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Climate‐change impacts on tropical marine ecosystems  
   are extensive and increasing in severity as global green-

house‐gas (GHG) emissions continue to rise (Hughes et al. 
2018). The decline of coral reef systems worldwide is of 
extreme concern due to the considerable economic and eco-
logical value associated with the planet’s most biodiverse 
marine ecosystem (Hughes et al. 2017a). Coral reef climate 
vulnerability refers to the predisposition of coral species, 
populations, and/or communities to be negatively affected by 

climate change, and encompasses three aspects: climate expo-
sure, ecological sensitivity, and adaptive capacity (Dawson 
et al. 2011). Current management solutions generally focus 
on removing local threats from reefs that are least vulnerable 
to climate change (Beyer et al. 2018), and therefore global 
policy and regional or local reef management depend on 
robust estimates of spatiotemporal climate‐change impacts 
on marine habitats. However, the diverse range of factors 
affecting ecological responses to multiple climatic changes 
complicates coral reef vulnerability assessment (Safaie et al. 
2018), leading to uncertain or incorrect estimates that poten-
tially compromise climate‐change‐resilient management 
strategies.

Climate‐relevant conservation for coral reefs requires 
global climate‐change mitigation along with the establish-
ment of marine protected areas that control local‐scale 
threats and consequently reduce the combined impact of 
global‐scale stressors (Tittensor et al. 2019). The dismal out-
look for the future of coral reefs has forced conservation 
efforts into two general approaches: protect the least exposed 
areas (Beyer et al. 2018) or protect a range of areas subjected 
to varying exposure regimes (Webster et al. 2017). Identifying 
a range of areas minimizes uncertainty associated with eco-
logical responses to historical warming and bleaching events 
(Mumby et al. 2011), and incorporates multiple habitat types 
subjected to varying levels of exploitation (Webster et al. 
2017). However, climate conditions are projected to render 
large areas uninhabitable to corals, and – in light of limited 
conservation resources – protecting low climate exposure 
areas will be considered most efficient because they are more 
likely to survive (Beyer et al. 2018; Mcleod et al. 2019). This 
selective identification of the least‐exposed sites can be suc-
cessful only if exposure estimates prove to be correct (Webster 
et al. 2017) and if exposure is a valid predictor of reef 
vulnerability.
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In a nutshell:
• Coral reef management under climate change is hindered 

by the inability to evaluate differences in reef 
vulnerability

• Using changes in global mean temperature (eg 1.5°C or 
2.0°C) instead of emissions pathways can reduce uncer-
tainty in future warming scenarios

• Stressors other than thermal stress should be included in 
vulnerability assessments; high‐resolution climate projec-
tions are available for other coral reef‐relevant climate 
variables

• Interactions among stressors can be applied to projected 
climate stressors by utilizing statistical techniques that 
account for uncertainty in future scenarios

• Past ecological responses to multiple climate disturbances 
must be used to project responses to future climate con-
ditions to estimate ecological climate vulnerability
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Challenges in coral reef climate vulnerability 
assessments

Coral reefs are impacted by a range of global‐scale envi-
ronmental changes, of which past and future ocean warming 
are most commonly used to evaluate the risk of reefs expe-
riencing large‐scale coral bleaching and mortality, typically 
using cumulative thermal stress metrics like degree heating 
weeks (DHWs) or degree heating months (DHMs). DHWs 
and DHMs refer to the accumulated weekly or monthly 
sea‐surface temperature (SST) anomalies, also known as 
hotspots, that exceed the long‐term maximum monthly mean 
by 1°C or more (Donner et al. 2005; Liu et al. 2006). 
Bleaching occurs when reef‐building corals expel their sym-
biotic algae under thermal stress (Hughes et al. 2017b), but 
the commonly used DHW and DHM parameterizations used 
to represent such ecological responses to thermal stress are 
now known to have limited predictive value (Ainsworth 
et al. 2016; Kim et al. 2019; McClanahan et al. 2019). 
Subsequent prevailing warming or cooling of the water 
determines whether corals die or regain their symbionts. 
Measures of thermal stress alone are not an indicator of 
coral bleaching because other environmental factors (eg daily 
temperature patterns, light intensity, water mixing, nutrient 
input; Yee and Barron 2010; Ainsworth et al. 2016; Donovan 
et al. 2020) influence bleaching severity and consequently 
predictions of bleaching events. Moreover, coral species 
exhibit differential responses to thermal stress, leading to 
varying degrees of bleaching among community types (Kim 
et al. 2019). Predicting and managing reef responses to cli-
mate‐change‐related thermal stress therefore hinges on our 
ability to accurately quantify the link between multiple 
exposure metrics and reef‐specific responses to thermal stress, 
particularly with respect to bleaching‐associated mortality.

Climate exposure projections are required in order for 
relevant conservation goals to be established, but there are 
model and scenario uncertainties associated with such pro-
jections (Levy and Ban 2013). There is also a spatial mis-
match between the scale of climate model projections 
(typically hundreds of kilometers) and that of local manage-
ment (1–2 km for the smallest marine protected areas) 
(Kwiatkowski et al. 2014). Downscaling techniques increase 
the resolution of thermal stress projections indicating the 
spatial distribution of low exposure areas for targeted inter-
vention. However, ocean warming represents just one of a 
range of climate variables that influence ecological responses 
to climate change; other factors, such as storms, irradiance 
and UV exposure, salinity, and sea‐level rise, also impact 
coral reefs (Ban et al. 2014). Storm exposure is recognized as 
a criterion in reef conservation for climate‐change prioriti-
zations, but is based solely on historical data (Beyer et al. 
2018). Projected storm exposure is required to prioritize 
areas for climate‐change management that conserve multi-
ple communities as insurance against future damage 
(Webster et al. 2017; Beyer et al. 2018).

Interactions between and among various stressors further 
complicate assessments of projected climate exposure because 
the negative ecological effect may be the sum (additive), less 
than the sum (antagonistic), or greater than the sum (synergis-
tic) of the combined impacts (Ban et al. 2014), but how these 
relationships will play out in the future is largely unknown 
(Camp et al. 2018). Metrics of interacting climate variables 
alone are likely insufficient for quantifying reef vulnerability, 
as varying tolerance to disturbance alters ecological responses 
to stress (Dawson et al. 2011). Failure to consider differences 
in disturbance‐related tolerance in estimates of ecological sen-
sitivity risks focusing scarce conservation resources in areas 
with low exposure but high sensitivity failing to meet manage-
ment objectives. Although we focus here on management of 
reefs with climate vulnerability in mind, effective conservation 
clearly also requires consideration of other management objec-
tives, such as addressing local stressors (eg overexploitation, 
pollution), and of socioeconomic factors (Mcleod et al. 2019).

Current reef climate vulnerability assessments typically 
use past climate exposure or projected thermal stress metrics 
alone (Figure 1; see also WebTable 1). Maximizing the suc-
cess of conservation approaches requires identification of 
reef vulnerability with improved estimates of multiple 
sources of climate exposure at the relevant scale and set in an 
ecological context (Figure 1). For this approach, we propose 
the following four steps: (1) reduce uncertainty in climate 
model projections by assessing different levels of warming 
(eg 1.5°C or 2.0°C) instead of emissions scenarios; (2) make 
use of existing downscaled climate projections for a range of 
climate variables to predict future climate exposure; (3) esti-
mate combined climate exposure accounting for different 
types of interactions between multiple stressors; and (4) cal-
culate reef vulnerability using both projected, local‐scale, 
and multi‐stressor climate exposure, and ecological 
responses to these stressors.

Minimizing uncertainty in climate model projections

General circulation models (GCMs) that predict future 
atmospheric and ocean states inform exposure assessments 
(Frieler et al. 2013), but there is uncertainty associated with 
climate model projections (Levy and Ban 2013). Model 
uncertainty can be reduced using a multi‐model ensemble 
mean. The approach assumes that biases among a range of 
models will be reduced or canceled out, and has been val-
idated by the improved performance of the ensemble com-
pared to any single model when simulating present‐day 
climate (Knutti et al. 2010). However, the multi‐model mean 
dampens extreme values that can have major ecological 
impacts on coral reefs (eg extreme thermal stress leading 
to coral bleaching) and on biological systems generally (Harris 
et al. 2018). Uncertainty in future emissions trajectories is 
an additional source of error exacerbated in studies selecting 
single emissions scenarios that are already known to be an 
inaccurate representation of future trajectories.
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International climate policy has driven 
studies examining biological responses to 
global warming of 1.5°C or 2.0°C (Hoegh‐
Guldberg et al. 2018), although only a few 
examples of this exist for coral reefs (Frieler 
et al. 2013; Schleussner et al. 2016). We recom-
mend that coral reef climate vulnerability stud-
ies transition from the widespread use of 
emissions scenarios and relatively small model 
ensembles to the warming‐based approach for 
climate model projections. Assessing different 
global‐warming scenarios removes a large pro-
portion of the uncertainty in future emissions 
and varying climate model sensitivities. The 
warming‐based approach uses a large ensem-
ble from all models and emissions scenarios to 
compare regional extreme events associated 
with a specified change in global temperature 
(Mitchell et al. 2017). Focusing on the level of 
global warming allows for assessment of the 
risk of climate change becoming dangerous to 
unique and threatened ecosystems like coral 
reefs (Hoegh‐Guldberg et al. 2018), with 
results that are compatible with international 
climate policy established by the Paris 
Agreement (Mitchell et al. 2017).

Global warming is determined by the 
change from a natural baseline that can be 
defined by a century‐scale (King et al. 2017) or 
pre‐industrial (Frieler et al. 2013; Schleussner 
et al. 2016; Mitchell et al. 2017) average tem-
perature. The global warming scenarios (eg 
2.0°C) are determined using all model years from all GCMs 
and model experiments where 10‐ or 20‐year average tempera-
tures are 2.0°C above the natural baseline (Schleussner et al. 
2016; King et al. 2017). Available model output for each model 
year, such as SST, can be used to calculate extreme climatic 
conditions impacting coral reefs (Frieler et al. 2013; Schleussner 
et al. 2016). The large ensemble of thermal stress values ena-
bles robust statistical comparisons of different magnitudes of 
global temperature change (Schleussner et al. 2016), indicating 
the reduction in climate vulnerability that can be achieved 
through international climate policy. This approach reduces 
uncertainty in the projected climate exposure estimates that 
feed into climate vulnerability assessments.

Projecting climate variables to local scales

Global‐scale climate models are effective in simulating historical 
warming at larger spatial scales, but their coarse‐scale reso-
lution fails to match the local management scales at which 
local processes create fine‐scale variability (Kwiatkowski et al. 
2014). Increasing the resolution of climate predictions by 
downscaling GCM outputs (Figure 2) improves the relevance 
of model projections for ecological processes and forms a 

better basis for identifying low exposure sites for local‐scale 
conservation measures (Van Hooidonk et al. 2015). 
Downscaling has been applied to assess thermal stress exposure 
of coral reefs (eg Donner et al. 2005; Van Hooidonk et al. 
2015; Wolff et al. 2018). Downscaled coral bleaching projec-
tions are publicly available at 4‐km resolution from the US 
National Oceanic and Atmospheric Administration’s Coral 
Reef Watch (Van Hooidonk et al. 2015), and long‐term 
remote‐sensing SST data at 1‐km resolution enable the down-
scaling of temperature projections to even finer scales (Chin 
et al. 2017). However, downscaling has yet to be applied to 
other coral reef climate stressors (WebTable 1).

Although neglected in coral reef research, downscaling 
GCM projections of other environmental factors could 
improve conservation decision making (eg when applied to 
tropical cyclone projections). Tropical cyclones require consid-
eration in climate exposure estimates given that the proportion 
of high‐intensity storms is projected to increase with climate 
change (Knutson et al. 2015) and thermal stress and local‐scale 
impacts impede coral recovery following storm damage 
(Puotinen et al. 2016). Tropical cyclones are not well simulated 
by global‐scale climate models because they occur at relatively 
small spatial and temporal scales. Downscaling storms requires 

Figure 1. Schematic showing the current methods and our updated framework to assess cli-
mate vulnerability of coral reefs for conservation and climate policy. Many current approaches 
use historical metrics and/or climate model predictions (outlined in gray) to assess reef vulner-
ability, whereas fewer rely on downscaled thermal stress. Our framework is shown by the 
improvements outlined in red and is further detailed in the main text.
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the accurate simulation of changes in storm‐associated marine 
climate variables (eg SST) and the atmospheric processes that 
link these changes to storm activity (Knutson et al. 2015). 
Storms create feedbacks (eg the cooling wake associated with 
tropical cyclones) that further complicate the downscaling of 
storm projections (Carrigan and Puotinen 2014). Dynamical 
and statistical downscaling techniques simulate a range of 
tropical cyclone characteristics (Emanuel et al. 2008; Villarini 
and Vecchi 2013; Knutson et al. 2015) that determine coral reef 
damage, including intensity, size, duration, translation speed, 
and temporal variability (Puotinen et al. 2016; Wolff et al. 
2016), as well as tropical cyclone‐associated cold wakes at <10‐
km resolution, indicating the storm exposure distributions 
projected for coral reefs worldwide.

Downscaling is necessary for other abiotic factors impact-
ing coral reefs, such as ocean acidification and light availabil-
ity. These factors are also affected by local features (eg presence 

of carbon dioxide vents and seagrass meadows 
[for ocean acidification]; water turbidity and 
cloud cover [for light]; Camp et al. 2018). 
Dynamical downscaling is useful when the 
long‐term records required for statistical tech-
niques are lacking (Camp et al. 2018), and has 
been applied to other climate variables, such as 
salinity (Townhill et al. 2017), sea‐level rise 
(Liu et al. 2016), waves (Wandres et al. 2017), 
and ocean acidification (Skogen et al. 2014; 
Wallhead et al. 2017). Although remote‐sens-
ing observational data are available for such 
variables as photosynthetically active radiation 
– a proxy for incoming solar radiation (Donner 
and Carilli 2019) – the dataset currently does 
not extend far enough back in time for estab-
lishment of a statistical relationship between 
the fine and large scales, and light intensity is 
heavily influenced by feedback processes (eg 
clouds) that are not captured by statistical 
downscaling (Van Hooidonk et al. 2015). 
However, dynamical studies are limited by 
their geographic extent, as they focus on small 
geographic areas through computationally 
intensive regional climate models. The next 
generation of GCMs involved in the High 
Resolution Model Intercomparison Project 
(HighResMIP) for the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) pro-
vide future opportunities to incorporate higher 
resolution model output (eg 25‐km resolution; 
Haarsma et al. 2016) for neglected climate var-
iables in climate exposure estimates.

We recommend that currently available down-
scaled coral reef‐relevant climate variables like 
tropical cyclone projections be incorporated into 
climate vulnerability assessments. Where regional 
climate models exist for coral reef regions, addi-

tional variables, such as ocean acidification and salinity, may 
inform regional‐scale climate vulnerability assessments.

Combining projections of interacting climate stressors

Ideally, a comprehensive view of future climate exposure 
requires consideration of the combined impacts of interacting 
stressors (Hughes et al. 2017a). Coral reef impacts resulting 
from multiple stressors have been assessed extensively for 
the past (eg Maina et al. 2011; Zinke et al. 2018; Donner 
and Carilli 2019), and although projections of future inter-
actions have been initiated (Maina et al. 2016; Wolff et al. 
2018), past climate exposure for stressors for which there is 
greater uncertainty in projections, such as storms, is still 
being used (WebTable 1). Ocean warming and storms have 
many ecological impacts, interacting with a variety of local 
and climatic disturbances in a complex web of stressors that 

Figure 2. Summary of the main downscaling techniques. Statistical downscaling uses the 
relationship between the large-scale atmospheric circulation and local-scale observations 
(Fowler et al. 2007). The dynamical technique uses regional climate models with large-scale 
boundary conditions, such as relative temperature and humidity (Knutson et al. 2010). 
Technique selection is study specific, as each of the techniques has its pros and cons. 
Examples of the processes were adapted from Donner et al. (2005), Fowler et al. (2007), and 
Van Hooidonk et al. (2015). Resolutions previously used in coral reef literature are given for 
observed, general circulation model (GCM), and downscaled data (Van Hooidonk et al. 2015).
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affect ecological change (Ban et al. 2014). Bleaching responses 
of corals are better predicted by the combined effects of 
both heat and light stress (Yee and Barron 2010), which 
tropical cyclones mitigate somewhat via increased cloud cover 
and sediment loading reducing irradiance (Ban et al. 2014). 
Storms also alleviate thermal stress by causing upwelling of 
cool subsurface waters, which influence coral bleaching 
dynamics (Carrigan and Puotinen 2014). Incidences of tropical 
cyclones preventing bleaching and enhancing coral recovery 
during thermal stress events were recorded in the Caribbean 
in 2005 and 2010 (Carrigan and Puotinen 2014), and eastern 
and western Australia in 2016 (Hughes et al. 2017b).

Projecting the climate exposure resulting from the two 
stressors must account for the uncertainty in climate projec-
tions and the strength of interactions. We introduce a novel 
and flexible approach that can be easily adapted for use in 
conservation decision making. For each reef pixel, the size of 
which is determined by the resolution of the climate data, the 
total climate exposure is dependent on the combined impacts 
of storm damage and thermal stress mitigated by the tropical 
cyclone cold wake (Figure 3). Uncertainty can be incorporated 
into estimates of climate exposure by combining probabilities 
of different exposures from large ensembles of climate models 
(eg using Monte Carlo simulations). We present an example of 
a climate exposure model incorporating both additive and 
antagonistic interactions between projected stressors (Figure 
3). If the units of each climate exposure estimate are the same, 
the exposure types can be combined to inform overall risk. 
This example considers only physical damage by storms and 
thermal stress respite resulting from the cold wake, and 
advances the approach by Wolff et al. (2018) by allowing for 
cold wakes that are not necessarily sufficient to negate all the 
thermal stress for a given year (Carrigan and Puotinen 2014). 
Although other storm‐related impacts (eg sedimentation, 
freshwater influx, nutrient injection; Ban et al. 2014) are 
excluded here, this serves as an example of how multiple 
future climate disturbances could be combined.

Combining interacting stressors for future climate projec-
tions is necessary to determine future climate exposure on coral 
reefs, as trends in climate variables are projected to vary in the 
future; for example, whereas thermal stress is projected to 
increase (Hoegh‐Guldberg et al. 2018), the overall frequency of 
global tropical cyclones is projected to decrease (Knutson et al. 
2020), impacting future cold wake benefits. Changes to stressor 
interactions under climate change may result in further cli-
mate‐related impacts on coral reefs through potential feed-
backs. For instance, the beneficial effect of ocean acidification 
on hard coral competitors like macroalgae may increase coral 
reef susceptibility to other stressors, such as disease, facilitating 
further macroalgal dominance (Ateweberhan et al. 2013). The 
type of analysis recommended here can be applied to different 
future scenarios to best address management objectives related 
to climate‐change vulnerability, and should include iterative 
sensitivity analyses to account for uncertainty in the strengths 
and types of future interactions (Figure 3).

Linking climate‐change exposure to ecological 
responses and adaptive capacity

Estimates of climate exposure deriving from thermal stress 
projections provide an indication of the spatial variation in 
ocean warming, but without incorporating ecological sen-
sitivity to environmental change, they are insufficient in 
determining coral reef vulnerability (Dawson et al. 2011). 
Cumulative heat stress of 4°C and 8°C weeks are commonly 
used to predict moderate and severe bleaching (Donner 
et al. 2005), yet these measures are now known to be incon-
sistent predictors of bleaching (Ainsworth et al. 2016; 
McClanahan et al. 2019) and do not account for variation 
in responses between coral species, genera, and community 
types (Figure 4; Kim et al. 2019).

Specific reef recovery responses to past thermal exposure 
should ideally inform any prediction of future ecological 
responses to projected climate exposure (Donner and Carilli 
2019). However, to date, studies by Ortiz et al. (2014), Van 
Woesik et al. (2018), and Wolff et al. (2018) are unique 
examples of ecological responses to accumulated thermal 
stress (eg DHWs/DHMs) or monthly SST. These measures 
account for shorter term thermal extreme events causing 
coral bleaching and mortality, but cannot represent the 

Figure 3. Probability model combining the additive and antagonistic inter-
actions between thermal stress and storms; x, y, and z refer to the correla-
tion between stressors, indicating the probability of one stressor occurring 
alongside another (eg a cold wake following every storm would have a cor-
relation of 1).
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effects of protective pre‐bleaching exposure (Ainsworth 
et al. 2016), diurnal SST variability (Safaie et al. 2018), peak 
SST, thermal history, and duration of cool periods 
(McClanahan et al. 2019). Similarly, the wind‐derived met-
rics of tropical cyclone intensity/category serve as typical 
surrogates to estimate coral reef damage, omitting size, dura-
tion, and translation speed measures to adequately quantify 
tropical cyclone‐induced wave damage (Puotinen et al. 
2020). Approaches that project ecological responses to 
future change showcase the best pathways for including eco-
logical sensitivity in vulnerability assessments. These 
approaches should integrate a greater range of climate varia-
bles that dictate ecological responses and will often require 
regional specificity to effectively predict future ecological 
change.

Historical ecological responses to climate change are often 
determined by coral bleaching or growth responses (WebTable 
1). Bleaching and growth provide indicators of climate sensitivity 
but do not account for the range of ecological responses that 
result from changes in environmental conditions (eg physical 
damage resulting from storms). Storms and bleaching events can 
result in coral mortality caused by sustained loss of symbionts 
and physical damage (Puotinen et al. 2016; Hughes et al. 2018), 
leading to a reduction in live hard coral cover. More gradual cli-
matic changes (eg ocean warming) can influence coral growth 
and recovery, and impact competitive interactions between 
structurally complex hard coral and competing macroalgae 
(Anthony et al. 2015), which also influences hard coral cover. 

Measures of hard coral cover can capture ecosystem changes 
resulting from various stressors and the use of a single response 
variable allows comparison between different geographic loca-
tions. However, neither total nor single genera hard coral cover 
captures the difference in disturbance tolerance between organ-
isms or changes in community composition following distur-
bance (Kim et al. 2019). Hard coral cover for the range of species/
genera present at a location is necessary to indicate ecological 
change due to climate exposure. Currently, these responses to 
multiple climatic disturbances are difficult to quantify because of 
the lack of long‐term data and presence of multiple factors that 
affect coral reef sensitivity. Even though such detailed data col-
lection is costly and time consuming, long‐term datasets are 
increasingly needed to better understand the response of corals 
to climate stressors (Van Woesik et al. 2018; Darling et al. 2019; 
Donner and Carilli 2019).

When projecting ecological responses to climate stress, a reef ’s 
adaptive capacity must also be considered. Coral reefs can accli-
mate or adapt to climatic changes over time (Hughes et al. 2017a), 
but the extent to which (and how) coral reefs can adapt is not well 
known (Mumby et al. 2011). Thermal adaptation has been linked 
to various SST characteristics, such as heating rate (Middlebrook 
et al. 2010), diurnal variability (Safaie et al. 2018), and high histori-
cal chronic and acute thermal stress (Mumby et al. 2011). However, 
these studies do not account for variability in adaptive capacity 
between species subjected to the same thermal disturbance (Safaie 
et al. 2018) or external factors affecting a site’s adaptive capacity (eg 
supply of coral recruits adapted to warmer environments; Matz 
et al. 2020). Because adaptation is not guaranteed in locations that 
have been affected by past bleaching events (Hughes et al. 2017b), 
thermal regimes alone cannot provide a proxy for adaptive capacity 
in the identification of low vulnerability areas.

Long‐term hard coral cover datasets that track past ecological 
responses of coral genera to multiple disturbances can facilitate 
identification of increasing resistance (or the lack thereof) for 
coral genera over time. Sites subjected to frequent disturbance – 
for instance, the high thermal stress exposure of the Gilbert 
Islands in Kiribati (Donner and Carilli 2019) or coral communi-
ties that currently exist under marginal environmental condi-
tions resulting from multiple stressor types, such as macrotidal 
or upwelling reef environments (Camp et al. 2018) – are ideal 
candidates for monitoring changes in response to frequent expo-
sure. Utilizing paleoecological data and further extending exist-
ing genus‐level records for hard coral cover to track responses to 
consecutive disturbances over multiple locations, habitat types, 
and disturbance regimes will be vital for informing potential 
adaptive predictions of future ecological vulnerability.

Conclusions

The loss in coral reef value with continued ecosystem decline 
will impact millions of people who rely on the services coral 
reefs provide for their livelihoods (Hughes et al. 2017a). Our 
framework identifies low vulnerability areas for conservation 
using an ecologically sensitive, multi‐stressor climate vulnerability 

Figure 4. Responses of coral reef communities to climate stressors are 
specific to community type: for example, (a) a lagoon habitat in the 
Marshall Islands dominated by a fine-branching coral species versus (b) a 
diverse reef habitat on hard substrate (also in the Marshall Islands). The 
habitat in (a) is sensitive to thermal stress and may experience more 
extensive and long-term damage following disturbance such as that 
depicted in (c), showing a damaged reef in Indonesia. The diverse reef in 
(b) may exhibit more varied responses to thermal stress, with some coral 
species experiencing bleaching and others relatively unaffected (as in the 
Indonesian reef in [d]).
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measure. We recommend that this framework be implemented 
in climate vulnerability assessments to improve the use of cli-
mate model projections in conservation science. Ecologically 
informed climate vulnerability estimates can direct local‐scale 
management efforts in identifying protected areas with the 
highest chance of reef survival, and assist international climate 
policy by quantifying future changes in coral reef ecosystems 
resulting from multiple interacting climate stressors. In future 
work, ecologically informed reef vulnerability can be used to 
predict how reefs might be transformed in terms of total and 
genera‐level cover, and the contribution of adaptive capacity 
in maintaining coral cover. However, the role of vulnerability 
in guiding conservation requires a clear understanding of the 
management actions to be implemented alongside dedicated 
efforts to curtail global GHG emissions (Hughes et al. 2017a).
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