

connected (FC) layer to the networks to deal with various

flow conditions. As a result, it is deficient to simply fuse

the parameters into the network using an FC layer as we

show later in our paper. [9] apply U Net based networks

to quantify uncertainties and improve Reynolds Averaged

Navier-Stokes (RANS) models. Remarkable inference per-

formance has been obtained but requires extra conversion

from flow parameters to input feature maps of freestream.

By integrating cGAN and MLP, our work contributes to

simplifying the predictions under various flow conditions

while providing convincing results.



Figure 3: The structure of MLP network. P1∼P64 are the geometry
parameters extracted by the encoder.

III. BACKGROUND

In our paper, we mainly focus on deep learning models

for the inference of the incompressible RANS solutions

solved by the finite volume method (FVM). Traditionally,

CFD simulates the turbulence flow fields by solving the

governing equations of discrete fluid based on FVM and

the turbulence equations. For 2D incompressible steady

turbulence problems, the RANS governing equation can be

simplified as follows:

∇ · u = 0
∇ · (uu) = ∇ · (ν∇u)−∇p

(1)

where u is the velocity vector of the control volume and ν is

the kinematic viscosity coefficient. For incompressible flow,

the density ρ is fixed and the p in Equation 1 represents the

pressure divided by density.

According to the Boussinesq eddy viscosity hypothe-

sis [16], the viscosity coefficient of RANS equations for

turbulence is composed of laminar viscosity coefficient and

turbulent viscosity coefficient, ν = νL + νT where νL is

given by Sutherland’s law [17] and νT is computed by

solving the turbulence model equations.

The turbulence model used in our experiments is the

Spalart-Allmaras (SA) model [18], a one-equation turbu-

lence model that has been developed primarily for aerody-

namic flows. The transport equation for νT is given by:

DνT

Dt
=
1

σ

[

∇ · ((νL + νT )∇νT ) + cb2(∇νT )
2
]

+ cb1S̃νT−

cw1fw

[νT

d

]2

(2)

where σ is a turbulent Prandtl (a free constant), and there are

other two free constants cb1 and cb2. SA has two conditions

for three free constants (σ, cb1, and cb2), leaving a one

dimensional family of solutions parametrized by the Prandtl

number σ. cw1 is determined by cb1 and cb2. d indicates

the nearest distance to the wall. S̃ is computed by d and

velocity u. fw is a non-dimensional function about S̃ and

νT to overcome the problem that the destruction term decays

too slowly in the outer region of the boundary layer.

Based on the governing equations (Equation 1,2), CFD

solver can solve the equations iteratively and simulate

complex turbulent flows. This processing requires a very

fine discretization of space-time and often relies on high-

performance computing (HPC). When the flow conditions

change, CFD has to start the time-consuming simulations

over again. Therefore, we propose FLOWGAN that can be

used to directly generate simulations from observations with

high fidelity and is friendly to deal with the various flow

conditions.

IV. METHODOLOGY

A. Roadmap

Recall that our goal is to achieve effective predictions

of flow fields in various flow conditions. We first need to

reduce the high-dimension of geometry and parameterize the

geometry to integrate with the flow parameters. By utilizing

the U Net architecture, the encoding part can extract the

geometry parameters and the decoding part can restructure

the 2D velocity flow fields. We then exploit the feasibility of

developing an MLP network to integrate the flow parameters

and extracted geometry information. Finally, like the image-

to-image regression, the mapping from the given conditions

to predictions is built by our novel cGAN network. Figure 1

shows our way to build the generator.

B. Data Representation

To predict flow fields over various objects with deep

networks, we first need to have a suitable way to represent

the object geometry and domain boundaries. In this paper,

we focus on the fluid domains around airfoil shapes. Airfoil

is the aircraft wing’s cross-section, which has a significant

influence on the aerodynamic performance of aircraft. The

fluid domains are divided into Cartesian grids that can be

regarded as images for deep networks as input feature maps.

We use the binary representation to define input images and

distinguish object boundaries in fluid domains. As shown in

Figure 2, the blue cells are those solid parts that represent the

geometry of the example 2D airfoil and assigned a value of

1 to indicate the object boundaries. Other pixels with value

0 stand for the fluid domain, and the corresponding pixels

of the output feature maps represent the approximation of

flow quantities after the end-to-end learning.

C. Multi-source Boundary Conditions Processing

1) Airfoil Shape Parameterization: To integrate two dif-

ferent forms of boundary condition data: one is the image-

like airfoil shape, the other is the global flow parameters

such as Re and AoA, we choose to parameterize the airfoil
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Figure 4: The detailed flowchart of cGAN approach to flow fields prediction.

Table I: Detailed description of the generator and discriminator architectures. For input and output, 128 x 128 x 1 indicates the size of
the feature map is 128x128 with 1 channel. In conventional layers, 4 x 4 indicates the convolutional filter size, 64 indicates the number
of filters, and 2 indicates the stride.

G encoder G decoder D

Input 128 x 128 x 1 1 x 1 x 512 128 x 128 x 4

(DE)CONV1 4 x 4, 64, 2 2 x 2, 512, 2 4 x 4, 16, 2
(DE)CONV2 4 x 4, 128, 2 4 x 4, 256, 2 4 x 4, 16, 2
(DE)CONV3 4 x 4, 128, 2 4 x 4, 256, 2 4 x 4, 32, 2
(DE)CONV4 4 x 4, 256, 2 4 x 4, 128, 2 4 x 4, 32, 2
(DE)CONV5 4 x 4, 256, 2 4 x 4, 128, 2 4 x 4, 64, 2
(DE)CONV6 4 x 4, 512, 2 4 x 4, 64, 2 4 x 4, 64, 2
(DE)CONV7 2 x 2, 512, 2 4 x 4, 64, 2 4 x 4, 128, 2
FCONV1 ... 3 x 3, 64, 1 3 x 3, 16, 1
FCONV2 ... 3 x 3, 64, 1 3 x 3, 16, 1
FCONV3 ... 3 x 3, 2, 1 3 x 3, 1, 1

FC layer 512⇒64 ... 64+2⇒128 x 128

Output 1 x 1 x 512 128 x 128 x 2 1 x 1

shape and extract the airfoil shape parameters that can blend

with flow parameters. Considering the importance of airfoil

shape information: the flow quantities change rapidly in the

area around the geometry. We use the U Net based network

to extract the geometry parameters. Different from the con-

ventional shape parameterization technologies or traditional

autoencoder network [19], U Net can not only obtain low-

dimensional airfoil shape parameters but reserve detailed ge-

ometry information through skip connections. Section IV-D

introduces the details about the U Net networks.

2) MLP-based Integration: MLP is generally known as a

neural network consisting of several neurons (also known as

nodes) connected together to form a complex network. The

neuron receives different kind of inputs signals and produces

the outputs.

With the encoder of generator offering airfoil shape pa-

rameters (P1∼P64), we use a 3-layer MLP, each followed by

a LeakyRelu activation layer. Figure 3 shows the structure

of MLP network. The airfoil parameters along with flow

parameters are concatenated as the Mark and fed as inputs

to the MLP network. Then two hidden layers with 1024

neurons perform a nonlinear input-output mapping. Finally,

Figure 5: An example of RoI defined by the white box.

the outputs with a size of 512 reshape as the input feature

maps for the decoder of the generator network.

D. Flow Prediction Network

Generative Adversarial Network (GAN) is a generative

model formulated as a minimax two-player game between

two models: (1) a generator G which creates samples that

are intended to come from the same distribution as that of

the real data and, (2) a discriminator D that determines

whether the samples are from the generator or not. The

cGAN extended the original GAN from an unsupervised



Table II: Comparing MRE, MRERoI and flexibility for different
models. X and Y represent the velocity field for x- and y-directions
perspectively.

Method MRE MRERoI Flexibility

X 4.97% X 27.14%
Endec 6.08%

Y 14.38%
27.32%

Y 30.17%

X 3.12% X 9.70%
Unet 4.67%

Y 14.49%
10.91%

Y 20.93%

X 1.81% X 8.13%
FlowGAN 2.27%

Y 5.76%
9.56%

Y 20.83%

method to a supervised one, which is more suitable for

building the one-to-one mapping from the given conditions

to predictions. Our model borrows idea from the conditional

Pixel2Pixel GAN architecture [20]. Differently, we deal

with the task of multi-source flow fields prediction, while

Pixel2Pixel focuses on the solution to the image style

transfer problem. Figure 4 shows how our cGAN-based

model works. The inputs, including the artificial image of

airfoil shape x1 and flow parameters x2 are fed to the

generator. Then G outputs predictions of velocity fields

and intermediate vector mark. The vector mark and the

artificial image are jointed as conditional information. The

conditional information together with predictions G(x1, x2)
on the fake structure or the ground truth y computed by

CFD methods are provided as input for the discriminator.

Therefore, the objective of our cGAN can be expressed as:

LcGAN (G,D) =Ex1,x2,y[logD(x1,mark, y)]+

Ex1,x2
[log(1−D(x1,mark,G(x1, x2))]

(3)

LcGAN (G) = Ex1,x2
[log(1−D(x1,mark,G(x1, x2))]

(4)

Considering the generator is tasked to not only fool the

discriminator but also generate outputs close to the ground

truth, L1 loss is applied for G when training the networks:

LL1(G) = Ex1,x2,y [‖y −G(x1, x2)‖1] (5)

Since cGAN is a minimax game, the discriminator and the

generator work iteratively to carry out minimization and

maximization on cross-entropy respectively, leading to our

final objective (λ is the weight of L1 loss):

G∗ = argmin
G

max
D

LcGAN (G,D) + λLL1(G) (6)

1) Generator Network: G mainly comprises two parts:

the left encoder with 7 contracting blocks and the right

decoder with 7 expansive blocks, with an MLP network

at the bottom of U Net for knowledge integration. Each

contracting block in the encoder is followed by a convo-

lutional layer (CONV) with a stride of 2 for downsampling,

an activation unit, and a batch normalization layer. The

convolutional kernels have a size of 4 × 4, except for the

Endec Unet FlowGAN
0
5
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Figure 6: The distribution of MRE for different models on the test
dataset.

one in the last contracting block because the size of its input

feature map is only 1×1. To simplify the airfoil parameters,

we use a fully connected (FC) layer to refine the encoded

information at the bottleneck. For each expansive block in

the decoder, we add an upsampling layer followed by an

activation unit. We use transposed convolution (DECONV)

to realize the upsampling layers since it allows the network

to learn how to upsample optimally. Between the encoder

and the decoder are the skip connections, concatenating all

down-sampled feature maps from the contracting blocks to

the corresponding ones in expansive blocks and doubling the

number of channels.

The inputs of the network are the artificial images trans-

formed from airfoil shapes, while the CFD solver provides

the ground truth data. The outputs of the decoder have the

same size of the inputs but with two channels, representing

the velocity field for x- and y-directions respectively.

2) Discriminator Network: D is provided with three

inputs: the vector Mark and the artificial image and the

predicted results or ground truth data. We use an FC layer to

extend Mark and reshape it as a feature map with the same

size of the other two inputs, and then concatenate them along

the channel axis to form feature maps with four channels.

The feature maps are fed to D with seven convolution layers

to obtain the judgment of real/fake. Because the task of D is

more straightforward than that of G, the network parameters

of D are much fewer.

Both D and the decoder of G have three conventional

layers (FCONV) with a stride of 1 for fine-tuning the output

feature maps. Table I shows the details of the structure of

the flow prediction networks.

V. EXPERIMENTAL SETUP

A. Implementation Details

Our models are built on an NVIDIA Tesla V100 GPU with

PyTorch 1.1.0. We train the velocity field predictive model

with the adaptive moment estimation (Adam) optimizer. To

obtain stable results and avoid overfitting, the training pro-

ceeds up to 200 epochs. The hyper-parameter λ of the loss

function is set to 10 after searching for optimal parameters

in [0, 100]. We set the initial learning rate at 1 × 10−3

with learning rate decay. The batch size is set to 32. As for



Table III: Comparison of 2D velocity field between OpenFOAM solver, baseline methods and our predictive model. The diff.(1-2) means
the difference between the first row and the second row and the similar below.

airfoil goe07k bw3 ah63k127 goe07k bw3 ah63k127

velocity x- component y- component

Ground
Truth

Endec

Unet

Ours

diff.(1-2)

diff.(1-3)

diff.(1-4)

activation functions, we use leaky ReLU functions with a

slope of 0.2 in both the generator and the discriminator.

B. Data Preparation

A total number of 1525 different airfoil shapes from

the UIUC database [21] are used in our paper. With a

range of Reynolds numbers between [0.5, 5] million, and

angles of attack in the range of ±22.5 degrees, 1450 airfoil

shapes are considered to generate 6400 training cases (400

for validation) for the cGAN network. The testing sets

including 100 samples are produced with the rest 75 airfoil

shapes in the same way. All the training CFD data (i.e.,

the ground-truth velocity) is generated with the open-source

code OpenFOAM by solving RANS equations [22] using the

SimpleFoam solver. Moreover, the simulated velocity fields

and airfoil geometries are then mapped into a Cartesian grid

with the size of 128x128.

C. Evaluation Metrics

We conduct comprehensive evaluations of the proposed

framework in this section. The work of Afshar et al. [6] and

Thuerey et al. [9] are introduced as baseline models and we

call them Endec and Unet. To evaluate the accuracy of our

predictive model we define:

1) MRE: : the mean relative error of velocity for the

whole 2D flow fields:

MRE =

N
∑

l=1

nx
∑

i=1

ny
∑

j=1

(
∣

∣ulij − ulij
∣

∣+
∣

∣vlij − vlij
∣

∣

)

N
nx
∑

i=1

ny
∑

j=1

(
∣

∣

∣
ulij

∣

∣

∣
+
∣

∣

∣
vlij

∣

∣

∣

)

(7)

2) MRERoI: : the mean relative error of velocity for the

regions of interest for the airfoil:

MRERoI =

N
∑

l=1

ns
∑

i=1

(
∣

∣ulij − ulij
∣

∣+
∣

∣vlij − vlij
∣

∣

)

N
ns
∑

i=1

(
∣

∣

∣
ulij

∣

∣

∣
+
∣

∣

∣
vlij

∣

∣

∣

)

(8)

where N is the size of test dataset and l indicates a certain

sample, nx and ny are the numbers of cells (pixels) along

the x- and y-direction respectively, u and v are the velocity

components of ground truth for the x- or y-direction, u and



Velocity𝑌
MLP FC 

Velocity𝑋

Figure 7: Difference of MLP and FC compared to ground truth.

25 0 25 50 75 100
x-velocity

0

20

40

60

80

100

120

Y

GT
Endec

25 0 25 50 75 100
x-velocity

GT
Unet

25 0 25 50 75 100
x-velocity

GT
FlowGAN

(a) x-component

5 0 5 10 15
y-velocity

0

20

40

60

80

100

120

Y

GT
Endec

5 0 5 10 15
y-velocity

GT
Unet

0 5 10 15
y-velocity

GT
FlowGAN

(b) y-component

Figure 8: Prediction of the x- and y-component velocity profile at
the tail of airfoil bw3 using different models compared with ground
truth (GT).

v stand for the predicted velocity components accordingly.

ns is the number of cells in the RoI of the airfoil. Figure 5

shows an example of RoI defined by the white box, con-

taining the domain of the car in our experiments. Note that

the box is not fixed, and its size and location will adaptively

change to contain the object geometry in the flow field.

VI. EXPERIMENTAL RESULTS

A. Overall Results

Table II compares Endec and Unet to FLOWGAN in terms

of MRE, MRERoI and flexibility. For the prediction of the

whole flow fields, FLOWGAN outperforms its counterparts

in both the velocity field for x- and y-directions. To give

more details about the predictive accuracy of three mod-

els, the violin diagram Figure 6 describes the statistical

distribution of MRE for all models on the whole test

dataset. Here, the thick black line shows where 50% of

the data locates, and the shape of the violin shows the

data distribution. FLOWGAN reduces MRE from 6.08% and

4.67% to 2.27%. We visualize several sample predictions in

Table III. Intuitively, the predictions of our model are much

closer to the CFD simulation results than Endec and Unet.

The differences between the CFD simulation results and

approximation models are shown in the last three columns,

demonstrating the effectiveness of our network architecture.

We further compare the MRE in the region of interest

(near the airfoil surface) where CFD experts are concerned

because the velocity quantity changes fast in this region, and

this area contains more useful information for aerodynamic

design. Table II tells that MRE is much smaller than

MRERoI, because it is more difficult for neural networks

to predict accurately at the area near the airfoil surface

compared with the region far away from the airfoil surface.

The third column in Table II shows that FLOWGAN gives

a lower MRERoI for both x- and y-velocity compared to

baselines, which indicates that FLOWGAN is more capable

of learning about boundary information and yields better

performance.

B. The Impact of MLP

To verify the effect of MLP, we implement a counterpart

for FLOWGAN that uses an FC layer to integrate flow

parameters (Re and AoA). Results on the test dataset show

that FC gives a higher MRE than MLP with 5.44% to

2.66%. Figure 7 shows difference of predictions on airfoil

bw3 using MLP and FC compared with the ground truth.

MLP delivers much fewer errors than its counterpart in both

the velocity field for x- and y-directions, demonstrating the

effectiveness of MLP for the integration of multisource data.

Note that MLP increases the parameters of the network.

Still, it is significant to enhance the representing power to

learn from the flow parameters since these parameters have

a global impact on the whole flow fields. Besides, we did

additional experiments about the influence of the depth of

MLP. The results indicate that 3-layer MLP is deep enough

for the integration of two-way data, and more layers did not

improve the results considerably.

C. Airfoil Wake Analysis

The flow field of airfoil wake is another significant area

in CFD analysis and design. We conduct further evaluate

the wake consistency of the models compared to CFD

solver. A representative example is shown in Figure 8, which

shows the x- and y-component velocity profile of the airfoil

wakes (at the downstream location from the leading edge)

of the CFD result and the predictions of models. The visual

comparison shows that the predictions of our cGAN model



are in more agreement with the ground truth compared with

Endec and Unet.

D. Flexibility Discussion

The Unet model is aimed at two fixed flow parameters,

Re and AoA, and requires extra conversion from flow

parameters to input feature map of freestream. This method

is not general enough to solve flow field prediction problems

with more flow parameters (e.g., the viscosity ν). The Endec

model takes advantage of the FC layer to catenate the

airfoil features and the flow control variables. While flexible,

the previous results indicate that merely fusing the flow

parameters to the networks like Endec may deliver imprecise

predictions. FLOWGAN first refines airfoil parameters using

a U Net and then utilizes an MLP network to achieve

the integration of airfoil parameters and flow parameters,

outperforming the baselines on the large-scale 2D airfoil

datasets. We argue FLOWGAN can be easily applied to

more complicated flow conditions that contain more flow

parameters.

VII. CONCLUSION AND FUTURE WORK

We have presented FLOWGAN, a novel cGAN framework

for learning flow representation for CFD simulations under

changing flow conditions. FLOWGAN takes as input an

artificial image of airfoil shapes along with the Reynolds

number and angle of attack to predict the solutions for the

given boundary conditions and domain. It then uses an MLP

to integrate the geometry parameters and flow parameters

to generate the simulation outcomes. Experimental results

show that FLOWGAN is highly accurate in predicting both

the entier flow fields and regions of interest when compared

to the state-of-the-art methods. Our future work will look

into extending FLOWGAN to modeling 3D turbulent flows

and incorporating the physical laws (e.g., conservation of

mass and momentum).
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