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Highlights 1 

  Different molecular metrics should be used to meet specific conservation objectives  2 

 Single-species molecular data are inefficient at capturing multi-species evolutionary 3 

potential 4 

 Genetic data may be a potential surrogate of genomic data within conservation 5 

planning  6 

 7 

Abstract  8 

Emerging global change stressors have underlined the importance of informing 9 

conservation decisions with molecular diversity, particularly including intraspecific adaptive 10 

or evolutionary potential across species and populations. Population-level evolutionary 11 

potential is best captured by genomic approaches, yet these data types mostly remain 12 

limited to model organisms. In contrast, traditional genetic data are broadly available. The 13 

relevance of genomic metrics, and how they differ from genetic metrics in the context of 14 

spatial conservation practices, remains unknown. This provides an opportunity to consider 15 

the relative contribution and impact of genomic compared to genetic metrics in their 16 

efficiency of selecting conservation areas of evolutionary importance. Here, we provide a 17 

guideline to include metrics of genetic and genomic variation into spatial planning analyses 18 

for multiple conservation objectives, and empirically explore how spatial prioritizations 19 

change when including different types of molecular information across multiple species. 20 

Specifically, we compare conservation solutions of scenarios including either an increase in 21 

molecular information (i.e. either a single locus; mtDNA, or several thousand loci; SNPs), or 22 

an increase in species included. We find that including less molecular information from 23 

many species leads to similar outcomes to including more molecular information from 24 
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fewer species. Our work suggests that multi-species genetic data may be a cost- and time-25 

effective surrogate for genomic data in spatial planning. 26 

 27 

Keywords: evolutionary potential, spatial conservation planning, conservation genomics, 28 

genetic diversity, Marxan, surrogacy  29 

 30 

Introduction 31 

In a rapidly changing environment that is reshaping patterns of biodiversity across land- and 32 

seascapes, it is more important than ever to focus conservation efforts on protecting 33 

multiple facets of biodiversity, i.e. species, communities, and their evolutionary histories 34 

(Carvalho et al., 2010). Landscape-specific evolutionary processes can help identify 35 

conservation priority areas that achieve multiple objectives such as representing spatio-36 

temporal patterns of genetic variation, population dynamics, and divergence (Funk et al., 37 

2019, 2012). While patterns of evolutionary variation have been highlighted as an essential 38 

biodiversity feature to ensure species’ persistence through environmental change (Flanagan 39 

et al., 2018; von der Heyden, 2017), there remains limited knowledge on the effectiveness 40 

of different molecular metrics at capturing intraspecific evolutionary and adaptive potential 41 

(Mittell et al., 2015).  42 

 43 

Integrating genetic and genomic variation into conservation planning 44 

Over the past four decades, evolutionary processes have been captured by molecular 45 

markers pertaining to a small portion of the genome, in particular mitochondrial DNA 46 

sequences (mtDNA) and microsatellite loci (Moritz, 1994; Schlötterer, 2000). However, with 47 

the advancement of next-generation sequencing (NGS), genome-wide single nucleotide 48 
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polymorphism (SNP) markers are steadily gaining popularity for both model and non-model 49 

organisms (Ouborg et al., 2010). Therefore, theoretical calls for including evolutionary 50 

processes in conservation decisions are shifting from incorporating genetic (e.g. AFLP: 51 

Thomassen et al., 2011; mtDNA: Nielsen et al., 2017; and microsatellite: Beger et al., 2014; 52 

Paz-Vinas et al., 2018) to genomic (e.g. SNP) variation (Allendorf et al., 2010; Shafer et al., 53 

2015).  54 

With the advancement of genomic sequencing and the growing number of available 55 

molecular markers, it is important to understand the advantages, as well as limitations, 56 

unique to each marker type. Molecular markers can be classified as ‘genetic’, defined here 57 

as the sequencing/genotyping of a specific region of the genome, or as ‘genomic’, defined 58 

here as high-throughput sampling of the partial or entire genome (Table 1). Currently, 59 

genetic markers, such as microsatellite loci, organelle-specific genes, and nuclear genes 60 

(nDNA), make up most of the genetic data available to inform conservation decisions 61 

(Lawrence et al., 2019; Schlötterer, 2004; Seeb et al., 2011). Yet, the use of genomic markers 62 

is steadily increasing (Corlett, 2017), making more of such data available for conservation. 63 

Genetic markers usually consist of few loci, with mitochondrial and chloroplast DNA (mtDNA 64 

and cpDNA) sequences only containing DNA inherited via the maternal line. Most genetic 65 

markers predominantly reflect neutral patterns (Table 1; Gebremedhin et al., 2009; Kohn et 66 

al., 2006), but there is evidence that some regions of mtDNA (Bazin et al., 2006), as well as 67 

microsatellite loci (Larsson et al., 2007) can be under selection, either directly or indirectly 68 

via genetic hitchhiking, where markers are physically linked to regions under selection.  69 

Comparatively, genomic markers can include thousands to millions of loci, 70 

representing a much larger portion of the genome (Table 1; Allendorf et al., 2010; Garner et 71 

al., 2016). Genome-wide SNPs are similar to nDNA and microsatellite loci in that they are bi-72 
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parentally inherited, but SNPs better detect low levels of genetic structure at finer-scales 73 

than the former (Puritz et al., 2012), and better represent genome-wide diversity (Fischer et 74 

al., 2017). SNP datasets also provide an opportunity to identify markers putatively under 75 

selection, termed candidate or outlier loci (from here onwards referred to as outlier loci; 76 

Supplement 1), an important consideration given that these loci may provide adaptive 77 

benefits to populations and species (Mahony et al., 2020; Narum et al., 2013). Even though 78 

SNP datasets offer considerably more evolutionary information, biases can be introduced 79 

during library preparation, sequencing, and bioinformatic analyses (Kofler et al., 2016; 80 

Supplement 1). There are also limitations associated with restriction-site associated DNA 81 

sequencing (RAD-Seq) to identify outlier loci (Lowry et al., 2017a), yet this approach is still 82 

relevant and widely used (Lowry et al., 2017b; Supplement 1). Nevertheless, uncertainties 83 

are also inherent in other biological data types that inform conservation decisions (Kujala et 84 

al., 2013), and conservation scientists and managers must account for uncertainty 85 

associated with genomic data. 86 

 Regardless of marker type, molecular data have the power to contribute a number 87 

of metrics to the conservation planning toolbox. Three of the most commonly available, and 88 

useful, metrics for conservation are those that describe patterns of genetic differentiation, 89 

uniqueness, and diversity (Table 2; Beger et al., 2014). These include fixation indices, or FST-90 

based metrics, which report levels of intra-population heterozygosity in relation to other 91 

populations, and, from a conservation perspective, form the basis for the concept of 92 

Evolutionary Significant Units (ESUs; sensu Moritz, 1994; Table 2). For genomic data, these 93 

metrics can be extended to outlier SNP FST-based metrics that can help identify different 94 

selective pressures amongst populations (Table 2; Funk et al., 2012). Metrics of diversity are 95 

also relevant for conservation, as populations with high levels of genetic diversity are 96 
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expected to exhibit longer persistence, as there is more standing variation for selection to 97 

act on (Table 2; Hoffmann et al., 2015; Reed and Frankham, 2003). High genetic diversity 98 

also correlates with increased ecosystem functioning and resilience (Ehlers et al., 2008; 99 

Wernberg et al., 2018). Metrics of uniqueness, which for example can be measured by the 100 

number of private alleles (i.e. alleles that are restricted to single populations), provide 101 

further important criteria for conservation planning (Table 2; Nielsen et al., 2017; Paz-Vinas 102 

et al., 2018; Slatkin, 1995). The percentage of private alleles/haplotypes in a population can 103 

reflect past range expansions/contractions, as well as the amount of contemporary gene 104 

flow with other populations (Maggs et al., 2008). Private alleles can inform two main 105 

conservation objectives: i) to prioritize areas with high levels of private alleles, as they might 106 

act as genetic reservoirs of variation, thus increasing the genetic insurance of the meta-107 

population; or ii) to prioritize areas with low levels of private alleles, as these areas are likely 108 

to be well-connected via gene flow, thus ensuring the persistence and functioning of the 109 

meta-population. Further, genomic datasets can account for signals of local adaptation by 110 

characterizing ‘functional outlier loci’, where the functionality of the locus is known via 111 

genotype-phenotype analyses or expression profiling (Harrisson et al., 2014). However, 112 

identifying ‘true’ outlier loci is challenging, potentially leading to the inclusion of false 113 

positives (Hoban et al., 2016; Lotterhos et al., 2017; Lotterhos and Whitlock, 2015; 114 

Supplement 1), and in many non-model species the functional relevance of outlier loci 115 

remains unknown.  116 

 117 

Investigating the surrogacy of genetic for genomic data within conservation planning 118 

A key concern within conservation science is to determine how much information is 119 

required to meet conservation targets defined a priori, as well as the trade-offs associated 120 
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with including broader versus finer scale biodiversity features (Wilson et al., 2007). 121 

However, this question is rarely extended to molecular information (Goodwin et al., 2016), 122 

despite the potential advantages of these metrics to identify areas of evolutionary 123 

importance and resilience. While genomic approaches are well-suited to describe the 124 

evolutionary potential of natural populations, such as populations distinguished by highly 125 

differentiated loci that signal selection in response to local conditions (Funk et al., 2019), the 126 

number of available genomic datasets for conservation is lagging behind those using 127 

traditional markers (Ouborg et al., 2010; Seeb et al., 2011). In many parts of the world, 128 

especially developing countries where conservation action is needed the most (Wilson et al., 129 

2016), the only available multi-species molecular data will likely be genetic. Thus, it is 130 

important to understand a) how spatial prioritizations change when including genetic or 131 

genomic metrics and b) whether genetic metrics can adequately represent highly 132 

differentiated areas (indicating unique evolutionary potential) identified by genomic 133 

markers. In this study, we utilize genetic and genomic data generated for multiple marine 134 

species to explore the applicability of genetic metrics as surrogates of genomic variation 135 

within an empirical conservation planning framework. 136 

 137 

Methods 138 

While genomic markers are considered the ideal approach to identify loci under selection, 139 

genetic approaches may inadvertently also be able to capture patterns of selection for 140 

conservation purposes (Bridge et al., 2016). To test how well different molecular 141 

approaches capture selective signals in a conservation planning framework, we utilized 142 

available datasets previously generated by Mertens et al. (2018) and Nielsen et al. (2018). 143 

Here we took advantage of these unique datasets, which were sampled from the same six 144 
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sample sites for both genetic and genomic approaches, making them comparable in spatial 145 

planning analyses (Supplement 2). Molecular metrics were derived from previous studies 146 

including mtDNA data for five species (Granular limpet - Scutellastra granularis, Cape urchin 147 

- Parechinus angulosus, Cushion star - Parvulastra exigua, Topshell winkle - Oxystele tigrina, 148 

and Super klipfish - Clinus superciliosus; Mertens et al., 2018), and SNP data for two of these 149 

species (S. granularis and P. angulosus; Supplement 3;  Nielsen et al., 2018). These species 150 

are characterized by different niches, life-history traits, reproductive strategies and larval 151 

duration periods (Mertens et al. 2018), and as such represent the species and functional 152 

diversity of rocky shore ecosystems of the study region. The mtDNA data consists of the 153 

cytochrome oxidase 1 (CO1) gene for the invertebrates and the control region for C. 154 

superciliosus, with total numbers of individuals collected ranging between 128 (C. 155 

superciliosus) and 197 (S. granularis). Parechinus angulosus, C. superciliosus and P. exigua 156 

show varying levels of population divergence, regardless of the mtDNA marker used, 157 

whereas S. granularis and O. tigrina appear panmictic along the study region.  158 

Due to cost restraints, SNP datasets could only be generated for two species, with P. 159 

angulosus and S. granularis chosen as these display the highest and lowest levels of 160 

population divergence using mtDNA data. Equal numbers of individuals were collected per 161 

species (n = 40) for the same sampling points along the South African west coast and a 162 

pooled RAD-seq approach (Supplement 1) was used to calculate metrics of population 163 

diversity and divergence (Kahnt et al., 2018; Nielsen et al., 2018; Phair et al., 2019). The SNP 164 

data, consisting of ~ 8 000 SNPs for P. angulosus and ~55 000 SNPs for S. granularis, showed 165 

levels of population divergence, and high levels of private and outlier SNPs within the 166 

northern populations for both species (Nielsen et al. 2018).  167 

 168 
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Empirical spatial prioritization analyses 169 

We chose to include metrics of both diversity and uniqueness (Table 2) and therefore 170 

included nucleotide diversity (π) and percentage of private alleles, respectively, for both 171 

mtDNA and SNP markers. In addition, the genomic dataset allowed us to include one metric 172 

of putative selection (measured as the percent of outlier SNPs). 173 

 To compare the prioritizations of different molecular metrics, we utilized the 174 

decision-support tool Marxan (Ball et al., 2009), which uses a simulated annealing algorithm 175 

to identify sets of sites that meet given conservation targets at minimum costs. We included 176 

the rocky shore and mixed shore habitat types as our domain, which were divided into 3 x 3 177 

km hexagonal planning units. As conservation planning efforts often have to consider an 178 

array of socio-economic pressures in balance with meeting biological targets, we included 179 

an ‘opportunity cost’ information in all scenarios. The Marxan algorithm uses cost to 180 

prioritize planning units that capture the greatest amount of each biological feature, whilst 181 

keeping the total cost of the prioritized set of sites at a minimum (Margules et al., 1988). We 182 

applied opportunity cost data derived from Majiedt et al. (2013), which is based on 27 183 

marine pressure factors combining extractive practices and marine resource uses, and 184 

ranging from commercial fishing, shipping, diamond and titanium mining, to coastal 185 

development. This dataset was specifically assembled for the South African west coast and 186 

is thus representative of the economic activities of the region.  187 

As a baseline scenario, we included five rocky shore substrate types (boulder, 188 

exposed, very exposed, sheltered and mixed coast; Sink et al., 2012) as conservation 189 

features, to which all molecular metrics were subsequently added (Table 3). Following best 190 

practice for generating ‘genetic surfaces’ (Murphy et al., 2008; Vandergast et al., 2011), we 191 

interpolated the point values over the planning region using the Inverse Distance Weighting 192 
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(IDW) algorithm in ArcGIS v.10.3.1 (Desktop, 2011). We reclassified the IDW raster layers 193 

with the ‘reclassify’ tool in ArcGIS, normalizing the continuous point values of each metric 194 

into three equal-interval bins or classes: low, medium, high. For each species, each metric 195 

was a single feature with three different levels pertaining to the low, medium and high 196 

classes derived from the range of values specific to that metric for that species. We chose to 197 

specifically explore the conservation objective of protecting the evolutionary potential 198 

(Table 2), by selecting a range of conservation targets (i.e. 20-80%) for solely the high-199 

ranking classes of each molecular feature. 200 

We ran five spatial prioritization scenarios to test the effect of increasing molecular 201 

information (Table 3): coastal habitat types (base), mtDNA diversity and uniqueness metrics 202 

for two species (mt2), or five species (mt5), two SNP metrics (diversity and uniqueness) for 203 

two species (snp2), and three SNP metrics (diversity, uniqueness, and selection) for two 204 

species (snp3). We did not run a prioritization based solely on putative outlier SNPs as the 205 

potential function of such SNPs remains unknown (Table 2; Harrisson et al., 2014). For each 206 

scenario, we ran Marxan with default parameters, a boundary length modifier of zero, and 207 

100 repeats to account for variability within the conservation solutions. To compare the 208 

conservation solutions, we conducted hierarchical clustering using Euclidean dissimilarities 209 

from the selection frequencies (i.e. the number of times the unit was selected out of 100 210 

runs) per scenario in RStudio v.1.1.423 (Team, 2015).  211 

To assess how well each conservation scenario captured putative selection patterns 212 

of P. angulosus and S. granularis, we calculated a population-specific Selection Index in a 213 

similar manner as the Population Adaptive Index described by Bonin et al. (2007b). We 214 

created an allele frequency distribution for each outlier SNP, and if in a specific population, 215 

the outlier was in the 95th percentile of the overall allele frequency distribution, then it was 216 
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counted towards the Selection Index of that specific population. The Selection Index was 217 

interpolated across the entire planning region employing the IDW technique. We calculated 218 

the Selection Index captured per scenario by multiplying the Marxan selection frequency by 219 

the Selection Index of each planning unit, which was summed across all planning units per 220 

scenario.  221 

To test the effect of increasing species, we ran another set of scenarios (Table 3): 222 

mtDNA data from one (mt1r), two (mt2r), three (mt3r), and four species (mt4r), ran five 223 

separate times each, including randomly selected species. We compared the total Selection 224 

Index captured by these scenarios as above.  225 

 226 

Results  227 

Spatial prioritization analyses 228 

The scenarios comparing different amounts of molecular information showed a variety of 229 

spatial priorities, with the two most similar being mt5 and snp3, followed by mt2 and snp2, 230 

and the baseline being the most distinct (Fig. 1). Most of the conservation targets displayed 231 

the same patterns between scenarios, with the exception of the 20% target, which showed 232 

mt5 as the most divergent scenario, and mt2 and snp3 being the most similar (Fig. 1).  233 

 234 

Performance of conservation objectives in capturing local selective signals 235 

When comparing the Selection Index between scenarios varying in the amount of molecular 236 

information, the two worst performing scenarios were base and snp2, with both only 237 

capturing a small portion of the P. angulosus Selection Index (Fig. 2). In contrast, the two 238 

best performing scenarios were mt5 and snp3, which consistently had the highest Selection 239 

Index for both species across the conservation targets (Fig. 2).  240 
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The scenarios comparing molecular data from different numbers of species show a 241 

positive relationship between the number of species included and the Selection Index for S. 242 

granularis, but the Selection Index captured plateaus around three species for P. angulosus 243 

for each target coverage (Fig. 3) 244 

  245 

Discussion 246 

This study offers the first experimental comparison of multi-species genetic and genomic 247 

datasets within spatial conservation prioritizations. We present initial evidence of genetic 248 

markers acting as adequate surrogates of genomic data in capturing evolutionary potential 249 

in spatial plans (Fig 1, Fig. 2). We find that including measures from either putatively neutral 250 

or outlier genomic regions will change conservation solutions (Fig. 1), highlighting the 251 

potential of NGS techniques, specifically the identification of outlier loci, to enhance reserve 252 

designs (Ouborg et al., 2010). Our results also show that habitat types, single-species 253 

genetic data, and multi-species neutral genomic data inadequately capture evolutionary 254 

potential (Fig. 2, Fig. 3). Broadly, the findings suggest a trade-off between the number of 255 

species and the amount of molecular information included (Fig. 1, Fig. 2). This has 256 

implications for spatial conservation planning, as genetic data may in many cases be more 257 

economical to generate compared to NGS (Langmead and Nellore, 2018), and is readily 258 

available, especially for a wider array of species (Lawrence et al., 2019; Seeb et al., 2011).  259 

  Our results also illustrate how spatial priorities are highly dependent on the number 260 

of species included regardless of conservation target (Fig. 3), and thus multi-species 261 

approaches are essential for conservation prioritizations with genetic data (Fig. 2, Fig. 3; 262 

Paz-Vinas et al. 2018). This is most likely driven by differences in ecological traits and 263 

evolutionary histories of species, where co-distributed and even closely related species can 264 
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display highly divergent patterns of spatial genetic variation (Borsa et al., 2016; 265 

Papadopoulou and Knowles, 2016). As umbrella- and surrogate-species show inconsistent 266 

efficiency in representing species distributions and assemblages, as well as genetic patterns 267 

(Carvalho et al., 2010; Ponce-Reyes et al., 2014), basing conservation plans on multi-species 268 

datasets should increase the likelihood of protecting complex evolutionary histories within a 269 

region (Nielsen et al. 2017; Paz-Vinas et al. 2018).  270 

 271 

Potential surrogates of genomic selective signals in spatial conservation planning   272 

From a spatial planning perspective focused on capturing evolutionary potential, we find 273 

that including less molecular information (i.e. a single mtDNA locus) for several species can 274 

effectively represent putative adaptive variation identified from vastly more genomic 275 

information (i.e. thousands of SNP loci) from fewer species (Fig. 1, Fig. 2). The results also 276 

show that the overall Selection Index increased with the number of species included (Fig. 3), 277 

suggesting that including genetic variation for multiple species may inadvertently capture 278 

local selective pressures. However, this pattern was mainly seen in S. granularis (Fig. 3), 279 

which highlights how the signals of selective pressures are likely to be species-specific. As 280 

spatial plans may only include genomic signals from one or a few species that are likely 281 

species-specific, it is essential that surrogates of selection are included for additional species 282 

to achieve multi-species complementarity within this biodiversity feature. 283 

Our findings corroborate those of Hermoso et al. (2016), who found that species 284 

distribution patterns of 46 freshwater fish were effective surrogates for the genetic patterns 285 

of four individual fish species. Furthermore, Wright et al. (2015) found that species richness 286 

patterns of over 2 500 species mirrored the patterns of genetic diversity of 11 rocky shore 287 

species, suggesting that species- and molecular-level patterns may be a product of similar 288 
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processes (Vellend, 2005). Conversely, Paz-Vinas et al. (2018) showed that conservation 289 

solutions based on the co-occurrence of high numbers of species did not capture the 290 

intraspecific genetic diversity of a set of six fish species. Species richness patterns have also 291 

been shown to insufficiently represent phylogenetic diversity (Pio et al., 2011), supporting 292 

the need to incorporate fine-scale molecular data to adequately conserve evolutionary 293 

patterns.  294 

In addition to using species-level data as surrogates of genomic variation, abiotic 295 

factors may also be potential proxies of local selection in spatial conservation plans. For 296 

example, when species distribution data is incomplete, partitioning reserves along 297 

biophysical gradients will incidentally capture a representative amount of areas pertaining 298 

to intraspecific evolutionary potential  (Bridge et al., 2016; Carvalho et al., 2010). Further, 299 

Hanson et al. (2017) found that environmental features are adequate surrogates of adaptive 300 

variation in AFLPs across ten alpine plant species. Yet the effectiveness of selecting 301 

environmentally diverse areas to incidentally capture genomic adaptive potential is still 302 

largely unexplored, especially within the marine environment.  303 

 304 

A way forward comparing molecular approaches in conservation planning  305 

Capturing multi-species genomic signals with genetic metrics provides exciting opportunities 306 

to utilize available genetic datasets within conservation planning efforts. Our study provides 307 

a baseline for comparing genetic and genomic approaches in capturing evolutionary 308 

potential, however further work is required to truly expand the results obtained here to 309 

other natural systems.  As our study domain is over a relatively small region, it is crucial to 310 

test whether similar results are found over larger scales and across different environmental 311 

systems. While this study would benefit from additional sample sites, we were restricted to 312 
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using genetic and genomic datasets from the same locations, as different sample sites 313 

would influence conservation outputs and bias comparisons between data types. Our work 314 

also included genetic data from mtDNA loci, leaving the ability of other genetic metrics to 315 

capture genomic signatures unexplored. For example, microsatellite-derived metrics will 316 

likely be more effective surrogates of genomic datasets as they are bi-parentally inherited 317 

and show higher intraspecific variability, although this also remains to be formally tested.  318 

Furthermore, our SNPs were obtained from a pooled, reduced representation 319 

sequencing approach, which is increasingly being used to generate allelic frequencies for 320 

populations (Kurland et al., 2019). This methodology has several merits,  namely a cost-321 

effective increase in the number of individuals that can be sequenced per population, which 322 

can increase the accuracy of allele frequencies, but also a few limitations, such as low 323 

frequency alleles and portions of the genome outside of restriction cut sites may be 324 

undetected (see Supplement 1 for further details). However, it was recently found that 325 

abundant/fine-scale sampling has greater influence on genomic patterns than more in-326 

depth genomic sequencing (D’Aloia et al., 2020), and thus we chose to include more sample 327 

sites and individuals per sample site, rather than more detailed genomic information per 328 

individual. To further strengthen our findings, additional efforts comparing trade-offs 329 

between traditional genetic markers and whole-genome sequencing data in conservation 330 

planning scenarios is recommended. 331 

 Our analyses were focused on comparing genetic and genomic metrics of diversity 332 

rather than differentiation, and as such we did not include scenarios based on genetic 333 

clusters, although it is essential that these approaches are compared in their efficiency in 334 

capturing putatively neutral and adaptive population clusters. Several studies have found 335 

similar differentiation patterns between the two molecular marker types (e.g. Benestan et 336 
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al., 2015; Dowle et al., 2015; Fernández et al., 2016; Ford et al., 2015), while, alternatively, 337 

several others have identified fine-scale structuring with genomic data where genetic data 338 

did not (e.g. Blanco‐Bercial and Bucklin, 2016; Castellani et al., 2012; Dierickx et al., 2015; 339 

Maroso et al., 2016). Therefore, a comprehensive analysis should be conducted to 340 

understand if genomic-derived clusters significantly alter conservation scenarios, in order to 341 

better assess the trade-offs between the two marker types.  342 

Assessing different marker types, population differentiation metrics, and broader 343 

study regions will further resolve the trade-offs between molecular information and species 344 

included into conservation plans. In addition, while this study compares molecular metrics 345 

of differentiation, uniqueness, and diversity, we recognize that these are not the only 346 

molecular features of conservation importance. Many others, including estimates of 347 

effective population size (Frankham et al., 2014), demographic change (Garza and 348 

Williamson, 2001), inbreeding (Marshall et al., 1999) and hybridization (Buonaccorsi et al., 349 

2005), as well as migration estimates (von der Heyden et al., 2008) may all be relevant 350 

measures to support conservation objectives in spatial planning.  351 

 Overall, this study highlights how genomic signals of evolutionary potential in two 352 

species can be adequately represented by putatively neutral genetic variation across five 353 

species, even at low conservation targets. We offer preliminary evidence that genetic data 354 

may be a cost- and time-effective surrogate for genomic data when seeking to conserve 355 

putative adaptive variation, but ultimately more work is needed to confirm these results 356 

within larger conservation settings.   357 

 358 

Appendix A. Supplementary data 359 
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A comparison of different genomic sequencing and outlier detection methodologies 360 

(Appendix S1), as well as sample sites (Appendix S2) and sampling information (Appendix 361 

S3) on datasets used within the spatial analyses are available online. The authors are solely 362 

responsible for the content and functionality of these materials. Queries (other than 363 

absence of the material) should be directed to the corresponding author. 364 
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Table 1. Comparisons of genetic and genomic approaches, including markers available, as 671 

well as marker-specific pros and cons. 672 

Data 

type 

Marker 

characteristics 

Markers Pros Cons 

Genetic 

data 

Maternally or 

bi-parentally 

inherited 

 

Dominant or 

co-dominant 

 

One or a few 

loci 

  

Amplified 

Fragment 

Length 

Polymorphisms 

(AFLPs), 

chloroplast DNA 

(cpDNA), 

mitochondrial 

DNA (mtDNA), 

nuclear DNA 

(nDNA), 

microsatellites 

Standardised analyses, 

less researcher-based 

bias, easy to interpret 

  

Lower costs as fewer 

markers sequenced, 

requires greater number 

of individuals sampled in 

each population 

  

Less power to detect 

genetic differentiation 

  

Usually detects 

historical measures of 

diversity (unless 

microsatellites) 

  

Generally not capable 

of detecting adaptive 

variation (unless 

indirectly – e.g. 

genetic hitchhiking in 

microsatellites) 

Genomic 

data 

Bi-parentally 

inherited 

 

Co-dominant 

  

Potentially 

thousands of 

loci 

  

SNPs, outlier 

SNPs 

Potentially provides 

greater resolution of 

population structure, 

demographic processes 

etc., due to the 

availability of thousands 

of markers for both 

neutral and adaptive loci 

  

Data analysis often 

requires training in 

command-line or 

outsourcing of 

bioinformatic 

analyses  

Lack of standardized 

analyses 

Outlier detection 

methods prone to 

false positives 

 

673 
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Table 2. Definitions of genetic and genomic features, their conservation relevance and how they contribute towards spatial planning by 

capturing either spatial-temporal processes or evolutionary potential.  

 

Molecular features Conservation relevance  Potential conservation 

objectives 

Measure: differentiation 

 

- Genetic & Genomic: Local FST  

 

Measures how much the genetic diversity 

of a population differs from the mean of 

all other populations combined 

 

- Genetic & Genomic: Pairwise FST  

 

Measures how much the genetic diversity 

differs between two populations 

 

Low distinctiveness indicates that a site is connected to others by 

high levels of gene flow, meaning it can increase resilience by 

supplementing individuals to the meta-population 

  

 

High distinctiveness indicates low levels of gene flow, meaning it 

might have lower resilience to stochastic change due to it not 

being connected to the meta-population. It could also indicate 

local adaptation or recent bottleneck events. In this case, a site 

can potentially play an important role in increasing the resilience 

of the meta-population by harboring unique alleles that can be 

advantageous in future environmental changes 

 

Avoid low differentiation 

regions (prioritize 

evolutionary potential) 

 

Protect low differentiation 

regions (prioritize 

connectivity) 

 

Give highly differentiated 

regions conservation priority 

(prioritize evolutionary 

potential) 

 

Prioritize connected regions 

as pairs instead of as 

individual sites (prioritize 

connectivity) 

Measure: diversity 

 

- Genetic: Haplotype diversity 

 

 

Low diversity may indicate small effective population sizes, and a 

lower likelihood of adaptation from standing variation. These sites 

are at greater risk to inbreeding depression and stochastic change 

 

 

Protect high diversity regions 

(prioritize evolutionary 

potential) 
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Probability that two randomly selected 

individuals differ in their haplotypes 

  

Unlike nucleotide diversity, which is site 

specific, haplotype diversity is calculated 

from all populations, and therefore 

incorporates gene flow 

 

- Genetic & Genomic: Nucleotide diversity  

 

Average number of nucleotide 

differences per genomic site, between 

randomly chosen SNPs from within a 

population 

High diversity is beneficial for long-term persistence and 

adaptation as there is more ‘raw material’ for selection to act on. 

These regions are assumed to be more resilient to environmental 

change 

 

 

Measure: uniqueness 

 

- Genetic: Private haplotypes/alleles 

 

Haplotypes/alleles unique to a single 

geographic area 

 

- Genomic: Private SNPs 

 

Neutral loci that are unique to particular 

areas. They are different to outlier loci 

(see below), as they are not under 

selection 

 

 

Low levels of private alleles indicate that the region is connected 

to others by high levels of gene flow, meaning it can increase 

resilience by supplementing individuals to the meta-population 

  

A high percentage of private alleles could indicate low levels of 

gene flow, meaning lower resilience to stochastic change. High 

levels of private alleles could also denote local adaptation or 

recent bottleneck events. In this case, the region can potentially 

play an important role in increasing the resilience of the meta-

population by harboring unique alleles that can be advantageous 

to future environmental changes 

 

Protect regions with few 

private alleles (prioritize 

connectivity) 

 

 

Protect unique regions with 

many private alleles 

(prioritize evolutionary 

potential) 
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Measure: selection / evolutionary 

potential 

 

- Genomic: Non-functional outlier loci 

richness 

 

Loci that are statistically significantly 

different from other regions of the 

genome. The function roles of the loci are 

often unknown 

 

A high percentage of outliers indicates that selection is occurring 

on individuals in that area. It may be assumed that the selection 

leads to increased fitness and that this selection will continue to 

benefit the individual fitness under future environmental 

conditions  

 

Protect populations with high 

levels of outlier loci (prioritize 

evolutionary potential) 

Measure: selection / evolutionary 

potential 

 

- Genomic: Non-functional outlier loci 

structure 

 

Genetic clusters that are inferred from 

differentiation of outlier loci. The clusters 

can be displayed geographically to 

illustrate where genetic breaks occur  

 

Different genetic clusters are likely to be under different selective 

regimes; therefore, each cluster is assumed to have its own 

unique evolutionary trajectory. Each cluster can potentially act as 

genetic insurance for the meta-population 

 

Aim to protect a percentage 

of each cluster in an adaptive 

landscape (prioritize 

evolutionary potential) 

Measure: selection / evolutionary 

potential 

 

- Genomic: Functional outlier loci 

 

Loci that are shown to under selection 

through experiments or through strong 

correlations with environmental 

If environmental feature(s) driving selection and/or functional role 

of the outliers are known, these features would indicate which 

regions are of conservation importance  

 

This scenario could also be of importance for human-mediated 

adaptive assistance. It is also important to note that this scenario 

is still quite rare and mainly confined to model organisms 

 

Protect areas in which 

environmental features are 

driving known adaptation 

 

Protect areas where known 

adaptive genes occur 
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variables. The genes corresponding to the 

loci, as well as their functional roles, are 

often identified 

 Assist un-adapted sites with 

breeding programs 
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Table 3. The various prioritizations run in Marxan, with their included biodiversity features 

and species (CS = Clinus superciliosus, PA = Parechinus angulosus, PE = Parvulastra exigua, 

OT = Oxystele tigrina, SG = Scutellastra granularis) 

 

Scenario I.D. Biodiversity features compared Species included 

Scenarios increasing in molecular data 

base Five different habitat types; no genetic/genomic 

system features 

NA 

mt2 Diversity and uniqueness metrics from mtDNA 

markers for the two species with genomic data 

PA, SG 

mt5 Diversity and uniqueness metrics from mtDNA 

markers for five species  

All 

snp2 Diversity and uniqueness metrics from putatively 

neutral SNPs for the two species with genomic data 

PA, SG 

snp3 Diversity, uniqueness, and selection metrics for 

putatively neutral and highly differentiated SNPs for 

the two species with genomic data 

PA, SG 

Scenarios increasing in species 

mt1r Neutral metrics (diversity and uniqueness) from 

mtDNA markers for one randomly chosen species 

All 

mt2r Neutral metrics (diversity and uniqueness) from 

mtDNA markers for two randomly chosen species 

PE, CS 

PA, SG 

OT, PE 

OT, SG 

PE, SG 

mt3r Neutral metrics (diversity and uniqueness) from 

mtDNA markers for three randomly chosen species 

PE, OT, SG 

CS, OT, PA 

CS, PA, PE 

CS, SG, PA 

PE, SG, PA 

mt4r Neutral metrics (diversity and uniqueness) from 

mtDNA markers for four randomly chosen species 

PE, SG, CS, PA 

SG, OT, CS, PA 

CS, PE, SG, OT 

SG, OT, PE, PA 

PE, PA, OT, CS 
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Figure 1. Hierarchical clustering dendrograms illustrating the similarities between scenarios 

for conservation targets ranging from 20-80% of each biodiversity feature. 

 

 
 

Figure 2. The Selection Index (SI) captured per species for genetic and genomic scenarios 

(see Table 3 for scenario explanations), shown for targets ranging from 20-80% (0.2-0.8) of 

each biodiversity feature. 
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Figure 3. The Selection Index (SI) captured per species for genetic scenarios with varying 

number of species (see Table 3 for scenario explanations), shown for targets ranging from 

20-80% (0.2-0.8) of each biodiversity feature. 
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Supplementary data 

 

Appendix S1- The definitions, as well as advantages and disadvantages, of the methods used obtain genomic inferences in the present study, compared to 

other possible molecular approaches. This is not an exhaustive list of molecular methodologies for conservation, but is rather restricted to those relating to 

next generation sequencing (NGS) methods for DNA-based sequencing, pertaining to sequencing and identification of outlier loci, and some considerations 

with regards to their use for conservation. The methods used to generate the genomic data within the present study are indicated in bold. It should also be 

noted that even using the NGS techniques with lowest costs/highest uncertainties, the amount of genomic information, and sequencing costs, are still 

substantially greater than traditional genetic techniques (see Table 1 for genetic and genomic comparisons).  

 

1: Allocation of samples for sequencing 

Method Definition Advantages Disadvantages References 
Individual 

sequencing 

Individuals have distinct barcodes 

and are sequenced with other 

barcoded individuals  

Individual haplotypes/genotypes are 

available 

 

Can conduct assignment tests, and 

calculate clonality, relatedness, 

inbreeding coefficients, and linkage 

disequilibrium 

High sequencing costs, likely leading to 

trade-offs between individuals and 

sample sites sequenced, as well as the 

depth of coverage  

Anderson et al. 

(2014) 

 

Dorant et al. (2019) 

 

Ferretti et al. (2013) 
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Pooled sequencing 

(Pool-seq) 

Individuals are pooled into a single 

sample (usually pertaining to a 

sample site/population). Each 

pooled sample receives a barcode 

and is sequenced with other 

barcoded samples 

Low sequencing costs, making it feasible 

to sample many locations and individuals 

per location, as well as making NGS 

available for many groups in developing 

regions, especially when combined with a 

reduced-representation sequencing type 

(i.e. Probe-/RAD-seq detailed below) 

 

Accurate allele frequencies for outlier 

detection methods, as the number of 

sequenced individuals is usually higher 
per population than individual 

sequencing 

Individual genotypes and inferences 

from them are unavailable 

 

Need accurate equimolar pooling 

across individuals to best attain allelic 

variance. Errors from unequal 

representation between individuals in 

a sample can be reduced by large pool 

sizes and removal of PCR duplicates 

 

Contamination and sequencing biases 
can occur on the population rather 

than individual level 

 

Low frequency alleles will be lost in 

bioinformatic stages aimed at filtering 

sequencing artefacts  

Gautier et al. (2013) 

 

Hivert et al. (2018) 

 

Inbar et al. (2020) 

 

Kofler et al. (2016) 

 

Kurland et al. (2019) 

 

Lynch et al. (2014) 
 

Rellstab et al. (2013) 

 

Schlötterer et al. 

(2014) 

 

Tilk et al. (2019) 

2: Sequencing type 

Whole genome 

sequencing (WGS)/ 

Whole genome 

resequencing (WGR) 

Portions of the genome (termed 

‘reads’) are sequenced and either: 
1) assembled to create a genomic 

sequence for the first time (WGS), 

or 2) mapped onto an existing 

reference genome to compare 
genomic variability between 

individuals/populations (WGR) 

Extensive and complete genomic 

information 

 

One single continuous genomic 

sequence, allowing for no gaps in the 

data 
 

Increased power for statistical analyses 

Exceedingly high costs, especially when 

using individual sequencing at high 

coverage across the genome. To 

counteract the high costs, many 

studies use Pool-seq WGS or low-

coverage WGS (lcWGS) 
 

Many research questions, and 

inferences for conservation (such as 

population structure and diversity) do 

not require the entire genomic 

sequence, and thus the high 

sequencing costs can be avoided by 

Andrews et al. 

(2016) 

 

Andrews and Luikart 

(2014) 

 
Carpenter et al. 

(2013) 

 

Catchen et al. (2017) 

 

da Fonseca et al. 

(2016) 
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using reduced-representation 

sequencing instead 

 

Díaz-Arce and 

Rodríguez-Ezpeleta 

(2019) 

 

Fuentes‐Pardo and 

Ruzzante (2017) 

 

Goodwin et al. 

(2016) 

 
Graham et al. (2020) 

 

Lowry et al. (2017a, 

2017b) 

 

Mckinney et al. 

(2017) 

 

Meek and Larson 

(2019) 

 

Narum et al. (2013) 

 

Nielsen et al. (2011) 

 

Reitzel et al. (2013) 

 

Rowe et al. (2011) 

 
Teer and Mullikin 

(2010) 

 

Probe-based/exome 

capture sequencing 

The complexity of the genome is 

reduced by pre-selecting genomic 

regions (such protein coding 

regions, termed ‘exons’), and using 

a DNA probe to target the regions 

of interest for sequencing. These 

regions are mapped onto an 

existing reference genome 

 

Lower costs than WGS/WGR 

 

Provides high depth and uniformity of 

coverage within the designated sequence 

regions 

 

The precise, targeted nature of probe-

based sequencing can be beneficial when 

DNA is degraded 

 

Can be used to assess epigenetic 
modifications (which affect how genes 

are expressed in the genome) 

The development of panels for capture 

leads to increased costs and time spent 

on preparation for sequencing 

 

Designated sequence regions need to 

be known a priori, making it unsuitable 

for many non-model organisms which 

lack any prior genomic information 

(but see Puritz and Lotterhos, 2018) 

 

May not be suitable to for exploratory 
questions regarding genome-wide 

evolutionary processes  

Restriction site-

associated 

sequencing  

(RAD-seq)* 

The complexity of the genome is 

reduced by using restriction 

enzymes to cut out regions 

throughout the genome (both 

coding and non-coding). The areas 

adjacent to the cut sites are then 

sequenced. The sequenced 

fragments can be assembled de 

novo, or mapped onto an existing 

reference genome 

Low costs allow for sequencing of 

multiple individuals/populations, and at 

higher coverage. It may also be the most 

feasible method for smaller research 

groups, especially within developing 

countries, to perform genome-wide 

studies  

 

No genomic information is needed a 

priori, making it suitable for non-model 

organisms, and with de novo genome 

assembly 

 

Flexibility of restriction enzymes make it 

easily scalable, sequencing few loci at 

high coverage or more loci at low 

coverage 

Possibility of mutations at restriction 

sites leading to ineffective cutting of 

fragments (i.e. allele dropout) 

 

Sequence amplification during library 

preparation can lead to unequal 

duplication of one allele over another 

within an individual. These ‘PCR 
duplicates’ can however be identified 
and removed during bioinformatic 

processing 

 

The length of the areas adjacent to the 

cut sites (i.e. the sequenced fragments 

linked to these sites) varies both 

between individuals and species, 

meaning that the portion of the 

genome sequenced can be more or 
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less incomplete depending on the level 

of linkage disequilibrium 

3: Outlier detection 

Genetic–
environment 

associations (GEAs) 

The variance in allele frequencies is 
statistically compared with the 

variance with environmental 

features predicted to act as 

selective pressures. Thus, loci 

which have allele frequencies 

strongly associated with an 

environmental variable are 

identified as outliers    

Can detect signals of selection which do 
not necessarily lead to high 

differentiation between populations  

 

Multivariate GEAs (specifically 

constrained ordinations) may be more 

powerful in detecting weak, multilocus 

selection signatures 

Genomic sample sites need to cover 
the entire environmental gradient 

 

Requires high quality environmental 

data, and results may differ depending 

on the environmental data included 

 

A high rate of false negatives may 

occur if the direction of past 

population expansion mirrors the 

environmental gradient 

 

Results have been shown to differ 

between outlier detection models 

(Dalongeville et al., 2018; Forester et 

al., 2017) 

Beaumont (2005) 
 

Bierne et al. (2013) 

 

Booker et al. (2020) 

 

Dalongeville et al. 

(2018) 

 

Foll and Gaggiotti 

(2008) 

 

Forester et al. (2017) 

 

Grummer et al. 

(2019) 
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Differentiation/FST-

based 

FST is a commonly used measure of 

population differentiation. FST –
based outlier tests are built on the 

concept of neutral SNPs being 

affected in a similar manner by 

processes such as gene flow and 

genetic drift, while outlier SNPs will 

be affected in a distinct manner by 

the process of selection. Outliers 

are thus selected from loci which 

have significantly high (indicating 
divergent selection) or low 

(indicating balancing selection) FST 

values 

Does not require high quality 

environmental data or large number of 

genomic sample sites 

 

Outliers can be identified as either under 

balancing or divergent selection  

 

Cannot test specific hypotheses as to 

which environmental selection 

pressures are acting on outlier loci 

 

May not perform well when there are 

exceedingly high levels of selection 

biasing the baseline FST variation 

 

Neutral variation is increased when 

demographic processes occur within a 

linear fashion, which may lead to high 
rates of false positives 

 

Results have been shown to differ 

between outlier detection models 

(Lotterhos and Whitlock 2015; Narum 

and Hess 2011) 

 

Helyar et al. (2011) 

 

Lotterhos and 

Whitlock (2015) 

 

Luikart et al. (2003) 

 

Narum and Hess 

(2011) 

 
Rellstab et al. (2015) 

  

 

 

 

* There is a plethora of RAD-seq methods, which are discussed in detail within Andrews et al. (2016). The RAD-seq method used to obtain the data within 

the present study was a paired-end ezRAD approach (sequenced on the Illumina Mi-seq platform), which was selected as it does not rely on a PCR step to 

amplify sequences during library preparation, its use with Pool-seq has been compared and validated against individual sequencing, and has been shown to 

produce high quality data for non-model marine invertebrates (Toonen et al., 2013).
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Appendix S2. The six sample sites pertaining to the genetic and genomic material.  
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Appendix S3. The genetic and genomic datasets, and the associated molecular marker and 

species, which were included into conservation planning scenarios. The gene region and 

base pair (bp) length is shown for mtDNA markers, and the number of putatively neutral 

and adaptive single nucleotide polymorphisms (SNPs) are shown for Pool/RAD-seq SNP 

markers. 

 

Molecular marker Species Reference 

mtDNA cytochrome oxidase I gene, 790 

bp 

Cape urchin (Parechinus angulosus) Mertens 

et al. 

(2018) 

mtDNA cytochrome oxidase I gene, 611 

bp 

Granular limpet (Scutellastra 

granularis) 

Mertens 

et al. 

(2018) 

mtDNA cytochrome oxidase I gene, 473 

bp 
Tiger topshell winkel (Oxystele 

tigrina) 

Mertens 

et al. 

(2018) 

mtDNA cytochrome oxidase I gene, 651 

bp 

Cushion star (Parvulastra exigua) Mertens 

et al. 

(2018) 

mtDNA control region, 373 bp Super klipfish (Clinus superciliosus) Mertens 

et al. 

(2018) 

RAD-seq SNPs 

(55 375 neutral* + 34 outlier SNPs) 

Granular limpet (Scutellastra 

granularis) 

Nielsen et 

al. (2018) 

RAD-seq SNPs 

(8 378 neutral* + 8 outlier SNPs) 

Cape urchin (Parechinus angulosus) Nielsen et 

al. (2018) 

*refers to putatively neutral SNPs 

 

 

 


