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Abstract: Carbon dioxide (CO2) is a major greenhouse gas responsible for climate change. Diatoms,

a natural sink of atmospheric CO2, can be cultivated industrially in autotrophic and mixotrophic

modes for the purpose of CO2 sequestration. In addition, the metabolic diversity exhibited by this

group of photosynthetic organisms provides avenues to redirect the captured carbon into products

of value. These include lipids, omega-3 fatty acids, pigments, antioxidants, exopolysaccharides,

sulphated polysaccharides, and other valuable metabolites that can be produced in environmentally

sustainable bio-manufacturing processes. To realize the potential of diatoms, expansion of our

knowledge of carbon supply, CO2 uptake and fixation by these organisms, in conjunction with ways

to enhance metabolic routing of the fixed carbon to products of value is required. In this review,

current knowledge is explored, with an evaluation of the potential of diatoms for carbon capture and

bio-based manufacturing.

Keywords: carbon supply; CO2 uptake; carbon fixation; CCM; biomanufacturing; diatoms

1. Introduction—The Carbon Calamity

Global anthropogenic activities are resulting in annual carbon dioxide (CO2) emissions in excess

of 40 GtCO2 y−1 [1]. Over the past decade, there have been modest declines in CO2 emission in the

USA and the 28 (now 27) European Union countries, but increasing emissions in China, India and

most developing countries have dominated global emission trends, resulting in a global increase in

CO2 emissions of 0.9% per year [2]. Even during the economic crisis of the COVID-19 pandemic in

2020, the unprecedented cessation of human activities has all but led to a small dent in the global

energy use and resulting CO2 emissions [3]. A slowdown in CO2 emissions will only occur when fossil

fuels, especially coal, are replaced by renewables, such as solar, wind, biomass and other sustainable

alternatives, and conventional vehicles are replaced by an electric fleet that relies on renewable energy

generation at point sources [2,4]. The world’s oceans are the most heavily utilized carbon storage sites,

and already contain 39 trillion metric tons of carbon, where sinking particles transport carbon to the

seafloor and it is buried in the sediment. There is a limit to the CO2 sequestration capacity of oceans,

and it is projected that the pH of the oceans will further decrease by 0.3 to 0.4 units by the end of the

century, which could dramatically alter marine food chains [5]. Therefore, there is an urgent necessity

to develop feasible strategies for CO2 sequestration to alleviate the concerns.

Current strategies to reduce CO2 emissions include absorption, adsorption, membrane separation

and cryogenic fractionation, and their limitations have been critically evaluated [6]. It has been

identified that out of all the capture processes, post-combustion capture is the most relevant process

that can be retrofitted to existing industrial infrastructures. The technology most explored to date

for the sequestration of CO2 is chemical-based sequestration, but it has its own set of challenges.
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Recent research on carbon capture has mostly focused on optimizing CO2 absorption using amines,

predominantly mono-ethanolamine (MEA) (a molecule developed in the 1970s), to minimize the

energy consumption and to improve absorption efficiency. However, the process still remains energy

intensive, and possible degradation reactions could lead to the formation of toxic compounds such as

nitrosamines [7]. The ammonia-based CO2 capture technology can be suitably utilized only where there

is residual heat for generating low grade steam used to provide the regeneration energy. Furthermore,

there are common issues such as ammonia slippage [8].

CO2 sequestration by photosynthetic organisms can be a sustainable alternative when coupled to

bioprocessing and biomanufacturing for value-addition. The photosynthetic production of molecular

oxygen, otherwise known as oxygenic photosynthesis, was first observed in the ancestors of the

present-day cyanobacteria, more than 2.7–3.7 billion years ago [9]. Microalgae are some of nature’s

finest examples of solar energy conversion systems. They convert carbon dioxide into complex

organic molecules through photosynthesis, with theoretical efficiencies in the order of 8–10% of solar

energy (biomass productivities of 280 ton dcw ha−1 y−1), translating to 3% conversion efficiency in

practice (biomass productivities of up to 146 ton dcw ha−1 y−1 in small scale cultivations and 60–75

ton dcw ha−1 y−1 in mass cultivations) [10,11]. It is well known that microalgae do not need arable

land, and can be cultivated on marginal land, in deserts, in brackish water, or even in the open

ocean, and thus do not compete with food crops for resources. Microalgae cultivations can use CO2

from flue gases of power stations containing SOx and NOx, and can be coupled with wastewater

treatment plants for the remediation of nitrates and phosphates, heavy metals in tertiary wastewater,

and for removing secondary pollutants, e.g., pharmaceuticals [12]. Microalgae have been found

to have a higher CO2 uptake rate than forests [13]. Although large-scale microalgal cultivation for

biofuels has been limited due to concerns of economic viability and sustainability, many companies are

successfully producing biomass and added-value chemicals, such as pigments (β-carotene, astaxanthin,

phycocyanin) and omega-3 fatty acids (docasahexaneoic acid and eicosapentaenoic acid). In addition,

several companies are utilizing renewable energy for running the production plants, e.g., solar energy

(AlgaTechnologies-Israel, Brevel-Israel, Simris-Sweden) and geothermal (Algalif-Iceland). The carbon

content of microalgal cells typically ranges between 40–60% dcw. For a carbon content of 50% dcw, the

amount of carbon potentially fixed with current biomass productivities in the range of 60–140 ton dcw

ha−1 y−1 (see above) would be 30–70 ton C ha−1 y−1. This translates to a potential CO2 fixing capacity

in the region of 100–250 ton CO2 ha−1 y−1. Although this would mean several hectares of cultivations

to make an effective contribution to global CO2 mitigation, every bit of contribution adds to the total

and justifies development of strategies that maximize the potential of microalgal CO2 sequestration.

Diatoms are a group of microalgae found in all aquatic environments, reportedly responsible

for 20% of the global net primary production and 40% of marine primary production, in nature [14].

They have evolved from their ancestors, from about 250 to 190 MYA (million years ago) [15,16], and

have become a highly diverse and biogeochemically relevant group of phytoplankton, and contribute

significantly to the natural carbon sink [17]. Diatoms have many adaptations enabling them to thrive

in the oceans. The diatomic silica cell wall may discourage ingestion by grazing organisms, provide

necessary support for the large vacuole, facilitate light harvesting, increase nutrient uptake, and

protect the cell against UV radiation [18]. Diatoms are favored over other phytoplankton groups in

environments with fluctuating light, as occurs in non-stratified water columns, due to their favorable

photo-physiology, as demonstrated for Phaeodactylum tricornutum [19] and Thalassiosira weissflogii [20].

Diatoms are well adapted to turbulence, and can be more productive in these environments compared

to other microalgae [21,22]. They are an algal taxonomic group that offer a potential bio-based solution

to rising CO2 levels. P. tricornutum and Thalassiosira pseudonana are two of the most well characterized

species of diatoms. Furthermore, diatoms are very adaptive and can serve as ideal candidates for

manufacturing bulk commodity products (biomass, biofuels, protein and bioplastics) and specialty

chemicals (eicosapentaenoic acid, docasahexaenoic acid, fucoxanthin and recombinant proteins, e.g.,
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recombinant antibodies) as a viable cell factory, whilst enabling strategies to reduce CO2 in the

atmosphere [23].

This review showcases the potential of diatoms for CO2 sequestration, coupled with bio-based

manufacturing, highlighting the challenges to be overcome for a commercially viable, sustainable

manufacturing solution. A strong emphasis is given to the mechanisms responsible for carbon

acquisition, transport, and processing in diatoms, as a target for improvement of carbon fixation.

2. Diatoms for Bio-Based Manufacturing

Diatoms are unicellular microalgae possessing a silicon-based cell wall, and belong to the class

Bacillariophyceae. They are an ecologically successful taxonomic group of phytoplankton. They

contribute heavily to the global primary productivity [17,24], and play fundamental roles in the

global nutrient cycling of carbon, nitrogen, phosphorus, and silicon [25,26]. The silica exoskeleton

provides diatoms with structural integrity and protection in the ocean environment. Silicification

increases cell density, enabling the cells to sink; possibly a selective evolutionary trait to move the

cell to more optimal growth environment deeper in the water column, and evolved as a selection

pressure against parasitism [27] that can be useful in establishing cost-effective harvesting methods.

Their ability to prosper in the natural environment indicates their suitability for large scale cultivations

in less sterile environments, to enable viable industrial scale operations. Diatoms have considerable

metabolic diversity attributable to their evolution that involved endosymbiosis of diverse lineages.

As a result, they can be employed to produce diverse chemicals. Manipulation of CO2 supply can

also be used to improve the accumulation of both lipids and carbohydrates, as has been studied in T.

pseudonana, P. tricornutum, Asterionella formosa and Navicula pelliculosa [28]. The presence of efficient

uptake systems for CO2 and bicarbonate (HCO3
−) have been identified in the diatoms T. weissflogii and

P. tricornutum, at concentrations typically encountered in ocean surface waters. The ability to adjust

uptake rates to a wide range of inorganic carbon supply has also been reported [29]. Nevertheless,

there is paucity of information and evidence regarding CO2 uptake and there are many unanswered

questions. In addition to photo-autotrophy, mixotrophic cultivation regimes can help yield higher

biomass concentrations and productivities.

Diatoms can be cultivated in both indoor and outdoor settings, as suspension cultures (in open

ponds, flat panel, tubular and airlift photobioreactors (PBRs)), as well as immobilized cultivation

systems to avoid dewatering costs. P. tricornutum biomass productivity was found to be doubled

in high-technology photobioreactors to 21 ± 2.3 g m−2 d−1, compared to cultivation in open ponds,

and resulted in a CO2 fixation rate of 35.5 g−1 m−2 [30]. Overall, this gives flexibility in cultivation,

as different cultivation methods can be used to enhance productivity. Novel culturing media, such

as FDMed medium, have been used for high biomass, fucoxanthin and EPA production yields in

freshwater diatoms, such as Sellaphora minima and Nitzschia palea in autotrophic batch cultures [31].

Media for cultivation of freshwater diatoms include: FDMed medium [31], WC [32] and modified

COMBO (MCOMBO) (modified COMBO (MCOMBO)) medium of the UTEX Culture Collection of

Algae). F/2 media [33], DAM (diatom artificial medium; [34]), ASW (artificial sea water; [35]), Walne

media [36] can be used for the culturing of marine diatoms. Yeast extract supplementation of F/2 media

has been reported to result in increased biomass concentration (3.48 fold), TAG content (2.13 fold) and

fucoxanthin content (1.7 fold) in the stationary phase [37].

Optimization of operational conditions has been shown to be useful in increasing product yields.

Several such studies have been reported with the model diatom, P. tricornutum, for example, light

shift with tryptone addition to improve fucoxanthin production [38], UV mutagenesis to improve

EPA productivity by 33% [39], adaptive laboratory evolution to improve neutral lipid and carotenoid

accumulation [40]. Marginal improvement in total lipid contents, in association with reduced poly

unsaturated fatty acids, have been observed in Cyclotella cryptica as a result of silicate deprivation [41].

In the case of P. tricornutum, a weakly silicified diatom, the required quantities of silicon can be obtained

from silicon dissolved from glass vessels in alkaline culture media [42]. P. tricornutum grown in the
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presence and absence of silicon showed little difference in growth, except under low light and green

light conditions [43].

In addition to their fundamental role in global nutrient cycles, diatoms represent a potential

bioprocess platform, for synthesizing biofuels and other value-added products. Microalgae, in general,

are of considerable interest, because many accumulate significant amounts of energy-rich compounds,

such as triacylglycerol (TAG), or other lipids that can be used as biofuel precursors [44]. Diatoms

have been showcased to produce both homologous and heterologous compounds, proteins and other

products (Table 1).

Table 1. Exemplar products from diatoms for bio-manufacturing, using autotrophy or mixotrophy.

Products for
Biomanufacturing

Species
Product Yield/Productivity

Reported
Reference

Antibacterial substances
Phaeodactylum tricornutum
EPSAG

n/a [45]

Arachidonic acid

Phaeodactylum tricornutum
CCAP 1055/1 (recombinant)

1.89% DW; 22% TFAs [46]

Cylindrotheca fusiformis UTEX
2084

8.19% TFAs [47]

Nitzschia sp. FD397 0.3% DW; 2.24% TFAs [48]

Nitzchia palea 21.61% TFAs [49]

Biomass

Phaeodactylum tricornutum
UTEX 640

25.4 g/L; 1.7 g/L/d [50]

Amphora sp. MUR258 0.171 g/L/d [51]

Chaetoceros sp. 0.125 g/L/d [52]

Skeletonema sp. 0.185 g/L/d [52]

Thalassiosira sp. 0.312 g/L/d [52]

Thallasiosira weissflogii 3.83 g/m2/d [53]

Skeletonema sp. UHO29 0.34 g/L/d [54]

Nitzchia laevis UTEX 2047 0.4 g/L/d [55]

Chrysolaminarin
Phaeodactylum tricornutum CAS 94 mg/L/d; 14% DW [56]

Odontella aurita SCCAP K 1251 161.55 mg/L/d [57]

Docosahexaenoic acid
(C22:6, n-3)

Phaeodactylum tricornutum
CCAP 1055/1 Pt_El05
(recombinant)

0.64% DW [58]

Eicosapentaenoic acid
(C20:5, n-3)

Nitzchia laevis UTEX 2047 10.46 mg/L/d; 19.15% DW [55]

Fistulifera solaris JPCC DA0580
135.7 mg/L/d; 11.7% DW;
38.6% TFAs

[59]

Thalassiosira weissflogii 33.4 mg/L/d; 24.2% TFAs [60]

Odontella aurita SCCAP K 1251 9.37 mg/L/d; 25.3% TFAs [57]

Cyclotella cryptica CCAP 1070/2 3.8 % DW; 14.4% TFAs [61]

Cylindrotheca fusiformis UTEX
2084

24.63% TFAs [47]

Phaeodactylum tricornutum
UTEX 640

56 mg/L/d; 3.29% DW [50]
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Table 1. Cont.

Products for
Biomanufacturing

Species
Product Yield/Productivity

Reported
Reference

Extra polymeric substances Phaeodactylum tricornutum n/a [62]

Fucoxanthin

Nitzchia sp. KMMCC-308 0.492% DW [63]

Mallomonas SBV13 2.66% DW [64]

Phaeodactylum tricornutum CAS 4.7 mg/L/d; 0.7% DW [56]

Phaeodactylum tricornutum
CS-29

2.28 mg/L/d; 5.92% DW [65]

Odontella aurita SCCAP K 1251 6.01 mg/L/d; 2.33% DW [57]

Chaetoceros gracilis KMMCC-27 0.223% DW [63]

Thalassiosira weissflogii 0.95% DW [60]

Odontella aurita SCCAP K-1251 2.17% DW [66]

Cylindrotheca closterium 0.523% DW [67]

Triacylglycerols (TAGs)

Cylindrotheca fusiformis CCAP
1017/2

7.2 mg/L/d; 24.5% DW [61]

Chaeotoceros muelleri CCAP
1010/3

5.2 mg/L/d; 23.9% DW [61]

Chaetoceros simplex CCAP
1085/3

5.2 mg/L/d; 19.6% DW [61]

Amphora sp. MUR258
62 mg/L/d (lipid); 36.26%
DW

[51]

Phaeodactylum tricornutum 58.5 mg/L/d; 45% DW [68]

Thalassiosira weissflogii P09 3.7 mg/L/d; 15% DW [69]

Thalassiosira weissflogii CCMP
1010

2.58 mg/L/d; 21% DW [69]

Thalassiosira weissflogii CCMP
1336

1.57 mg/L/d; 11% DW [69]

Thallasiosira psuedonana CCMP
1335

0.33 mg/L/d; 6% DW [69]

Navicula pelliculosa 21.4% DW [70]

Nitzschia closterium 38.8% DW [70]

Nitzschia longissima 25.8% DW [70]

Nitzschia ovalis 21% DW [70]

Nitzschia frustulum 11.8% DW [70]

Amphora exigua 23.6% DW [70]

Amphora sp. 18.1% DW [70]

Biddulphia aurica 19.3% DW [70]

Fragilaria sp. 11% DW [70]

Chaetoceros sp. 10.2% DW [71]

Cyclotella cryptica CCAP 1070/2 4 mg/L/d; 23.5% DW [61]

Cyclotella cryptica CCMP 331 1.64 mg/L/d; 23.06% DW [69]
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Table 1. Cont.

Products for
Biomanufacturing

Species
Product Yield/Productivity

Reported
Reference

Oxylipins

Cocconeis scutellum parva n/a [72]

Skeletonema marinoi n/a [72]

Skeletonema costacum n/a [72]

Chaetoceros pseudocurvisetus n/a [72]

Phytosterol/Sterol
Chaetoceros muelleri

0.4% DW (fucosterol), 0.25%
DW (cholesterol)

[73]

Phaeodactylum tricornutum 0.5% DW (brassicasterol) [73]

Thalassiosira pseudonana
0.25% DW
(24-Methylenecholesta-5,
24(24′)-dien-3Beta-ol

[73]

Silica n/a [74]

Sulfated polysaccharides Phaeodactylum tricornutum 20.15 mg/L/d [75]

Polyhydroxybutyrate (PHB)
Phaeodactylum tricornutum
CCAP 1055/1

10.6% DW [76]

Human igGαHBSAg
Phaeodactylum tricornutum
UTEX 646

0.0021% DW (8.7% total
soluble protein)

[77]

IgG1/kappa ab CL4mAb
Phaeodactylum tricornutum
UTEX 646

2.5 mg/L (secreted) [78]

Monoclonal IgG antibodies
against the nucleoprotein of
Marburg virus

Phaeodactylum tricornutum
UTEX 646

2 mg/L (secreted) [79]

3. Carbon Assimilation in Diatoms

Carbon can be found in many forms in the natural environment. In the oceans, the dynamics

of chemical dissolution of CO2 and its biological uptake creates an interplay between chemical and

biological equilibria that requires further elucidations and understanding. For terrestrial photosynthetic

organisms, atmospheric CO2 is the main form of inorganic CO2 assimilated, but in water, the dissolution

of CO2 results in carbonic acid, which dissociates into bicarbonate and carbonate. In the oceans,

90% of inorganic carbon is in the form of bicarbonate [80]. Prior to the industrial revolution, CO2

concentrations in the atmosphere were ~280 ppm [81], but today they have increased to ~420 ppm in

2020 (https://www.co2.earth/), with an increasing proportion of CO2 sequestered in the oceans and on

land. At pre-industrial concentrations of atmospheric CO2, the seawater concentration of bicarbonate

was 1757 µmol kg−1, but elevated levels of bicarbonate are now being observed, contributing to ocean

acidification and a higher solubility of carbonate [80].

The effect of increasing CO2 concentration supply to diatoms leads to increased growth and

biomass production, under growth optimal conditions. Carbon capture in P. tricornutum happens

predominantly in the form of bicarbonates with bicarbonate transporters [82], and as mentioned

above, CO2 fixation rates of 35 g m−2 d−1 have been reported [30]. When cultivating P. tricornutum

in air sparged cultures, a CO2 consumption rate of 1 g g−1 DW, at pH 7.2 and 0.8 g g−1 DW, at pH 9,

both resulting in 0.06–0.08 g CO2 uptake per day (removal of 50–65% of CO2 from the air), has been

reported [83]. It has been identified that the optimal CO2 concentration for biomass accumulation

is in a narrow range, between 1% and 1.25% CO2 in air (v/v), at a gas supply rate of 0.66 vvm and

light intensity of 1000 µmol m−2 s−1 (16 h light period), 90% of CO2 supplied leaving the medium

unused [84]. When P. tricornutum was provided with bicarbonate as an inorganic carbon source,

between 73–99.9% of the bicarbonate was consumed or remained dissolved in the medium, resulting

in a CO2 consumption rate of 0.31 g d−1 (2.3 g CO2 g−1 biomass), albeit at the cost of reduced growth

https://www.co2.earth/
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and biomass production [83]. Cultivations of P. tricornutum (PHAEO2) in modified F/2 seawater

(enriched four-fold with nitrogen and phosphorus) with 15% CO2 have been shown to increase biomass

productivity to 0.15 g L−1 d−1, whilst consuming 0.28 g L−1 d−1 of CO2 in a batch operation [85]. A

comparative assessment of CO2 concentration mechanisms (CCMs) in a handful of freshwater and

marine diatoms (P. tricornutum, As. formosa, N. pellicosa, T. pseudonana, T. weissflogii) revealed that,

for all the species, at 20,000 ppm, the affinity for DIC was lower than at 400 ppm CO2 (atmospheric

concentrations), and the reliance on CO2 was higher, and that species-specific differences were greater

than environmental differences, in determining the effectiveness of the CCMs [86]. Negative effects

of CO2 on growth have also been recorded. For example, Attheya longicornis growth was hampered

by high levels of CO2 supply [87]. Another factor affecting marine species is temperature. Rising

temperatures may also have a negative effect on the CO2 uptake rate by diatoms. In Navicula distans,

rising temperature and pCO2 resulted in a reduction of diatom cell size, which inevitably relates to the

ecological and physiological functions of diatoms, such as nutrient diffusion, intake and requirements,

and even the metabolic rate [88]. There are also some cases recorded where no reaction to increased

CO2 levels could be observed, as seen with Chaetoceros brevis cultures supplemented with pCO2 (750

ppmv (2 × ambient) and 190 ppmv (0.5 × ambient) CO2), where little or no significant effect was

observed on the diatom growth, pigment content and composition, photosynthesis, photoprotection

and RuBisCO activity [89].

CO2 uptake in the aquatic photosynthetic organisms, such as diatoms, cyanobacteria and other

microalgae, take place with the involvement of the CCM. Carbon metabolism pathways in diatoms, like

in plants and other algae, require the transportation of CO2 across intracellular compartments like the

peroxisomes, chloroplasts, mitochondria, endoplasmic reticulum and the cytosol, with concentration

at the site where RuBisCO is located for CO2 fixation (Figure 1). This arrangement gives flexibility to

the cell to adjust the carbon flux, enhance the concentration of CO2 in a stepwise manner from low

concentrations on the outside to levels required for RuBisCO activity and hence fix CO2 [90,91]. There is

limited information available on carbon metabolism in several diatoms, as of now. In order to obtain the

appropriate design of the carbon flow in diatom cells under different conditions, information regarding

the localization and functionality of the component diatom enzymes is a necessity. The cellular

machinery involved in diatom photosynthesis includes the chloroplasts, carbonic anhydrases (CAs),

RuBisCO, Calvin Benson Bassham (CBB) cycle proteins, transporters, phosphoglycerate kinase (PGK),

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), CP12, fructose-1,6-biphosphatase (FBPase),

sedoheptulose-1,7-biphosphatase (SBPase), phosphoribulokinase (PRK), basic leucine zipper (bZip)

bZIP transcription factors family, and others [24,82,86,92,93]. Diurnal rhythms also affect the TCA

Cycle and that influences the amount of CO2 that is absorbed. Moreover, the bZIP14 protein family

members are involved in CO2 sensing and blue light signaling [94]. Our current knowledge of diatom

CCMs is discussed in the section below, an understanding of which will help in devising strategies to

maximize uptake of CO2 by diatoms.
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Figure 1. Carbon dioxide (CO2) enrichment in cell organelles. In diatoms, there are different membranes

for CO2 to cross, and it has to be enriched from low to concentrated levels near RuBisCO to enable

CO2 fixation. The periplasmic space faces the extracellular environment. Adjacent to the periplasmic

space is the cytoplasm. Further inward is the chloroplastic endoplasmic reticulum (CER)/periplastidal

compartment (PPC). The stroma is the layer beyond the CER/PPC. The innermost layer is the pyrenoid

where in embedded is the pyrenoid penetrating thylakoid. This usually happens in general, with CO2

concentration mechanisms (CCM) in microalgae.

3.1. The Diatom CCM and the Chloroplast Pump Model

The physical constraints on photosynthesis in the marine environment, especially low (dissolved)

CO2 in seawater, is partially mitigated by the CCM. Photosynthetic CO2 fixation was found to be

near saturation at external concentrations of 200 µM (as bicarbonate and CO2) [95]. The CCM of P.

tricornutum is reported to be moderately efficient, with around one-third of the carbon transported into

the chloroplast being fixed by RuBisCO, and the remainder leaking out as CO2, attributable to the

limited permeability of diatom membranes to CO2. The major driver of the CCM is believed to be the

chloroplast pump, which actively transports bicarbonate into the chloroplast, where the bicarbonate

flux into the chloroplast exceeds the net CO2 and bicarbonate flux across the plasmalemma. Additional

bicarbonate transporters are required in the membranes surrounding the chloroplast [82]. A large

inorganic carbon pool is accumulated in the chloroplast, hence elevating CO2 concentrations around

RuBisCO and inorganic carbon is depleted from around the cytoplasm resulting in a diffusive influx of

CO2 from the extracellular environment into the cytoplasm [96]. Some of the proteins responsible for

bicarbonate transport are embedded in the chloroplast membrane, but the full characterization of these

proteins is ongoing. It is hypothesized that a different solute career 4 (SLC4) family of transporters in

sequence move bicarbonate from the external environment to the chloroplast stroma [82].

Cyanobacteria and green algae, such as Chlamydomonas reinhardtii, developed CCMs (Figure 2), to

reduce the impact of the oxygenase activity of RuBisCO. The most characterized eukaryotic CCM is

that found in C. reinhardtii. Inorganic carbon (as bicarbonate) is pumped into the chloroplast by active

transport, where it is converted to CO2 by carbonic anhydrase (CA), CAH3 (localized in the thylkaoid

lumen). The stromal soluble protein complex (CrLCIB-LCIC) has the ability to re-capture and to

prevent the leakage of CO2 generated by CAH3. Moreover, CrLCIB-LCIC is not fixed by RuBisCO [97].

C. reinhardtii actively transports both CO2 and HCO3
− across the plasmalemma, but CO2 appears to
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be the preferred form. Proton leakage through the thinner diffusive boundary layer is important in

smaller organisms that have a smaller size [98]. The basic features of a cyanobacterial CCM include

transport of inorganic carbon and the presence of carboxysomes that help in minimizing CO2 leakage

(Figure 2). The induction of the CCM takes place at low CO2 levels. DIC transporters are involved in

maintaining the supply of CO2 to RuBisCO and CAs are utilized for DIC accumulation. Diatoms use a

CCM to overcome the difficulties of CO2 limitation in alkaline and high-salinity seawater, by using

SLC4 family transporters to take up HCO3
− actively from the surrounding seawater, leading to the

intracellular accumulation of DIC [99,100]. Multiple CAs maintain pH within each of the organelles,

by maintaining a fine ratio of CO2 and bicarbonate (Figures 2–4).

Figure 2. Broad differences (representative) between diatom CCMs (a) with that of cyanobacteria (b)

and green algae (c).

Figure 3. CCM with transporters in P. tricornutum. The thin arrows denote diffusion of CO2 through the

membranes, while the broad arrows denote active transportation of HCO3
− by SLC4s (Solute Carrier

Family 4) transporters.
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Figure 4. Distribution of CAs in model species: P. tricornutum (blue), T. pseudonana (green). CO2 is

enriched from 10 µM in the outermost layers to 100 µM in the innermost layers of the pyrenoid. HCO3
−

is enriched from 2 mM in the outermost layers to 30 mM in the innermost layers of the pyrenoid. There

is interconversion involved between CO2 and HCO3
− in the outermost and innermost layers also [82].

3.2. Carbon Transport Systems

Diatoms can actively take up HCO3
− and/or CO2 and the uptake of DIC across the plasma

membrane is the critical first step in using DIC for photosynthesis [101]. The most well studied CCMs

in diatoms are in P. tricornutum and T. pseudonana (Figure 4). Adequate flux of CO2 to ensure an optimal

CO2 to RuBisCO ratio (amount of CO2 as substrate for the RuBisCO molecule) is generated and is

facilitated by two pyrenoidal β-carbonic anhydrases (PtCA1 and PtCA2) [96,102,103]. The amount of

CO2 is complemented by α-type CAs that are located in the vicinity and in the sub-cellular spaces of

the four-layered chloroplast membranes, which prevent the leakage of CO2 from the chloroplast in T.

pseudonana and P. tricornutum [103,104].

In a diffusion-based CO2 uptake system, HCO3
− uptake is by plasma membrane based SLC4,

and CO2 is taken up from the external environment directly through the cell membranes, as they

are permeable, and CO2 cannot passively pass through a transporter. CO2 can only be taken up by

generating a CO2 deficit inside the cell through a diffusive mechanism, which leads to the suction

of CO2 from the external environment [86]. The active transport of HCO3
− out of the cytoplasm

and into the chloroplast leads to the formation of a low HCO3
− concentrated environment in the

cytoplasm of diatoms. The action of a cytoplasmic CA leads to a reduction in the cytoplasmic CO2.

The conversion of CO2 to HCO3
− occurs when the HCO3

− concentration is below equilibrium with

CO2. The CO2 gradient leads to its passive diffusion into the cell across the plasma membrane, and

the continued export of HCO3
− from the cytoplasm maintains a constant cytoplasmic CO2 deficit,

resulting in sustained CO2 uptake. In order to maintain the inward CO2 suction, the activities of the

transporters exporting HCO3
− from the cytoplasm should be more than that of CO2 and HCO3

− influx

into the cell [101].

The SLC4 family have been found to represent a major group of bicarbonate transporters which

have an important role in pH regulation. It has been found that the N-terminal (Nt) domain (involved

in functional regulation of transporters) accounts for 32–55% of the entire polypeptides of the SLC4

transporters. Interestingly, the SLC4 like transporters in plants lack the large Nt domain found in

mammalian homologs, which has been found to be non-essential for the transport of anion exchangers

of the SLC4 family [105]. Bicarbonate transport at the molecular level has predominantly been studied

in the model diatoms P. tricornutum and T. pseudonana [82,106]. Ten putative bicarbonate transporters
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have been identified in P. tricornutum, which are similar to those found in mammalian protein families

(SLC4 and SLC26) [80].

Three different transport systems can be identified in diatoms (plasma membrane, plastid and

aquaporin). The first is the plasma membrane-based bicarbonate transport system (PtSLC4). Under

CO2-limiting conditions, PtSLC4-2 in the plasmalemma is induced, and its expression increases with

DIC uptake and photosynthetic activity. In the presence of a high concentration of sodium ions,

PtSLC4-2 transports bicarbonate and it has a saturation limit of ~100 mM sodium ions. PtSLC4-1

appears to be a sodium dependent bicarbonate transporter, and its function was inhibited by the

addition of an anion-exchanger inhibitor. The bicarbonate uptake rate of PtSLC4-2 is highest at pH 8.2,

equivalent to the pH of seawater [100]. PtSLC4-2 is involved in the direct uptake of bicarbonate, and

is actively involved in acquisition of extracellular DIC under low CO2 conditions, in P. tricornutum.

SLC4 homologs have also been characterized in T. pseudonana [100]. Two putative bicarbonate

transporters, PtSLC4-1 and PtSLC4-4, are found to be highly conserved in comparison to PtSLC4-2.

PtSLC4-1 and PtSLC4-4 are also induced specifically under CO2-limiting conditions, and it has been

suggested that these transporters contribute heavily to bicarbonate influx into the cell in seawater

in a CO2-limiting environment [101,107]. Other SLC4 homologs are currently being studied in the

chloroplast membranes of P. tricornutum, and more types of transporters are awaiting identification of

location and functionality [101]. It has been suggested that different SLC4 transporters translocate

bicarbonate from the environment to the chloroplast stroma [82]. A different group of SLC4 transporters

in the chloroplast envelope are thought to transport bicarbonate to the chloroplast stroma [80].

In plastid membrane-based HCO3
− transport systems, the DIC that is imported into the cytosol is

not able to freely diffuse into the chloroplast for fixation. This is due to the chloroplast membrane,

which is four-layered. At each of the four-layers, HCO3
− transporters should be present to regulate the

transport, aided by the CAs that should be present in close proximity to the chloroplast membranes

and the transporters [96,101]. However, such HCO3
− transporters are only proposed, and yet to be

identified in diatoms. From genome annotations in P. tricornutum, it has been elucidated that there are

three putative PtSLC26 genes, and seven PtSLC4 genes [100]. This displays the limited information

regarding its location, structure, and the overall functionality in the scheme of carbon transport within

the system. PtSLC4-6 and PtSLC4-7 genes have been found to be active and upregulated under high

CO2 and low CO2 conditions [100], implying that PtSLC4-6 and PtSLC4-7 act as DIC transporters, and

are involved in the regulation of the DIC flow from the cytosol to the plastid, and remains unaffected

by the ambient CO2 levels. Presently, the information regarding the mechanism of activity of the DIC

transporters, such as PtSLC4-6 and PtSLC4-7, still remains highly limited [101].

CO2 permeation through diatom membranes is very rapid [102], and this high permeability

may be, in part, due to the presence of channels such as aquaporins (AQPs) [101]. In the aquatic

environments, AQPs are ubiquitous water channels that have been known to facilitate the transport of

many small molecules such as CO2 and ammonia. AQPs are involved primarily in mechanisms that

are responsible for maintaining the transmembrane fluxes of important small molecules, that are yet to

be studied in marine photoautotrophic organisms. In silico analysis has revealed the presence of five

AQP orthologs in P. tricornutum and two in T. pseudonana [108]. It is also believed that lipid bilayers

being inherently permeable to CO2, also do present some resistance to diffusion that could be reduced

by the presence of AQPs, as a result of which DIC can be easily imported into the cell and fixed, albeit

with minimal energy expenditure.

3.3. Carbonic Anhydrase-Isoforms and Activation

The primary function of CAs is to interconvert CO2 and bicarbonate, to enable transport across

membranes and prevent loss of CO2. In addition, they are responsible for recovering CO2 leaked from

the chloroplast. This implies that a CCM is primarily regulated by CAs. CO2 uptake is due to the

internal CO2 deficit generated by CA-catalyzed hydration of CO2 to HCO3
− in the cytoplasm [101].

CO2 uptake by its synthesis from HCO3
− at close proximity to the cell surface can also be done by
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external CAs, located in the periplasmic space [109]. There is a complex plethora of possible carbonic

anhydrase isoforms from diatoms. They are found in diatoms, with varying capabilities in terms of

carbon absorption, assimilation and utilization. All of the identified CAs are at different stages of

confirmation, with respect to localization, functionalization and identity [82]. Ten putative CA genes

have been identified in P. tricornutum [110], five α-CA, two β-CAs, two γ-CAs and one θ-CA [103,111].

Notably, α-CAs are located at the four-layered chloroplast membrane, β-CAs in the pyrenoid, γ-CAs

in the mitochondria and the θ-CA in the thylakoid lumen. CA activity has only been verified with two

β-CAs and one θ-CA [101]. There are no free stromal CAs, no external and no cytosolic CAs identified

in P. tricornutum [111].

CAs are metallo-enzymes, and zinc is essential for their activity [80]. However, several coastal

diatoms have cadmium containing CAs, and this is considered an evolutionary adaptation to low zinc

in marine habitats, but the cadmium at the catalytic site of the ζ-CA can be exchanged for zinc [112,113].

CA enzymes are ubiquitous in nature, and provide an example of convergent evolution. They appear

to have a diverse role in many biological processes, including CO2 fixation, pH homeostasis, and the

transport of CO2/bicarbonate. Seven distinct classes of CAs have been identified, i.e., α, β, γ, δ, ζ, η,

and θ-Cas, out of which α, β, γ CAs are found in higher land plants, but δ and ζ CAs are restricted to

marine diatoms [80]. The θ-CA has been found to be widely distributed in algae and cyanobacteria,

and it has been reported to be essential for photosynthesis in P. tricornutum [111].

Two pyrenoidal β-carbonic anhydrases (CAs) have already been isolated and characterized in P.

tricornutum [102,103,114], but the actual reason for the existence of different CAs is not known, but the

diversity could be due to different locational requirements. New subsets of CAs in T. weissflogii and T.

pseudonana, have been identified. They are δ-CAs, ζ-CAs and θ-CAs [111,113,115–117]. It is predicted

that P. tricornutum lacks periplasmic CAs, however surprisingly possesses an efficient CCM, which

may suggest that periplasmic CAs are not necessary for the operation of a CCM in microalgae [82].

Furthermore, diatom-specific adaptations in chloroplast metabolism highlight beneficial traits. These

include the completion of tocopherol synthesis via a chloroplast-targeted tocopherol cyclase, a complete

chloroplast ornithine cycle, and the chloroplast-targeted proteins involved in iron acquisition and CO2

concentration not shared between diatoms and their closest relatives in the Stramenopiles family [118].

Ambient CO2 is required to trigger the transcription of ptca1, and light affects the extent of

acclimation [119]. An appropriate combination of CO2/cAMP-responsive elements i.e., CCRE1/2 or

CCRE2/3 at proper distances from the minimal promoter are required as a potential target of the

Zip protein PtbZIP11 for an effective CO2 response of the ptca1 gene [120]. The detailed analysis of

the promoter region of ptca2 appears to indicate that both CCRE2s are cis-elements governing the

CO2/light response of ptca2 promoter [120]. The transcriptional activation of the two ptca promoters in

CO2 limitation was evident under illumination with a photosynthetically active light wavelength. An

artificial electron acceptor from the reduction side of PSI efficiently inhibited ptca promoter activation,

while neither inhibition of the linear electron transport from PSII to PSI, nor inhibition of ATP synthesis,

showed an effect on the promoter activity, strongly suggesting a specific involvement of the redox level

of the stromal side of the PSI in the CO2/light cross talk [121].

3.4. Pyrenoid Matrix

The pyrenoid is a protein body containing RuBisCO found in most algal chloroplasts (in the

stroma) and RuBisCO is often coated with a starch sheath. Pyrenoids are associated with operation of

CCM. The main function of pyrenoids is to act as centers of CO2 fixation, generating and maintaining

a CO2 rich environment around RuBisCO. Bicarbonate supply could be used to elevate CO2 reacting

with CA in the pyrenoid [92]. In diatoms, pyrenoids are generally present, but in some species, their

presence can be variable, even within a single genus.

There is a strong correlation between the presence of a pyrenoid and an active CCM in algae [92,100].

However, the presence of a pyrenoid does not always confirm the operation of a CCM. Of all the

microalgae examined in any detail, it is clear that those with the highest affinity for CO2 and clear
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CCM characteristics have a pyrenoid, and most probably a single chloroplast per cell. This is true of

both the green and non-green algae. In the pyrenoid, bicarbonate is converted into CO2, resulting in a

localized elevation in CO2 concentration, favoring carboxylation by RuBisCO, over oxygenation. The

three-dimensional structures of the chloroplast-pyrenoid in C. reinhardtii have been revealed, using

in situ cryo-electron tomography [122]. It has been found that some of the thylakoid membrane can

penetrate into the pyrenoid, called the pyrenoid-tubules and may have a role in the carbon capture

process. The diatom, P. tricornutum, has a pyrenoid-based CCM, and contains a cluster of the genes

homologous to C. reinhardtii (LCIB), PtLCIBI-4 [97].

As carbon availability is often the limiting factor for microalgal growth, most microalgal

chloroplasts contain a pyrenoid with a high concentration of RuBisCO, for an effective CCM [123].

In addition, CO2 responsive CAs occur in the pyrenoid of P. tricornutum [103]. For CO2 fixation

by RuBisCO, the transported HCO3
− has to be converted to CO2. CO2 can also be produced in P.

tricornutum, by importing HCO3
− into the pyrenoid-penetrating thylakoid lumen. There, the activity

of θ-CA and the low pH converts HCO3
− to CO2 for RuBisCO. β-CAs can also convert bicarbonate into

CO2, thereby increasing the CO2 concentration around RuBisCO [101]. The amount of CO2 supplied to

RuBisCO is fixed, but the rest of the CO2 leaks out of the chloroplast [96]. The leaked CO2 is recovered

by CA-catalyzed conversion to HCO3
− [82]. P. tricornutum lacks cytosolic and stromal CAs, but has

numerous chloroplast envelope CAs. Such a design implies that the main recovery points of carbon

are in the four-layered chloroplast envelope [103]. The essential pyrenoid component 1 (EPYC1) is a

low complexity repeat protein which links RuBisCO to form the pyrenoid. EPYC1 is of comparable

abundance to RuBisCO, and colocalizes with RuBisCO throughout the pyrenoid. EPYC1 is essential

for normal pyrenoid size, number, morphology, RuBisCO content and efficient carbon fixation at low

CO2. The most abundant proteins in the low CO2 pyrenoid fraction are RuBisCO large (rbcL) and

small (rbcS) subunits, and RuBisCO activase (RCA1) [124]. It has been found that pyrenoid-based

CCM emerges as the most effective in achieving the greatest elevation of CO2 [92]. CCMs increase the

cellular CO2 concentration around RuBisCO, resulting in a higher carbon fixation rate in a CO2 limited

environment. To avoid carboxylation/decarboxylation, and to ensure compartments in which CO2 can

be concentrated for carbon fixation by RuBisCO, diatoms may utilize their pyrenoid and four-layered

plastids [125].

3.5. RuBisCO and Its Activation: The Effect of Glycolate

CO2 is of limited supply to marine phytoplanktons, because of the low partial pressure of CO2

in the atmosphere, a faster CO2 hydration rate compared with bicarbonate dehydration rate, and

the high salinity and alkalinity of seawater [125]. RuBisCO in diatoms have a CO2 half saturation

constant of 23–68 µM [126]. The concentration of CO2 in seawater is 10–15 µM at pH 8.2, and

therefore diatoms are thought to operate a CO2-CCM, to improve the efficiency of carbon fixation [125].

Photosynthesis requires the carboxylation of RuBP by RuBisCO, but photorespiration occurs when

RuBisCO oxygenates, RuBP forming the toxic by-product glycolate which needs to be removed by the

cell. Glycolate accumulation, as a result of photorespiration, appears to influence RuBisCO activity

more than the depletion of its substrates (CO2 or RuBP) [127]. Photorespiration has been found to

reduce the photosynthetic efficiency by 20–50% in C3 crops [128]. RuBisCO requires the concentration

of CO2 to be more than 25 µM for carbon fixation, but the rate of conversion of HCO3
- to CO2 is

generally found to be slow [92,126]. The catalytic step involving RuBisCO is the rate limiting step in the

Calvin-Benson-Bassham (CBB) cycle. RuBisCO catalyzes the carboxylation of ribulose-1,5-bisphosphate

(RuBP), to synthesize two molecules of 3-phosphoglycerate (PGA). RuBisCO has a very low affinity

for CO2. Unlike other enzymes, the concentration of RuBisCO does not change the flux towards CO2

fixation. The process is affected by the relative concentration of CO2 and O2 at the active site. The

rate of CO2 diffusion is low in aquatic systems, and the CO2 concentration is often below the required

threshold of RuBisCO. The ratio of CO2 fixation rate and the photosynthetic electron transport rate

regulate RuBisCO activity. For catalysis to occur, RuBisCO should be activated first. This happens
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with the help of RuBisCO activase (RCA). Otherwise, CO2 binds at a lysine residue in RuBisCO for

carbamylation. A change in the conformation of RuBisCO is brought about when RCA binds to the

inactive RuBisCO and ATP hydrolysis occurs. This results in the synthesis of a highly active form of

RuBisCO, based on cellular requirement.

To maximize the performance of RuBisCO in photosynthetic CO2 fixation, the kinetic properties

of the enzyme have evolved over time. RuBisCO is a highly diverse biomolecule, four forms of which

have been identified to date (I, II, III and IV), categorized based on the differences in the primary

polypeptide sequence, along with the differences in the number of small and large subunits. RuBisCO

form I is the most common form of RuBisCO found in nature. RuBisCO form I is further sub-divided

into four subforms (A, B, C and D), as a result of their evolution. Forms IA and IB (“green-type”) are

found in higher plants, cyanobacteria, chlorophyceae and streptophytes [129,130], whilst forms IC and

ID (“red-type”) found in haptophytes, cryptophytes, rhodophytes and the heterokontophytes [129,131].

Which form of RuBisCO is better is a matter of further research, as both the RuBisCO types have their

own preferences in terms of CO2 needs in the environment. Currently, red algal RuBisCO is being

studied in depth for crop improvement strategies, and is assumed to have better kinetics [132].

RuBisCO enzymes from microalgae have evolved a higher affinity for CO2 when the algae have

adopted a strategy for CO2 fixation that does not utilize a CCM. This appears to be true for green

and red algae form I RuBisCO enzymes. However, the red form I RuBisCO enzymes present in

non-green algae appear to have reduced oxygenase potential at ambient concentrations of O2. This has

resulted in a photosynthetic physiology with a reduced potential to be inhibited by O2 and a reduced

need to deal with photorespiration. Red form I RuBisCO enzymes appear to achieve superior kinetic

characteristics when compared with the RuBisCO of C3 higher plants, which are derived from green

algal ancestors [92]. The green-type RuBisCO activase functions as a canonical hexameric AAA +

ATPase [133,134], and its higher plant homologs mostly occupy far larger polydisperse oligomeric

states. RuBisCO catalyzes the fixation of atmospheric CO2 in photosynthesis, but tends to form inactive

complexes with its substrate ribulose 1,5-bisphosphate (RuBP). In plants, RuBisCO is reactivated by

the AAA + ATPases (associated with various cellular activities) protein RuBisCO activase (Rca), but

no such protein is known for the RuBisCO of red algae [135]. Understanding RuBisCO activation

may facilitate efforts to improve CO2 uptake and biomass production by photosynthetic organisms,

by making more carbon available to the system and inducing utilization, being incorporated later

into biomass.

The active site of the RuBisCO molecule is formed from the N-terminus of one of the monomers and

of the C-terminus of another subunit, therefore having four dimers arranged together, in an optimum

conformation with ideal structural stability [130,136,137]. It is also noteworthy that the conformational

changes affect the specificity factor (CO2/O2) of the RuBisCO enzyme, which is an important kinetic

parameter. Premature binding of RuBP and other molecules such as other sugar phosphates inhibits

RuBisCO activity; the biomolecule is also dogged by slow turnover rate, competition from oxygenase

activity and low affinity towards CO2 [129,138]. Coccolithophores and diatoms, as a virtue of their

evolutionary process, have obtained the highly selective Rhodophyte form of 1D RuBisCO. The 1D

RuBisCO form is better adapted to the oxygenic environment with a higher O2/CO2 ratio. Furthermore,

the 1D RuBisCO form is economical, and requires lower energetic or nutrient investment in a CCM

to obtain high carboxylation rates under environmentally high O2/CO2 ratios [139]. The CCM of

diatoms are highly diverse, and are capable of concentrating very high levels of CO2 in the pyrenoid.

Diatom RuBisCO also displays very high variation in Michaelis constant for CO2, KC (23–68 µM),

specificity for CO2 over O2, SC/O (57–116 mol mol−1), and Michaelis constant for O2, KO (413–2032

µM), in comparison to plant and other algal RuBisCOs [126].

3.6. Evidence of C4 Metabolism

There are three main carbon fixation mechanisms employed by photosynthetic organisms: C3, C4

and Crassulacean acid metabolism (CAM), which have been extensively reviewed elsewhere [80,140].
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The C4 type photosynthesis, as a carbon concentrating mechanism, has evolved more than 60 times, to

address the inefficiencies of the ancestral C3 photosynthetic pathway. Inherent in the C4 pathway is a

high rate of photosynthesis at low levels of stomatal conductance, especially at the low levels of CO2 in

the atmosphere [141].

Less than 4% of terrestrial plant species are believed to have a C4 pathway. The C4 pathway

involves a CO2-CCM around RuBisCO, eliminating the oxygenase function of RuBisCO, and reducing

the wastage of carbon assimilation to photorespiration [125]. The operation of a C4 pathway overcomes

the tendency of RuBisCO to fix oxygen rather than CO2, and avoids the production of glycolate, thus

minimizing photorespiration. C4 plants provide a CO2 pump which results in an increased CO2/O2

ratio at the site of RuBisCO, resulting in decreased oxygenase activity and RuBisCO operates at close

to its Vmax, whereas RuBisCO in C3 plants only operates at around 25% of the Vmax [142]. RuBisCO in

C4 plants is more efficient in terms of carboxylation than C3 plants; a higher light harvesting efficiency

is observed as saturation under high light is avoided and higher nitrogen utilisation is observed,

because less RuBisCO, and thus nitrogen, is required. The C4 CCM pathway in higher plants uses

PEP to catalyze the first reaction in inorganic carbon fixation and requires compartmentalization

called Kranz anatomy (bundle sheath and mesophyll areas). Comparatively, in single-celled plants,

dimorphic chloroplasts contain a central compartment and peripheral chloroplasts. In C4-containing

single-celled plants, the release of CO2 in the direct vicinity of RuBisCO is critical for the activity of

an efficient C4 photosynthesis [125]. Understanding microalgae with a C4 mechanism could enable

further developments to improve photosynthesis and allow cultivation under more extreme conditions.

Of the few diatoms that have features of a biochemical CCM, T. weissflogii and P. tricornutum are

the only ones that have been investigated in detail, to determine if they undergo C4 photosynthesis. P.

tricornutum has a naturally slow rate of photorespiration. T. pseudonana and P. tricornutum both possess

several carboxylases and decarboxylases, which could be used for a C4-like CCM. Both diatoms have

a pyruvate phosphate dikinase (PPDK), which converts pyruvate into PEP, the initial three carbon

molecule that accepts HCO3
− in the C4 CCM of higher plants [125]. In low CO2 concentrations, T.

pseudonana has been found to use a “closed loop biochemical model”, an atypical C4-type CCM, where

the back-reaction of the pyruvate carboxylation was presumed to be responsible for CO2 release in the

plastid [93]. During the transition from growth to lipid accumulation, pyruvate carboxylase in the

mitochondrion is utilized as the primary inorganic carbon fixation stage in a C4 pathway, and malate

undergoes decarboxylation by the malic enzyme in the peroxisome to concentrate CO2 for diffusion

into the chloroplast [143].

Whilst genome analysis has indicated that P. tricornutum possesses the necessary enzymes for

operating a C4 pathway, recent evidence has suggested that a C4-like CCM is not present [125].

Neither radiolabeling with 14C nor PPDK silencing experiments via RNAi with the aim of identifying

primary products of inorganic carbon fixation were found to support the presence of a C4-like CCM

in P. tricornutum, T. pseudonana, T. weissflogii, As. Formosa, N. pelliculosa [86]. None of the known or

investigated decarboxylases nor a cytosolic PEP carboxykinase (PEPCK) has been found in the plastid

(a prerequisite for a single cell C4-type CCM pathway). The CCM efficiency of P. tricornutum is not

affected by a reduction in PEPCK activity, and therefore PEPCK does not appear to contribute to

the CCM. It has been concluded that the C4-like CCM in P. tricornutum does not have an essential

role in CO2 fixation, and the enzymes investigated are more likely involved in similar functions (e.g.,

gluconeogenesis, amino acid synthesis or replenishing the TCA cycle), seen in C3 plants [125].

In photosynthesis, the efficient conversion of CO2 into organic matter requires a tight control

of the ATP/NADPH ratio which, in other photosynthetic organisms, relies principally on a range of

plastid-localized ATP generating processes. Diatoms can regulate ATP/NADPH through extensive

energetic exchanges between plastids and mitochondria. This interaction comprises the re-routing of

reducing power generated in the plastid towards mitochondria and the import of mitochondrial ATP

into the plastid, and is mandatory for optimized carbon fixation and growth [144].
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In summary, as can be seen from the molecular mechanisms highlighted above, our knowledge

of CO2 fixation in diatoms is informed largely by investigations carried out in a handful of diatoms,

and extrapolated from plants and other microalgal species. Given the diversity in diatoms and

their metabolic capabilities, molecular level data from other diatoms under specific industrial CO2

sequestering environments would be required to develop a broader picture of the diatoms CO2

utilization capabilities. Nevertheless, the adaptive nature of these organisms suggests a broader

capacity to CO2 uptake and routing of fixed carbon to value-added products. A few innovative studies

have come up recently for improving photosynthetic efficiency in diatoms. One of these strategies

is the use of a high silicate medium along with blue light under high light conditions (255 µE m−2

s−1) for fucoxanthin production in P. tricornutum [145]. Another is the application of intracellular

spectral recompositioning of light (ISR) on a genetically engineered P. tricornutum, with a green

fluorescent protein (GFP) to enhance photosynthetic efficiency (by 50%) and biomass productivity,

influencing fucoxanthin production in diatoms [146]. In addition, enhanced lipid production in

genetically modified P. tricornutum stable strains has been achieved by the use of gene editing tools

such as meganucleases and transcription activator-like effector nucleases (TALEN) to achieve targeted

disruption of the UDP-glucose pyrophosphorylase gene, a step involved in carbohydrate accumulation

that enabled routing carbon to lipid accumulation [147].

4. Opportunities and Challenges of CO2 Sequestration by Diatoms—Direct Air Capture, Pure
CO2 or Flue Gases

CO2 is an indispensable resource for autotrophic organisms such as diatoms. Effective utilization

of diatoms for CO2 sequestration in biomanufacturing requires in-depth consideration of issues, such

as CO2 supply, CO2 source and the optimization of conditions for species-specific CO2 uptake.

CO2 supply is an important aspect to be considered for growing autotrophic microorganisms.

CO2 can be supplied in either the solid form (as carbonate or bicarbonate salts) or in the gaseous form

to autotrophic organisms. There are three potential gaseous sources; (a) flue gases or product streams

from industry, (b) purified CO2 available in cylinders and (c) direct air capture. Flue gas, a by-product

of industrial production and power generation, can be a useful CO2 resource. Flue gas from cement

manufacturing has been tested on the diatom S. marinoi, and found to be non-toxic. In fact, high quality

of microalgal biomass (lipids 20–30% DW, proteins 20–28% DW, carbohydrates 15–30%(DW)) and a

higher biomass productivity has been demonstrated with flue gas addition, compared to aeration with

atmospheric level of CO2 [148]. Flue gas from industry (which might include SOx, NOx and other

gases along with CO2), typically contains CO2 in the range of 6–15%, whilst product streams, such as

from ethanol manufacturing and biogas, typically contain CO2 in the range of 20–40%. CO2 can also be

supplied to the diatoms directly from air (which contains ~0.04% CO2), in the form of pure CO2, or CO2

mixed with air or nitrogen in cylinders (available up to 100% CO2). A challenge in providing CO2 from

air is in arriving at economically viable propositions for extracting the CO2 from air. A commercial

plant, where CO2 is sucked from the air (before being resold), had opened up in Switzerland. It was

founded by Climeworks (https://www.climeworks.com/); the direct air capture (DAC) plant is capable

of removing 900 tons of CO2 from ambient air annually. Unlike capturing emissions from industrial flue

stacks, the technology by Carbon Engineering (https://carbonengineering.com/) captures CO2 directly

out of the air. From a pilot facility in Squamish, Canada they had fully demonstrated the Direct Air

Capture (DAC) technology, and are now commercializing. The SOLETAIR project (https://soletair.fi/)

is also involved in direct CO2 capture from the air. For a successful diatoms-based bio-venture, the

project should be environment friendly, sustainable, feasible on a large scale, and preferably work

around emerging technologies such as DAC.

Diatoms are mostly cultivated either in submerged or immobilized reactors. There are many

challenges in supplying CO2 for cultivation and administered by the bubbling method. CO2 bubbled

into the medium needs to be dissolved and accessible to the diatoms. At high supply rates, and in

saturated media, most of the CO2 supplied is released back into the atmosphere [84], due to the low

https://www.climeworks.com/
https://carbonengineering.com/
https://soletair.fi/
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CO2 solubility and low retention potential of CO2 in the medium. Moreover, the larger the bubble size,

the greater the buoyancy and faster the release of CO2 bubbled out from the medium (and hence, lost

from the system). The CO2 utilization of photoautotrophic organisms is also slow and limited. Factors

which affect CO2 utilization efficiency and growth include CO2 concentration, bubble size, aeration

rate, mixing time, and the residence time of the bubble. Ensuring an extensive air/liquid interface

is essential for ensuring good CO2 mass transfer [149]. The CO2/O2 balance is also a key factor in

attaining a higher photosynthetic rate. The knowledge of CO2 uptake in most of the diatom species is

fragmentary. For CO2 fixation, CO2 can be injected as a gas into the culture, dissolved in a separate

absorption column, or added as an alkaline solution in the form of bicarbonate [83]. Direct injection of

CO2 is known to lower the pH of the culture, and can adversely affect growth and biomass productivity

at high CO2 concentrations. There is a body of literature on high CO2 tolerance for cultivation of

diatoms with improved product yields. For example, the addition of 10% CO2 (v/v) into the cultures of

T. weisflogii and C. cryptica resulted in doubling the lipid content in comparison to air sparging, but

induced only a modest increase of biomass. In the same set up, CO2 also stimulated lipogenesis in

both of the diatoms (T. weisflogii and C. cryptica). Moreover, TAG became the major lipid component,

and accounted for more than 60% of total glycerolipids in C. cryptica. [150]

Approaches such as microbubble generation [151] have enabled increased surface area for effective

mass transfer in dissolving gaseous CO2 into the culturing medium. There are also a variety of

cultivation systems that focus on the method of CO2 supply into the cultivation medium. The

optimization of carbon use in pilot-scale outdoor tubular photo-bioreactors by application of effective

control techniques, such as model-based predictive control (MPC), for reducing loss of CO2 along with

total supply of CO2 volume, has been reported to potentially increase productivity by 15% and reduce

the cost of producing biomass by >6% [152]. Different requirements may need to be considered for

the supply of CO2 into open cultivation systems, such as lakes, lagoons, ponds, constructed raceway

ponds and closed systems, such as tubular photo-bioreactors, flat panel photo-bioreactor, fermenters,

cascade raceways, raceways and Tic bag photo-bioreactors.

In its solid form, HCO3
− can be a source of carbon. Bicarbonate is the main form of inorganic

carbon utilized by P. tricornutum [153]. Sodium bicarbonate is readily available in large quantities due

to coal fired power stations, using a CO2 scrubbing system and generating bicarbonates. Bicarbonate is

also easier to transport than gaseous CO2 [123]. Sodium has been found to increase the affinity for

inorganic carbon and facilitate the utilization of bicarbonate in P. tricornutum [154]. Sodium ions can

enhance the rate of photosynthetic oxygen evolution, which could be due to the presence of a sodium

dependent bicarbonate-transport system, and as the internal inorganic-carbon concentration is lower

in relation to the external concentration, the effect of sodium is possibly at the plasmalemma [95]. P.

tricornutum has been shown to have a similar growth rate and CO2 uptake rate at extreme pH values

compared with neutral pH [83]. Bicarbonate feeding was found to reduce the loss of CO2 to the

environment compared with gaseous CO2 supply, however, the growth rate was reduced, along with

the biomass yield [83]. Three different concentrations of NaHCO3 (5, 15 and 25 mM) have been added

at one of two different culturing phases, either at day 0 (during bioreactor inoculation) or at day 4

(~24 h before nitrate depletion). The cultures supplemented with 15 mM NaHCO3 accumulated more

carbohydrate than the control culture. The supplementation of 25 mM NaHCO3 led to higher protein

content for unknown reasons (Mus et al. 2013). Nitzschia plea is known to tolerate high concentration

of NaHCO3 (0.15 mol/L) and high pH (>10) [155].

A diatom that has the machinery for both HCO3
− uptake and CO2 capture will be indispensable

for industrial applications, and enable the development of a sustainable biomanufacturing process.

There are a few diatoms that are known to have the capacity to utilize both CO2 and HCO3
−. N. palea

kutzing is a very interesting diatom in this regard, and its cells were found to be capable of using HCO3
−

in addition to gaseous CO2, and the CO2 enrichment decreased their affinity of HCO3
− and CO2 [156].

Another diatom, Chaetocerous muelleri, has the capacity to use bicarbonate to acquire inorganic carbon

through one or multiple CCM. It also has the capacity to use HCO3
− to acquire inorganic carbon,
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through one or multiple pathways [157]. Storage of DIC is also an area that requires detailed study in

diatoms, an example being the preference of HCO3
− by Cyclotella sp. and Nitzschia sp. [158].

The carbon capture potential of a diatom is directly related to its CCM design and the efficiency of

its CCM enzymes, such as CAs and RuBisCO. The regulation of external CA activity and photosynthetic

CO2 affinity are dependent not only on CO2 concentration, but also on light availability, as observed in

S. costatum. The presence and activity of external CAs decide how well a CCM is designed. External CA

activity has been detected in cells grown at 4 µmol L−1 CO2, but not at 31 and 12 µmol L−1 CO2, with its

activity being about 2.5 times higher at high irradiance than at low irradiance. Further, the development

of higher external CA activity and CO2 affinity under higher light level could sufficiently support the

photosynthetic demand for CO2, even at a low level of CO2 [159]. Light has a pivotal role to play in

CCM efficiency. At saturating light intensities, S. costatum cleve and P. tricornutum Bohlin maintain

maximum photosynthetic rates under low CO2 levels, but P. tricornutum is well adapted to rapid

changes in irradiance and CO2 availability. In P. triconutum and Nitzschia ovalis, acetate has been found

to be the preferred carbon source for the formation of the sterols in the cytoplasm, via the mevalonate

pathway. Also, CO2 was regarded as the main source for phytol biosynthesis in the chloroplasts, via

the mevalonate independent methyl erythritol 4-phosphate pathway. Both the diatoms, P. triconutum

and N. ovalis, have been found to display the same compartmentation for isoprenoid biosynthesis, as

previously found in higher plants, the red alga Porphyridium cruentum and the chrysophyte Ochromonas

danica [160]. The extracellular carbohydrates of the diatom Cyclotella meneghiniana have been found

to increase with elevated CO2 and temperature [161]. Inlet pCO2 have been found to enhance lipid

production along with chitin formation in Cyclotella sp. in a photobioreactor setup [162].

Along with the biology of a diatom, the carbon capture potential is also dependent on the culture

health and viability. Moreover, the efficiency of its CCMs depends on the physical, chemical and

biological conditions in the culturing environment. The amount of carbon captured in the system is

directly proportional to the density and growth phase of the diatom. For diatoms, the literature on

CO2 fixation is sparse. Buono et al. (2016) had found that there was no linear relationship between

the CO2 added to the culture and the CO2 assimilated by the microalga [30]. A significant amount

of CO2 was found to be lost to the atmosphere when the gas was added to the culture. It has been

found that closed systems, compared with open ponds, have a better ability to assimilate CO2 (a

44.2% reduction in CO2 fixation was observed in open ponds) [30,149], and had resulted in higher CO2

fixation, biomass productivity, and a higher photosynthetic efficiency [30]. A high CO2 fixation rate in

P. tricornutum was observed in 1 L cultures when supplemented with 15% (v/v) CO2, resulting in a CO2

fixation rate of 0.282 g L−1 d−1, but the biomass productivity was low (0.15 g L−1 d−1) [85]. pH plays

an interesting role, as evident when the culture pH under 15% CO2 (pH 6.3) compared to a buffered

system (pH 7) did not significantly affect the biomass productivity [85]. P. tricornutum takes up HCO3
−

predominantly, whilst T. pseudonana takes up CO2 [86].

The species and strain of diatom to be used for large scale carbon capture needs to be able to

grow under a day-night cycle, be suitable for large scale cultivation, and can be coupled directly with

the CO2 flue gas from a power plant [149]. Utilizing flue gases for microalgal cultivation would be

beneficial as, in addition to high CO2, it also contains NOx and sulfur dioxide (SO2), that can be used

by the diatom as a nitrogen and sulphur source. However, there is a problem associated with it, as

shown for P. tricornutum, where the addition of SO2 at 50 ppm resulted in the growth being slightly

inhibited, and a further increase to 400 ppm caused a cessation of growth [85]. When CO2 from flue

gas is used, a high pH is required to ensure the bicarbonate remains in solution and does not dissipate

into the atmosphere [83].

An ideal cultivation system would enable appropriate carbon supply, carbon uptake and CO2

fixation using diatoms. The construction of a suitable PBR appears to be essential for successful CO2

supply, reduction in CO2 wastage and carbon sequestration. Carbon sequestration by microalgae is

itself dependent on characteristics of light (intensity, incident angle, photo period and wavelength) and

carbon optimization, both required to improve photosynthesis for CO2 uptake. Open ponds are often
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employed worldwide, due to their economic benefit, but are constrained by low biomass productivities,

issues with evaporation, CO2 diffusion to the atmosphere, a lack of temperature control, insufficient

light transmission, and vulnerability to contamination. Comparatively, flat-plate and tubular PBRs

have been shown to have a large surface area, good mixing, mass transfer and short internal light

paths. However, tubular PBR systems can be constrained in their size and length, because of oxygen

build up and CO2 depletion [149]. Air-lift PBRs have been reported to have a higher CO2 fixation rate,

due to their better circulation and mass transfer through the use of risers and downcomers [163], but

bubbles can cause a high attenuation of light and can create shear when they break. Several strategies

have been employed, like degassers, air outlets through water traps etc. in PBRs to strip this excess

oxygen from the culture medium with air or inert gases [164]. However, more efficient methods are

required to alleviate the effects of O2 inhibitory effects during microalgal growth. P. tricornutum has

been successfully cultivated on a large scale (55 L) in a flat-plate customized photobioreactor, for the

simultaneous synthesis of storage lipids, EPA, fucoxanthin and chrysolaminarin [56]. P. tricornutum has

also been cultivated outdoors in 800 L bubble column PBR [165], and in 1250 L indoor open raceway

pond [58].

5. Bio-Manufacturing with CO2 Uptake

One of the diatoms which has been extensively evaluated for potential as a bio-based manufacturing

chassis is P. tricornutum, a versatile diatom that has the capacity to produce a range of natural

(fucoxanthin, EPA, DHA, oil, brassicosterol, and chrysolaminarin) and genetically engineered products

(lupeol, betulin, arachidonic acid, antibodies, and polyhydroxybutyrate) [23]. It is a well characterized

diatom, and can be routinely cultivated in the laboratory, and has been shown to perform well at

scale (>1250 L) [58]. P. tricornutum is a saltwater diatom and offers potential as a sustainable cell

chassis for multiple products of interest, and capable of performing well in constrained environments,

including low light and high pH [83,166]. It has a relatively well annotated genome and demonstrated

cases of downstream processing for the sequential extraction of multiple products of interest using a

bio-refinery approach [155].

Another diatom, Chaetocerous gracilis, has been shown to accumulate TAG without nutrient

deprivation, and has a great potential as a biofactory [167]. CO2 addition is associated with increased

protein content and lowered carbohydrates, but had no effect on lipid content in the marine diatom

Chaetoceros cf. wighamii [168].

The marine diatoms, as a group, have potential for high CO2 fixing capacity, being naturally

evolved for this function. However, further elucidation of carbon fixation is required before strategies

can be developed to maximize carbon uptake and route fixed carbon to products of value in industrial

scale operations. Our knowledge of molecular pathways and strategies to improve carbon uptake

are rudimentary at this stage, and will need to be developed for more diatoms than has been

available so far. More information will enable ways to maximize CO2 uptake and route it effectively,

to increase the productivity of diverse products. Combined mixotrophic approaches might help

further. Improvements in cultivation, PBR development, and strategies, including adaptive laboratory

evolution, omics analyses and targeted genetic engineering, will be useful in taking the investigations

forward towards sustainable implementations.

The steady states of specific intracellular levels of carbon metabolic intermediates affect the yield

of bio-based manufacturing products, and can be increased by higher amounts of CO2 concentrations.

Acetyl CoA is the precursor for lipids, carotenoids, exopolysaccharides (EPS) and other valuable

metabolites in most organisms, and shunting carbon through this metabolite would be a useful way

to elevate product yields. Supplementation of 2.6% CO2 has been shown to lead to increased Acetyl

CoA in P. tricornutum, with a 41, 25% and 27% increase over the air-sparged controls in the lag, log

and stationary phases, respectively [143]. Acetyl CoA (AcCoA) has also been shown to increase with

exposure to increased CO2 concentrations, and in turn lead to improved lipid accumulation [169].

However, long term exposure to elevated pCO2 has been shown to have a detrimental effect on the
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diatom Cylindrotheca fusiformis [170]. Carbohydrate yields in different EPS fractions increased with

elevated pCO2 exposure. Although the proportions of monosaccharide sugars among total sugars did

not change, higher abundances of uronic acid were observed under high pCO2 conditions, suggesting

the alteration of EPS composition [171]. An increase in CO2 supplied from 400 ppm to 20,000 ppm has

been shown to lead to a general increase in biomass productivity, by 11%, 28% and 21%, respectively, in

T. pseudonana, P. tricornutum and N. pelliculosa (seawater strain), in the exponential phase, when other

nutrients are expected to still be available in sufficient quantities [28]. Such positive results open up

new avenues for CO2 capture.

There are many advantages of culturing diatoms for large scale cultivation, especially those from

the marine habitat. Sea water can be used as the culturing medium, thereby preventing the usage

of scarce freshwater resources. Diatoms are robust organisms, competitive, and can be cultivated

in less stringent and non-sterile conditions. They are encased with a silica layer that helps them

to evade predators and grazers [172], except the less silicified oval stage of P. tricornutum [173,174].

The strong silica frustule may also help them to maintain structural integrity in the rough seas, and

provide buoyancy for the cells to access nutrient and light enriched surfaces [175]. This can also

create density, enabling implementable harvesting protocols. However, exposure to pests leading to

cultivation crashes and subsequent economic losses still require addressing and the development of

innovative solutions. With an ever-increasing human population, more food will need to be produced

and more energy will be consumed as a result. In a transition to a bio-based economy with sustainable

solutions, diatoms have the potential to be the futuristic and sustainable source for CO2 sequestration

and bio-based manufacturing.

6. Conclusions

Diatoms are responsible for 20% of the global CO2 fixation, a major greenhouse gas responsible

for climate change. In addition to sequestering CO2, diatoms can be utilized to produce a plethora of

commercially viable products for food, feed, fuel, and nutraceuticals/pharmaceuticals applications.

There is a diversity of products with market potential, ranging from high value low volume to low

value high volume productions. In order to accommodate the diverse requirements of value addition

and still be effective contributors to CO2 mitigation, the development of strategies along the biorefinery

concept will be necessary. Much of our knowledge on diatoms for use in carbon sequestration and

biomanufacturing has been built on a handful of species, P. tricornutum being the dominant one.

Carbon metabolism in more diatom species requires elucidation, especially with respect to exposure

to industrial CO2 supply compared to the natural environment, and the bottlenecks in the CCM and

the overall carbon capture pathways understood. These remain as challenges to be overcome for

diatoms to be developed as a microbial cell factory for a suite of products of commercial interest, whilst

simultaneously making the most of their CO2 utilizing capacity for CO2 sequestration strategies. There

is a huge potential in diatoms for carbon capture and utilization and in bio-based manufacturing that

awaits research and development.

Author Contributions: D.S., T.O.B. and S.V. conceived the paper and contributed equally; F.S. provided his expert
advice on carbon assimilation in microalgae and contributed to writing the manuscript, D.S., T.O.B. and F.S.
wrote the manuscript with guidance from S.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was possible thanks to funding by UKRI—BBSRC (grants BB/K020633/1,
BB/l013789/1-Phyconet PHYCBIV-13, and PHYCBIV-28) and UKRI-EPSRC (grants EP/E036252/1 and DTA 1912024
(studentship to T.O.B)), PhD studentship to D.S. (Government of India), and F.S. (Malaysian government).

Acknowledgments: The authors are grateful to the funders.

Conflicts of Interest: The authors declare no conflict of interest.



Biology 2020, 9, 217 21 of 29

Abbreviations

CO2 carbon dioxide

CCM carbon concentrating mechanism

CA carbonic anhydrase

RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase

PBR photobioreactor

TAG triacylglycerol

DIC dissolved inorganic carbon

SLC4 solute carrier 4

AQPs aquaporins
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