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Abstract. Energy and power density have forced the industry to intro-
duce many-cores where a large number of processor cores are integrated
into a single chip. In such settings, the communication latency of the
network on chip (NoC) could be performance bottleneck of a multi-core
and many-core processor. Unfortunately, existing approaches for map-
ping the running tasks to the underlying hardware resources often ignore
the impact of the NoC, leading to sub-optimal performance and energy
efficiency. This paper presents a novel approach to allocating NoC re-
source among running tasks. Our approach is based on the topology
partitioning of the shared routers of the NoC. We evaluate our approach
by comparing it against two state-of-the-art methods using simulation.
Experimental results show that our approach reduces the NoC commu-
nication latency by 5.19% and 2.99%, and the energy consumption by
17.94% and 12.68% over two competitive approaches.

Keywords: Network on Chip · Performance Optimization · Many-cores.

1 Introduction

The network-on-chip (NoC) is an essential component of multi-core processor
architectures. As parallelism is the best way to utilize multi-cores, parallel work-
loads are now commonplace on such systems. In such a setting, the NoC is often
a performance bottleneck of a multi-core system and responsible for performance
slowdown of parallel workloads [1]. The NoC is also a major energy consumer
of modern multi-core systems. It can consume over 28% of the total energy
consumption of a multi-core processor [2], and even account for over 40% of the
CPU energy consumption for multimedia applications [3]. As we are moving into
a many-core era, with an increasing number of processor cores integrated into
a single chip, the NoC will play an increasingly important role for performance
and energy optimization of computing systems.

There have been efforts on exploring hardware and software techniques to
perform performance and energy optimization, specifically targeting the NoC.
For example, Chen et al. [4] reduce the power consumption of the NoC, by
closing idle routers to without blocking communication. Other works exploit a
software-centric technique to partition the router resources of the NoC among
running tasks [5]. Software-based approaches have the advantage of not requiring
hardware modification and can work on commercial off-the-shelf chips.
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Existing work on task mapping often ignores the real-time occupation of
routers of an NoC. This is a significant drawback for multi-programmed work-
loads, where multiple tasks or jobs use the shared routers concurrently. In such
scenarios, existing approaches can over-subscribe the shared resources, leading
to resource contention and overall performance slowdown and increased energy
consumption for competing workloads.

Because of the subtle interaction among concurrently running tasks, it is
important to consider the occupancy of shared routers for resource allocation.
The key to minimize network congestion of the NoC is to reduce the overlap
in using shared routers among concurrently running tasks. Doing so can reduce
communication latency and the related energy consumption of the NoC.

This paper presents a novel software-based approach to perform power and
performance optimization for the NoC. Our work dynamically allocates com-
puting resources to match the concurrent tasks to the underlying hardware to
minimize the share of routers among running tasks. We achieve this by exploiting
the NoC topology to perform shared router resource partition. By always trying
to assign idle routers first, our approach can reduce the resource contention,
which in turn leads to faster performance and lower energy consumption among
running tasks.

We evaluate our approach using the NIRGAM simulator [6]. We compare
our approach against three alternative methods, including a random allocation
scheme, INC [5], and CASqA [7]. Experimental results show that our approach
is able to reduce the communication by 59.73%,5.19% and 2.99% and energy
consumption by 53.34%, 17.94% and 12.68%, over the random scheme, INC,
and CASqA, respectively.

This paper makes the following contributions:

– It is the first to leverage the topology partition theory to model the resource
requirement among multiple jobs for NoC.

– It presents a novel heuristic to reduce the resource contention of shared
routers among multiple jobs, using the partial topology partition theory.

2 Background

2.1 The problem of Shared routers

In this section, a simple example is offered to show the impact of Shared routers
on communication latency and energy consumption. Figure 1 shows the results
of mapping job1 and job2, to a 5 × 5 mesh NoC under the XY routing rule.
Suppose job1 maps before job2. Figures 1.a and 1.b show the different results
caused by two mapping method. The mapped area and communication distance
for each job is the same. However, 1.a has more shared routers than 1.b, where
the two blue routers in the red area are the shared routers.

La represents the average actual communication latency of job1 and job2
in 1.a. Lb represents it in 1.b. Accordingly, Ea and Eb respectively represent
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Fig. 1: The results of the two job map-
ping methods. (a) result with shared
routers, and (b) result without shared
router
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the energy consumed by all routers and their links occupied by jobs in 1.a and
1.b. Compared with 1.b, communication latency increases by 3.14% and energy
consumption increases by 3.81% in 1.a. The Shared routers (1.a) can influence
the communication latency and energy consumption.

2.2 Communication latency caused by Shared routers

Furthermore, we quantitatively analyze the rise in communication latency caused
by the increase in Shared routers. According to the SchedulingMethod [8], a
packet containing n flits transfer from sto d, and the latency calculation formula
is as follows:

Tpkt cont(s, d) = (Treceive + Thandle + Tsend)×R(s, d)+

Ttransfer × (n− 1)×MD(s, d) + Thandle ×M ×R(s, d)shared
(1)

This includes the time it takes for R(s, d) routers to receive, handle and send
header flits from s to d(the first item in formula 1), the transfer time of the
remaining flits at MD(s, d) communication distance (the second item in formula
1), and the time it takes R(s, d)Shared routers to handle M packets in FIFO
queues (the third item in formula 1). For Figure 1.b, the third item in formula1
is 0, because two jobs do not share the router. However, for Figure 1.a, it is
not 0 because of the existence of shared routers. Therefore, the communication
latency in 1.a is higher than it in 1.b.

Next, we quantitatively analyze the variation of the communication latency
under different numbers of shared routers, which are generated by different map-
ping methods. The number of Shared routers is measured through the shared
router ratio (SRR). Random mapping method is used to allocate resources for
two jobs in an 8×8 NoC. We get different SRR and sort them in ascending order.
The red line in the Figure2 shows how the average actual communication latency
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increments ∆L changes as SRR increases.

∆L =
La − Lb

Lb

× 100% (2)

It can be seen that with the increase of SSR, DeltaL increases significantly.
According to Formula (1), the third item will rise when SRR increase. When the
SRR is 0.2, DeltaL= 4.46%, when SRR increases to 0.87, ∆L= 13.44 %.

2.3 Communication energy caused by shared routers

The shared routers will not only impact communication latency but will also,
increase the energy consumption of the NoC. The energy consumption of router
buffering data increases because of Shared routers in 1.a. That means Ebf in-
creases in Formula 3.

A message contains N packets and the size of one packet is Lpk bits. It
transfers from processor s to processor d. The communication energy Ecom is
calculated by the Formula 3 [8].

Ecom(s, d) = [(Exbar +m× Ebf )×R(s, d)×N + Ec−>r + Er−>r×

(R(s, d)− 1) + Er−>c]× Lpk ×N + Ehandle ×R(s, d)×N
(3)

It contains three terms. The first item is the energy consumed by N routers.Exbar

is the average energy to transfer a bit through a crossbar.Ebf is the average
energy for buffering a bit. The second item is the energy consumed by the link.
Ec−>r and Er−>c respectively represent the transmission energy from the source
core to the direct router, and from the last router to the destination core. Er−>r

represents the average energy to transfer a bit through an electrical interconnect
between routers. The third item represents the energy consumption for the router
to make decisions for a packet.Ehandle is the energy of the router to handle header
flits. When there are Shared routers, the energy consumed to buffer packets
increases due to network contention, that is the part of Ebf in Formula 3.

We further quantitatively analyze the variation of the energy consumption
increment ∆E in the case of the different number of Shared routers. The blue line
in Figure 2 shows how the energy increment ∆E consumed by all the occupied
routers and links changes as SRR increases.

∆E =
Ea − Eb

Eb

× 100% (4)

It can be seen that with the increase of SSR, ∆E increases significantly. When
the SRR is 0.2, ∆E=4.66%, when SRR increases to 0.87, ∆E=18.83%

Different mapping methods can produce different numbers of shared routers.
How to design the mapping method that products as few shared routers as pos-
sible is the concern in this paper. At present, most mapping strategies usually
allocate resource according to the idle cores and often ignore the real-time occu-
pation of routers. So the situation with shared routers in Figure 1(a) is easy to
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happen. Besides, it is inevitable for routers to be shared by multiple jobs because
of the large number of jobs, the limited cores, and the fragmentation in alloca-
tion. To solve this problem, the mapping strategy must be reconsidered. The
utilization of routers should be one of the crucial conditions for job mapping.

Here are the challenges: How to characterize the occupancy of routers on the
chip? How to keep the number of Shared routers as small as possible?

Here are our solutions: Topology partition theory is used to depict routers for
each job as well as the shared routers among multiple jobs. A heuristic algorithm
based on topology partition is designed to reduce the number of shared routers.

3 Mapping Algorithm Based on Topology Partition

Suppose that a N ×N 2D Mesh structure is designed for multi-core processor.
There are already k jobs in the system, noted with JM . The k + 1 job Jk is
mapped on the NoC at t0. Our job mapping algorithm based on topology par-
tition is used to allocate resources for Jk. The algorithm is divided into two
parts: core allocation and core mapping. Core allocation is to find a region sat-
isfying the conditions for Jk, that is, to obtain a set of core CJk

. Core mapping
implements the one-to-one mapping of processes in Jk to cores in CJk

.

3.1 Examples of core region selection

Here is an example to show the basic idea of region selection. There are 4 orderd
jobs, J1, J2, J3, J4. The number of processes is n1 = 4, n2 = 6, n3 = 3, n4 = 6,
respectively. They will be mapped in a 5×5 NoC. Figure 3 is the selected region
for this group of jobs under our mapping method.

A bidirectional balanced mapping based on application size is used to guide
the selection for a job: a small job seeks an appropriate area according to as-
cending order of idle routers. Instead, a large job according to descending order.
For a N × N NoC, this paper takes nth = N as the boundary to distinguish a
job, that is, if njob > nth, it is denoted as a large job, if not, it is denoted as a
small job. For 5×5 NoC, nth is 5.

Figure 3.a shows the region selected for J1. Since n1 < 5, select the region
from the minimum idle router R1. Start with R1 and seek for a rectangular
region with four idle cores (square is optimum). R1 is the top left vertex. Once
found, the cores in the region are got, which are c1, c2, c6, c7.3.b shows the region
selected for J2 and now J1 is a part of JM . Since n2 > 5, select the region from
the maximum idle router R24. Start with R24 and seek for a rectangular region
with six idle cores (square is optimum).Then get the cores number in the region
c24, c23, c19, c18, c14, c13. 3.c shows the region selected for J3, Since n3 = 3, Start
from the minimum idle router and seek for a rectangular region with three idle
cores (square is optimum). Then get c3, c4, c8, c9. Do the same steps for J4 and
select the region as Figure 3.d.

The use of a specific router is determined by routing rules and communica-
tion between processes. For example,the region selected for J3 is c3, c4, c8, c9, but
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Fig. 3: The result of core allocation
for J1, J2, J3, J4. (a)core allocation for
J1;(b)core allocation for J2;(c)core al-
location for J3;(d)core allocation for J4
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Fig. 4: Core Mapping for job.
(a)communication graph for job;
(b)The selected mapping region;
(c)map p1 to c1; (d)map p2 to
c0; (e)map p0 to c2; (f)map p3 to
c4;(g)mapping results for all processes

actually J3 only needs 3 cores. Therefore, its communication should to be con-
sidered during the core mapping, and CoreMapping() in algorithm 1 is used to
realize the mapping of job process to core in the selected region. Finally c3, c4, c8
are selected for processes for J3.

3.2 Single job mapping algorithm based on topology partition

The job mapping algorithm based on topology partition is shown in Algo-
rithm 1. The input includes state information of current NoC (used processor
cores Cused, unused processor cores Cunused, routing rule), job information (the
number of processes n, the process ordered set based on the total communication
volume Pcomm) and threshold to distinguish jobs-nth. The output consists of a
set of cores assigned to Jnew-CJnew

and the corresponding relationship between
the job process and core-MAP . In step 1, FindUsedRouters gets the avail-
able routers Runused by routing rules and the used core. Runused, an ascending
sequence sorted by the number, is used in CoreAllocation to select a set of pro-
cessor core whose region is a rectangle or close to a rectangle. Steps 2 to 4 de-
termine the order of the traversal of CoreAllocation according to the number of
processes. For a large job, reverse the sequence, that finds the region from a large
number of the router. The fifth step is to call the algorithm CoreAllocation, and
select the mapping region for Jnew. The optimal allocation is the minimum rect-
angular region containing n processor cores, and the output of CoreAllocation
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Algorithm 1 Single job mapping algorithm based on topology partition

Require:
used processor cores Cused; unused processor cores Cunused;
routing Rule routing = XY routing;
process numbers of Jnew n
the process ordered set based on the total communication volume
Pcomm =< p0, p1, ..., pn >;
threshold to distinguish jobs nth;

Ensure:
A set of processor cores assigned to Jnew CJnew

;
The corresponding relationship between the job process and CJnew

MAP = {pi ← cj |pi ∈ Pcomm, cj ∈ CJnew
, 0 <= i < n, 0 <= j < n}.

1: Runused = FindUsedRouters(G,Cused, routing); //Runused is an ascending
sequence sorted by the idle router number

2: if n > nth) then
3: Runused = Reverse(Runused); //Reverse the sequence Runused

4: end if
5: CJnew

= CoreAllocation(n,Cunused, Runused);//Core allocation algorithm, get a
set of processor cores

6: MAP = CoreMapping(Pcomm, CJnew
);// Core Mapping algorithm, map each

process to the corresponding core

is the set of processor cores in the selected region. According to the communi-
cation relationship between processes and the connection relationship between
cores on NoC, CoreMapping gets the specific mapping between process and core
MAP = {pi ← cj |pi ∈ Pcomm, cj ∈ CJnew

, 0 <= i < n, 0 <= j < n}.

CoreAllocation: As shown in Algorithm2, CJnew
is obtained according to

the number of Jnew’s process n, the router sequence Runused, and the idle cores
Cunused. In step 1-14, search for the smallest rectangular area containing m

cores first (m <= n). Through GetRctange in step 3, obtain the rectangular
region containing m cores with router vertex as the top-left vertex. If it can be
found, return the cores in the region Crect; If not, use the next vertex in Runused

to get the region. If the final returned rectangle contains less than n cores, an
additional n −m cores are still needed to meet the assignment requirement of
Jnew. Steps 12-22 are the steps to find them. The basic idea is to find the other
n−m cores closest to Cpart(the found region with m cores).This n−m idle cores
are searched one by one through the while loop (step 15-21), and then added
to Cpart. Since the number of idle cores is assumed greater than or equal to n,
the n −m idle cores can be found when the loop is over. In step 17, select the
idle core, which is closest to Cpart and has the fewest unused neighbours around
by MinmdAndneighbor. The neighbour here means the core with a Manhattan
Distance of 1.

CoreMapping: In this paper, core mapping is based on the algorithm in
Chou[5]. The process of mapping each process to the core is divided into two
steps. First, an unmapped process is selected in pcomm. Then a suitable on-chip
core is selected for it. But it’s different between our method and Chou’s in process
selection: Chou defines 3 states of the process, white, gray, and black, two ac-
tions to switch between states:DISCOV ER and FINISH. If the neighbors(the
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processes that communicate with each other are neighbors) of the process p are
all white, DISCOV ER it and select all available cores on the slice and convert
p to gray; If p’s neighbour is gray or black, FINISH it and select a partic-
ular core and convert p to black.Go back to the first node of the ordered set,
change the state for nonblack process until they all black. For it takes two steps
for a process mapping to a core, we get rid of gray. To reduce the communi-
cation distance among processes with high traffic, we strengthen condition for
the FINISH action.The basic idea is as follows: start by selecting the process
with the largest traffic volume to map, and mark it black. If the neighbour pro-
cess with the largest traffic of process p is white, choose p to be pnext, the next
process that needs to be mapped. And p is pneighbor, the core for p is cneighbor.
The process with the most traffic has already been mapped, so such a pnext can
certainly be found. Select a specific core for pnext such that the distance between
pnext and cneighbor is minimized. If more than one core gets the minimum dis-
tance closest to pnext, we choose the core that the number of whose neighbors
closest to the number of nonblack neighbors of pnext.

Algorithm 2 CoreAllocation

Require:
the number of Jnew’s process n;
the router sequence Runused;
the idle cores Cunused;

Ensure:
A set of processor cores assigned to Jnew CJnew

;
1: for m=n,n-1,n-2,...,1 do
2: //Look for a rectangle with n points, if not, look for a rectangle with n-1

points, and so on.
3: Cpart = ∅;
4: for each vertex in Runused do
5: Crect = GetRectangle(vertex,m);

//Return a rectangle with m-points with vertex as the vertex
6: if (Crect! = ∅) then
7: Cpart = Crect;
8: return;
9: end if
10: end for
11: end for
12: if (the rectangle contains less than n cores then
13: //The size of the rectangle is less than n, so still need to find an additional

n-m cores
14: Cunused = Cunused − Cpart;
15: while m < n do
16: //seek for the other n-m cores one by one. The rule is to look for other idle

cores closest to Cpart

17: c = MinmdAndneighbor(Cunused, Cpart);//select the idle core in Cunused,
which is closest to Cpart and has the fewest unused neighbors

18: join c to Cpart;
19: remove c from Cunused;
20: m = m+ 1;
21: end while
22: end if
23: CJnew

= Cpart;
24: END



Network-on-chip Aware Task Mappings 9

As shown in Figure4, job with five processes in (a) is mapped to the selected
region shown in (b). (c),(d),(e),(f) and (g) are its mapping processes. Assume
now that, based on the total communication volume, the process ordered set is
pcomm =< p1, p2, p0, p3, p4 >. We start with p1, since it has the largest communi-
cation volume. And it is mapped to c1 who has the most neighbors, as shown in
(c), p1 ← c1 is joined to MAP . At this time, p2, the process that have the most
traffic with p1, is chosen as pnext. pneighbor is p1, cneighbor is c1. The unmapped
process that communicate with p2 is p0. Select the core closest to c1 and the
available neighbor is 1. c0 and c4 are both meet the requirements. Select the one
with the smaller number, and as shown in (d),p2 ← c0 is added to MAP . Follow
this step to get p0 ← c2, p3 ← c4, p4 ← c3, and the mapping result is shown in
(e).

3.3 Computation complex

CoreAllocation:A job with n processes is allocated to N×N NOC, where n <=
N2. Scanning the Runused list executes |n| times.For each router in Runused,
GetRectangle and while loop (in line 15) executes |n| times.So the total run
time for CoreAllocation has a complexity of O(n2).

CoreMapping:An ACG for a job with n processes and e edges is mapped
to the selected region. The total run time of our algorithm has a complexity of
O(n2 + e) the same with Chou[5].

4 Experimental Results

4.1 Experimental Platform

Simulation Environment In this paper, NIRGAM[6] is used to simulate an
8× 8 mesh NoC. Table 1 is the configuration of NIRGAM in this experiment:

Table 1: Configuration for NIRGAM platform
Parameter name values Description
TOPOLOGY MESH 2-d mesh topology
NUM ROWS 8 8 rows
NUM COLS 8 8 columns
RT ALGO XY XY routing algorithm
NUM BUFS 16 The number of buffers in input channel FIFO is 16
CLK FREQ 1GHz Clock frequency is 1GHz
PKT SIZE 32 Packet size is 32bytes
FLIT INTERVAL 1 Interval between succesive flits is 1 clock
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Job sequence generation Several sets of jobs with 4 to 16 tasks are generated
using the TGFF[9]. It’s 4 to 8 for small-scale-job, 9 to 16 for large-scale-job.
Adjusting the proportion of large jobs to 0%, 25%, 50%,, 75% and 100%,we get
5 sets of jobs. An arrival sequence is generated in each set. These sequences
are used to simulate the order in which the OS allocates resources for actual
jobs.NPB[10] traces with 4 and 8(9 for BT and SP) and 16 processes are get by
HPC-NetSim[11]. An arrival sequence is generated for NPB.

The mapping algorithms we compare include random, INC[5],CASqA[7] and
the Job mapping algorithm based on topology partition (JMATD) proposed
in this paper. FT2000+ under the condition of not binding cores, allocates re-
source for jobs in a random way by default. INC is a convex region mapping
algorithm, which can reduce communication energy consumption and improve
the application’s performance. CASqA has multiple mapping levels by adjusting
threshold(α), where set α = 0 to improve performance and reduce communica-
tion energy consumption and latency.

4.2 Experimental Result

The number of shared routers The number of Shared routers produced
by the four algorithms is different. In order to compare the differences, the
number of shared routers in the five job sequences is statistically analyzed.
(a)(b)(c)(d)(e)(f) in Figure 5 respectively reflect the change in the number of
Shared routers per job sequence during the mapping process. For random, the
number of Shared routers is the largest due to the overlap of jobs. JMATD re-
duces the number of Shared routers by partitioning the topology when a single
job is mapped. For each job sequence, JMATD has a good optimization effect.
In (d), the number of Shared routers in random, INC and CASqA is 9.56x, 3.48x
and 2.10x higher than that in JMATD, respectively. For both INC and CASqA,
due to the continuous convex mapping region, the same effect can be achieved
with JMATD for the job sequences with more fragment, as shown in (b). Figure
7 shows the average number of Shared routers in the mapping results for each
group of job sequences. On average, the number of Shared routers generated by
random, INC and CASqA is 5.78x, 1.25x and 0.67x higher than that of JMATD.

Communication power for jobs JMATD is effective in reducing the number
of Shared routers. We measured the communication power curve changing un-
der different mapping algorithms for each set of jobs, and the results are shown
in Figure 6.(a)(b)(c)(d)(e)(f) represent different job sequences. Although the
power curve of each mapping method fluctuates somewhat, JMATD method is
relatively low compared with other methods on the whole.Figure 8 shows the
average power consumption in the job mapping process. On average, Compared
with random, INC, and CASqA, the communication energy consumption is de-
creased by 53.34%, 17.94%, 12.68%, respectively. Run time is assumed to be the
same for a job in different mapping method. Therefore, the communication en-
ergy consumption of the job sequence is proportional to the power consumption.
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Fig. 5: Changes in the number of Shared routers per job sequence, (lower is
better);(a)l%=0%;(b)l%=25%;(c)l%=50%;(d)l%=75%;(e)l%=100%;(f)NPB
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Communication latency for jobs The communication latency of a job is
an important factor affecting performance.To compare the effect of JMATP in
reducing communication latency,the average latency of each job is calculated.As
shown in Figure 9, the data is normalized.According to the average results of the
five job sets, the latency of random, INC, CASqA method is 59.73%,5.19%,2.99%
higher than that of JMATP, respectively.

4.3 Discussion

The experiment shows that the number of Shared routers has an effect on the
communication power consumption of the system, and the trend in Figure 8 is
consistent with that in Figure 7. However, when l%=25%, the router is shared
equally in INC, CASqA and JMATP, but the communication power is quite dif-
ferent.JMATP has lower power. We compared the communication distances of
the jobs in each algorithm. In this article, weighted Manhattan distance(WMD,
the sum product of MD and the corresponding weight of communicating pro-
cesses)[12] is a metrics of the quality of the job mapping. Figure10 is the WMD
comparison of 4 mapping methods adopted for 6 sets of jobs. From the per-
spective of single job mapping, compared with other algorithms, JMATP can
effectively reduce the communication distance between job processes by 63.82%,
22.39% and 19.07% respectively for random, INC and CASqA in WMD. JMATP
not only reduces the number of Shared routers but also reduces the communi-
cation distance of jobs.

Formula 1 indicates that the latency is related to the router and the commu-
nication distance of the process where the contention occurs. Since the packet
transmission is concurrent, the latency is not wholly positive related to the rela-
tionship between the two. It means that the marginal benefits of optimizing
communication latency from reducing communication distance are not high.
Therefore, it is necessary to optimize shared routers while reducing the com-
munication distance.

The influencing factors of communication latency include external congestion
(router and link contend by different jobs) and internal congestion (router and
link contend by packets of the same job). Memory[13] and disks[14] also impact
the communication. Because of the interaction of these factors, communication
latency optimization is not significant compared to communication power. It
inspires us to work on what we’re going to do next: How to reduce resource
contention between job processes. How job communication characterizations[15]
affect communication latency.

5 Related work

The performance of NoC is closely related to network congestion, which not only
increases network latency but also affects the communication power consump-
tion. That is why there are many works to diminish network congestion from soft-
ware and hardware aspects. Ebragimi[16] optimizes communication from rout-
ing algorithms to reduce network conflicts. Jiang[17] proposed a new switching
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mechanism to reduce network latency. Based on the STT-RAM router, Yang[18]
reduces communication latency by calculating the contended flit.

Job mapping is one of the effective ways to reduce network conflicts. Two
types of congestion can be defined during dynamic application mapping: external
and internal congestion. External congestion occurs when a network channel is
competing with packets from different applications; internal congestion is related
to packets from the same application.

To decrease the external congestion probability by mapping algorithm Chou[5]
proposes an incremental (INC) approach. They first select the near convex re-
gion to reduce communication links and try to keep both the selected region and
remaining nodes contiguous, then allocation node according to the total com-
munication volume inside the selected region. Das[19] proposes new mapping
policies to improve system performance by reducing inter-application interfer-
ence in the on-chip network and memory controllers. Cores are clustered into
a subnetwork. Fattah in [12], proposed a SHiC algorithm to guide how to find
the optimum first node among all the available nodes for the run-time applica-
tion. Then, in [7] they proposed a run-time mapping algorithm, CASqA. In this
algorithm, the contiguousness of the allocated processors can be adjusted in a
fine-grained fashion according to α. Zhu[20] proposed an efficient heuristic-based
algorithm to balance minimized on-chip latency in multi-application mapping.
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Internal congestion can also be reduced by the mapping algorithm. In [8], a
heuristic algorithm, unified priority-based scheduling (UPS), is put forward to
effectively solve the contention problem in polynomial time by assigning priorities
to messages. Once an instruction is waiting for the data from other PE, the extra
delay caused by NoC congestion postpone the instruction issue and decrease the
performance. An[21] proposed C-Map for the delay of the instructions existing in
CGRA, which improves the effectiveness of CGRA mapping in the perspective
of reducing network congestion and enhancing the continuity of the data-flow.

6 Conclusion

This paper analyzes the influence of Shared routers among multiple jobs on
communication latency and energy consumption. When the number of Shared
routers increases significantly, it affects the communication latency of a single job
and the energy consumption of NoC. To reduce this impact, this paper proposes
a task mapping method based on topology partition. When allocating resources
for a single job, cores connected to an idle router are considered first to minimize
the number of shared routers between multiple jobs. NIRGAM Simulator is
used to compare the mapping method proposed in this paper and three other
typical ones (including random, INC, and CASqA). Communication latency and
energy consumption of the jobs under each mapping method are get based on an
8×8 NoC. The communication performance is improved to 59.73%,5.19%,2.99%
and energy consumption is decreased by 53.34%, 17.94%, 12.68%, respectively.
Shared routers exist not only between jobs but also between processes in a job.
Next, We focus on how to reduce Shared routers in the same application . We
also consider the impact of memory and disks on communication.
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