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Temperature robustness in Arabidopsis circadian clock models is facilitated by repressive interac-
tions, autoregulation, and three-node feedbacks
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• Temperature dependence is incorporated in a range of circadian clock models

• Key network features allowing temperature compensation are identified

• These features are tested via a set of simple randomly parameterised networks
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A B S T R A C T

The biological interactions underpinning the Arabidopsis circadian clock have been systematically
uncovered and explored by biological experiments and mathematical models. This is captured by a
series of published ordinary differential equation (ODE) models, which describe plant clock dynamics
in response to light/dark conditions. However, understanding the role of temperature in resetting the
clock (entrainment) and the mechanisms by which circadian rhythms maintain a near-24 h period
over a range of temperatures (temperature compensation) is still unclear. Understanding entrainment
and temperature compensation may elucidate the principles governing the structure of the circadian
clock network. Here we explore the design principles of the Arabidopsis clock and its responses to
changes in temperature. We analyse published clock models of Arabidopsis, spanning a range of
complexity, and incorporate temperature-dependent dynamics into the parameters of translation rates
in these models, to discern which regulatory patterns may best explain clock function and temperature
compensation. We additionally construct three minimal clock models and explore what key features
govern their rhythmicity and temperature robustness via a series of random parameterisations. Results
show that the highly repressive interactions between the components of the plant clock, together with
autoregulation patterns and three-node feedback loops, are associated with circadian function of the
clock in general, and enhance its robustness to temperature variation in particular. However, because
the networks governing clock function vary with time due to light and temperature conditions, we
emphasise the importance of studying plant clock functionality in its entirety rather than as a set of
discrete regulation patterns.

1. Introduction

Circadian rhythms are the result of positive and negative
feedbacks in a network of transcription factors, which regu-
late the mRNA and protein levels. These complex systems
have been modelled in diverse organisms [1, 2, 3] in order to
understand the crucial factors driving the circadian oscilla-
tions, and in some cases to determine whether clock network
structure can determine functionality [4, 5].

Empirically-driven mathematical modelling of the plant
Arabidopsis had its genesis in the ODE model presented by
[6] in 2005, which characterised the interaction between two
clock genes and their associated proteins. Since then, several
ODE-based models have been built which reflect the increas-
ing complexity of the clock as new biological discoveries
arise [6, 7, 8, 9, 10, 11, 12, 13]. Throughout this process,
mathematical models have been useful tools to help gener-
ate and test hypotheses about the underlying structure of the
plant system and to understand its dynamics [14].

The mathematical models proposed to date typically seek
to characterise the time evolution of both mRNA and protein
levels within plant cells [6, 7, 8, 9, 10, 11, 12, 13] by de-
scribing the production and degradation rates of both gene
products. A combination of first-order interactions and Hill
functions are commonly used to characterise the interactions

∗Corresponding author
ORCID(s):

within the system [6, 7, 8, 9, 10, 11, 12, 13]. The models are
usually parametrized by fitting to experimental observations
in a qualitative fashion, principally by matching circadian
period, amplitude and phase of gene expression. However,
details of the clock mechanism differ between the models,
as do the details of the statistical parameter fitting, leading
some models to appear to offer a better quantitative fit than
others.

Mathematical models for Arabidopsis have focused mainly
on characterising the plant clock in response to light. Tem-
perature, however, has received less attention and yet its char-
acterization in the plant model system is of increasing impor-
tance in the context of global climate change [15]. Experi-
mental evidence has shown that under constant light condi-
tions, and at a constant temperature, circadian rhythms dis-
play a relatively invariant period over a large range of tem-
peratures [16, 17]. This is known as temperature compensa-
tion. Oscillations with a 𝑄10 of period in the range 0.8-1.2
are considered to manifest this feature of compensation [18].
An explanation of this distinctive characteristic of circadian
rhythms is based on the hypothesis that there is a result-
ing balance of network reactions having opposite behaviours
[19, 20]. Alternatively, temperature compensation has been
explained by the hypothesis that independent molecular mech-
anisms have evolved in order to establish compensation [18].

In Arabidopsis, several clock components have been iden-
tified as playing a key role in temperature compensation [16,
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17]. However, it is not clear which interactions within the
circadian plant network might explain the dynamics of tem-
perature compensation. In biological networks, attempts have
been made to explain oscillatory dynamics by analysing the
feedback and feedforward loops that form these networks
[21, 22]. A feedback loop is defined as positive if the number
of negative interactions within the loop is even, or negative if
this number is odd, and their basic functionalities can facil-
itate bistability and promote sustained oscillations, respec-
tively [22]. Feedback loops play different roles within a net-
work, and have been classified broadly with regards to their
shape (Figure 1) and functionality [22]. The feedforward
loop is a three-component circuit of interactions with edges
having inhibitory or activator roles. This circuit is formed by
a component that regulates directly and indirectly (through
the other component) a target component. Thus, a total of
eight possible classes of feedforward loops can be defined
(Figure 2). For a description of their dynamical functions,
see [23].

Figure 1: Examples of feedback loops. X, Y, and Z depict
genes in a transcription network. Edges in the diagrams are
interactions representing how a transcription factor affect the
transcription rate of a gene. These interactions may be posi-
tive (arrow) or negative (blocked arrow). A) Negative autoreg-
ulation. B) Positive autoregulation. C) Three-node feedback
loop, also called the repressilator.

Feedback and feedforward substructures within biologi-
cal networks are examples of regulation patterns in real net-
works which occur more frequently than would be expected
in random networks with the same number of nodes and
edges [24]. In systems biology, these "regulation patterns"
would be described as "network motifs" [25]. We use the
former wording in this study, to avoid ambiguity.

The underlying principle is that, if the regulation pattern
has been retained over evolutionary time, then it is likely
to confer a fitness advantage to the organism [25]. These
classes of structures were first detected for the 𝐸.𝑐𝑜𝑙𝑖 tran-
scription network [26], and from then the interest turned on
the detection of their dynamical functions in different organ-
isms and different biological networks [27]. In Arabidopsis,
regulation pattern analysis carried out under simulated con-
stant light conditions has recently helped to explain the dy-
namics observed in certain clock mutants [28].

In this work, we analysed the structures of a range of
plant clock models proposed over the past 15 years, and added
temperature dependence in order to gain insights into ther-
mal robustness of circadian oscillations. We centred our
analysis on the transcription regulatory interactions. We asked
whether regulation patterns commonly found in other tran-

Figure 2: The eight classes of feedforward loops. Feedforward
loops are classified based on their coherent or incoherent effect
of a gene X on its target Z. For example, in figure A) X directly
activates Z and indirectly represses it as X promotes Y, which
is a repressor of Z. This circuit is called Incoherent type 1.
In contrast, F) shows a gene X repressing its target Z and
coherently X represses Y, which has an activator effect on Z.
F) is termed as Coherent type 2. The top row shows the four
types of incoherent feedforward loops (from A to D, Incoherent
type 1, Incoherent type 2, Incoherent type 3 and Incoherent
type 4, respectively). The bottom row shows the four types
of coherent feedforward loops (from E to H, Coherent type
1, Coherent type 2, Coherent type 3 and Coherent type 4,
respectively).

scription networks are involved in temperature-dependent mech-
anisms in the plant circadian system. To gain a better un-
derstanding of the key patterns driving clock function and
its robustness to temperature variation, we also performed a
large-scale simulation study based on random parameterisa-
tions of three simplified models, following [28]. Taken to-
gether, our results support the idea that the highly repressive
role of transcription factors in the plant clock contributes to
its robustness to temperature changes. Our results also show
that a simple pattern-based analysis is insufficient to describe
dynamics induced by light and temperature; rather, such net-
works should be analysed as a whole, and as dynamic rather
than static networks.

2. Methods

A total of eight ODE-based models of different complex-
ity are analysed, referred to as: L2005a [6], L2005b [7],
L2006 [8], P2010 [9], P2012 [10], P2013 [11], F2014 [12],
and DC2016 [13]. Because our goal is to describe these
models in terms of their structure rather than to focus on
each model’s biochemical details, we present them as tran-
scription networks and refer the reader to the original papers
for a complete description. Although these models show a
general pattern of increasing complexity over time, they all
derive from a “bottom up” approach to modelling, and may
not necessarily capture the full complexity of the actual in-
teractions in the clock. Nevertheless, a structural analysis
across these models can lead to useful insight and testable
conclusions.

Figure 3 depicts the clock structures of the models. Note
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that these networks are derived by considering the mathe-
matical equations governing the dynamics in each case, and
that this does not necessarily correspond to the network dia-
grams published in the original papers, which were in some
cases simplified. Figure 3 allows one to visualize the in-
crease in mathematical complexity of the models as new
empirical discoveries have been incorporated. Their relative
complexity also serves to highlight the difficulty of elucidat-
ing the dynamics of the inner transcriptional machinery of
the plant oscillator. The interactions are also presented as
matrices, which we call transcription matrices, see Supple-
mentary Material. The rows in each matrix display the out-
going interactions from transcription factors in the networks,
while columns represent the ingoing effect on the transcrip-
tion rates of the components of the network; the plus and
minus signs mean activation and inhibition, respectively. CL
again represents CCA1 and LHY when they are modelled as
a single variable, and E34L represents ELF3, ELF4 and LUX

grouped as the evening complex, consistently with the block
effect allocated in the models.

Each edge in each network is modelled by a Hill func-
tion, which characterises the inhibitor or activator effect of a
transcription factor on the rate of production of mRNA. The
Hill function is defined by [25],

𝑌 =
𝛽

1 +
(
𝑋

𝐾

)𝑛 , (1)

for a repressor, and by

𝑌 =
𝛽𝑋𝑛

𝐾𝑛 +𝑋𝑛
, (2)

for an activator, where 𝑌 is the rate of production of mRNA,
𝛽 is the maximal production rate, 𝑋 is the inhibitor or ac-
tivator concentration, 𝐾 is the inhibition or activation coef-
ficient, and 𝑛 is the Hill coefficient. In other words, each
edge in the network is governed by at least three parameters:
the repression (or activation) coefficient, the Hill coefficient
and a rate constant of transcription. In cases when the tran-
scription of a gene is regulated by a light transient induction
effect via interaction with a protein P, a rate constant is also
considered to mediate light input.

2.1. Structural description of the plant

transcription network
We have carried out a statistical analysis to describe the

network structures within the mathematical models for the
Arabidopsis circadian clock: L2005a [6], L2005b [7], L2006
[8], P2010 [9], P2012 [10], P2013 [11], F2014 [12], and
DC2016 [13]. This analysis consists of computing network
statistics (number of components, number of edges, density,
the average clustering coefficient, and proportion of negative
interactions), and then applying a probabilistic approach to
quantify the frequency of regulation patterns. In particular,
we tested the prevalence of autoregulation, feedforward and

three-component feedback loops by comparing their occur-
rences in the hypothesised circadian networks against their
occurrences in random networks of the same size, following
the methodology of [25].

The average number of autoregulation (𝑁𝑎𝑢𝑡𝑜), feedfor-
ward (𝑁𝐹𝐹𝐿), and three-component feedback (𝑁𝐹𝑏𝑎𝑐𝑘) loops
in random networks can be determined by

𝑁𝑎𝑢𝑡𝑜 =
𝐸

𝑁
, (3)

𝑁𝐹𝐹𝐿 = 𝜆3𝑁𝑛−𝑒, (4)

𝑁𝐹𝑏𝑎𝑐𝑘 =
1

3
𝜆3𝑁𝑛−𝑒, (5)

where 𝜆 =
𝐸

𝑁
is the mean connectivity, 𝑁 and 𝐸 are the

numbers of nodes and edges in the network, respectively, and
𝑛 and 𝑒 the number of nodes and edges of the particular pat-
tern under consideration (i.e. n=e=3). Note that the average
number of autoregulation loops is simply the mean connec-

tivity, which can be obtained by characterising the number
of autoregulation patterns by a binomial distribution (as we
want a determined number of edges out of the total 𝐸 to be
self-loops) with parameters 𝐸 and 𝑝, where 𝑝, the probabil-
ity of having a self-edge, is equal to 1∕𝑁 . Therefore, the
expected number of autoregulation loops is 𝐸 × 1∕𝑁 . For
mathematical details of equations 4 and 5 along with equa-
tion 3 see [25].

The standard deviations (SD) of these estimations can be
calculated by the square root of the equations 3, 4 and 5, and
a Z score is used to quantify the significance of the occur-
rences of these subgraphs. The Z score tells us how many
standard deviations the number of the subgraphs observed in
the network models exceeds the number expected in random
networks, and is calculated as,

𝑍 =

number observed
in a network model

−
expected number

in random networks
standard deviation

in random networks

.

(Note that, with the exception of the [13] model where
ELF4 and LUX are merged into a single variable, statistical
calculations in models including the evening complex were
performed taking ELF4, ELF3 and LUX into account as in-
dividual components.)

2.2. Temperature dependence
Following the methodology of [15], we incorporated tem-

perature dependence into the models by allowing translation
rates to vary with temperature. Arrhenius equations were ap-
plied to the relevant parameters (see Table S1, Supplemen-
tary Material) by using a reference temperature of 22°C in
all models in order to match their published parameter values
corresponding to this temperature. With the aim to assess
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Figure 3: Developments in ODE-based models for the Arabidopsis circadian clock. Transcription networks are illustrated for
eight models for the plant clock. The plant oscillator was first modelled as a simple negative feedback. As more clock components
were discovered, three-node circuits were incorporated, and the wiring of the plant network became more complicated. The most
recent clock model structures incorporate autoregulation patterns, and have mainly repressive interactions. The models are
abbreviated as follows: L2005a [6], L2005b [7], L2006 [8], P2010 [9], P2012 [10], P2013 [11], F2014 [12], and DC2016 [13].

whether the models were temperature compensated, an acti-
vation energy value of 50 kJ mol−1 was used for each rate.
This value allows us to model a 𝑄10 of rate equal to 2, which
is a standard value accepted for most biological reactions
[18]. Simulations were carried out according to the experi-
mental protocols of [16] and [17]. A model was considered
compensated if its overall 𝑄10 of period was in the range be-
tween 0.8 and 1.2 [18]. To test whether these conclusions
were reliable, we also ran simulations incorporating vari-
ability in the influence of temperature by randomly choos-
ing each activation energy value independently from a uni-
form distribution between 40 kJ mol−1 and 60 kJ mol−1; this
corresponds to values for 𝑄10 between 1.8 and 2.3 approx-
imately. Two hundred replications of those random param-
eterizations were performed for each model, which gave us
a reasonable representation of the variability between repli-
cates (see Figure S1 in Supplementary Material). Tempera-
ture compensation was assessed in each case.

Note that in [12], the authors modelled the protein pro-
duction rate as equal to one copy per mRNA for all tran-
scription factors with the exception of ELF4 and ELF3 com-
ponents. This approach differs from that of other models,
where protein production is usually characterised by 𝑝 copies
of mRNA that are translated (with the translation rate 𝑝 not
necessarily equal to 1 h−1 in most cases). Thus, to incorpo-
rate temperature into [12] model, we extended that model by
adding parameters 𝑝𝑗 , (𝑗 representing a component model) in

the terms of protein production rates of the dynamical equa-
tions labeled by (5), (7), (10), (12), (15), (20), (30), (45)
in [12]; 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝30, 𝑝31, and 𝑝32, respectively.
We fixed the 𝑝𝑗 values to be equal to 1 at the temperature
reference 22°C in order to preserve the original model and
followed to proceed with allowing them to vary with tem-
perature as described previously.

2.3. Numerical Investigation of minimal models

via random parameterisation
A recent study by [28] provides an interesting alterna-

tive approach towards discovering the design principles of
the circadian clock by proposing a number of possible clock
structures and investigating their emergent properties by a
series of random parameterisations. Motivated by this study,
and to complement the results emerging from the more com-
plex models L2005a [6], L2005b [7], L2006 [8], P2010 [9],
P2012 [10], P2013 [11], F2014 [12], and DC2016 [13], we
investigated three simplified clock structures (Figure 4) of
four repressor components, which represent CCA1/LHY,
PRR9/PRR7, PRR5/TOC1 and ELF4/LUX, in order to as-
sess changes in the periodicity of the plant clock. These
clock structures incorporate the direct repressive effect of
CCA1 and LHY on PRR9 and PRR7 reformulated recently
[29, 30] and also modelled in [28, 12]. As in the analy-
sis of the historical models, parameters of translation rates
in these models were allowed to vary with temperature un-
der a simulated continuous light condition (as in [28]) fol-
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Figure 4: Minimal clock model structures. Structure S1 in-
cludes a three-node feedback loop. In S2 autoregulation pat-
terns were added to end up with S3 structure having a feed-
forward loop. All clock components are characterised to have
a repressive role within the network.

lowed by incorporation of temperature dependence in tran-
scription rates for comparison. Because our goal was to anal-
yse structural patterns that may explain temperature com-
pensation, our models are not expected to faithfully repro-
duce the detailed behaviour of the plant circadian system.
Rather, we asked which structures and parameterisations al-
low these minimal models to show regular oscillatory be-
haviour and an empirically justifiable phasing of peak ex-
pression levels (i.e. the order of the peak mRNA levels of
the clock components should agree with that observed in re-
ality, with CCA1 and LHY peaking before PRR9 and PRR7,
followed by the peak of PRR5 and TOC1 before ELF4 and
LUX).

Consistent with the more complex models, the proposed
structures are characterised by systems of ODEs for mRNA
and protein levels (see Supplementary Material for details).
The parameter values were assigned randomly from inde-
pendently uniformly distributed numbers between 0 and 1.
In the same manner, Hill coefficients were assigned from
discrete uniform distributions on the range between 2 and
4. The initial conditions of the system were fixed to be equal
to 0.1 in all cases. By using a notional unit of time of an
hour, the clock was run for 20 days and the first 10 days were
not included in the analysis in order to avoid transient ef-
fects [13]. Next, we searched for parameter sets reproducing
oscillatory behaviour. The period of the system was calcu-
lated by measuring the time difference between consecutive
troughs. We then selected from those sets the parameter val-
ues that showed the correct phase for the peak of the gene
expression, and went on to incorporate temperature depen-
dence in the translation rates.

To compare models, hitting rates were calculated [28,
31]. This measure gives us an averaged proportion of the
parameter sets that met our selection criteria, with respect to
the total number of parameters that were generated at ran-
dom in the researching scheme. The higher the hitting rate,
the more robust the model against parameter combinations.

This proportion is defined by,

𝑃 = 𝑛

√
number of obtained parameter sets
number of searched parameter sets

, (6)

where 𝑛 is the number of independent parameters.

3. Results

3.1. Description of the hypothesized clock plant

structures
Table 1 shows the basic network statistics of the mod-

els under consideration. The networks are all much more
dense, and more clustered, than the large-scale transcrip-
tion networks typically observed in systems biology [25]. It
should be noted that, as model complexity (number of com-
ponents) increases, there is no useful trend in the density or
clustering coefficient of the networks; the circadian models
are all dense well-connected networks. It is also noteworthy
that the proportion of negative interactions is much higher in
models from 2012, surpassing the number of positive inter-
actions. Table 2 extends this comparison by looking at the
prevalence of regulation patterns in comparison to Erdos-
Renyi random graphs of the same size and density. It may
be noted that the occurrence of three-component feedback
loops is more common in models from 2012; Z scores for
P2012, P2013 and F2014 showed that they appear more of-
ten than would be expected at random as their Z scores rep-
resent higher deviation from the mean in random graphs.

Figure 5 summarises the main results concerning tem-
perature compensation and clock behaviour in changing tem-
peratures; when translation rates are allowed to vary with
temperature, only the more recent (and more complex) mod-
els exhibit temperature compensation and sustained oscilla-
tions on the whole temperature range of 12°C - 28°C. The
earliest clock models, L2005a, L2005b and L2006 only func-
tion within a narrow temperature range; at lower tempera-
tures the rhythms were disrupted. Temperature compensa-
tion was not observed in the models L2005a and L2005b, the
clock slows down, or speeds up, markedly as temperature in-
creases in these early models before all rhythmic behaviour
is lost (L2005a, L2005b and L2006). The more complex
P2010 model, compared to L2005a, L2005b and L2006 mod-
els, functions across a broader temperature range and at tem-
peratures lower than 18°C displays temperature robustness,
but is similarly uncompensated from 18°C. However, the
most complex and most recent models P2012, P2013, F2014
and DC2016 all show temperature compensation to a greater
or lesser extent. Figures S2 and S3 in Supplementary Mate-
rial show that this finding is not an artefact of the fixed choice
of activation energy in the simulations in Figure 5. When
activation energies are allowed to vary between 40 kJmol−1

and 60 kJmol−1 the same patterns emerge; only the mod-
els P2012, P2013, F2014 and DC2016 exhibit temperature
compensation, but this temperature compensation is robust
to variability in activation energy.

P. Avello et al.: Preprint submitted to Elsevier Page 5 of 35
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Table 1

Network statistics of the Arabidopsis circadian models illustrated in Figure 3.

Global properties

ODE model
number of

components
number of

edges density

clustering

coefficient
prop. of neg.
interactions

L2005a 2 2 0.50 - 0.50
L2005b 4 6 0.38 0.83 0.50
L2006 5 8 0.32 0.75 0.50
P2010 6 14 0.39 0.73 0.50
P2012 8 17 0.27 0.82 0.71
P2013 8 22 0.34 0.87 0.77
F2014 10 46 0.46 0.92 0.89
DC2016 4 10 0.63 1 0.90

Table 2

Comparison of the regulation patterns found in a range of circadian models, with those
expected at random for graphs with the same size and density (mean ± 1×SD). Z scores
are shown in cases when expected values are exceeded.

Regulation patterns

ODE model autoregulation

expected

autoregulation feedforward

expected

feedforward feedback

expected

feedback

L2005a 0 1 ± 1 - - - -
L2005b 0 1.5 ± 1.2 2 3.4 ± 1.8 1 1.1 ± 1.1
L2006 0 1.6 ± 1.3 2 4.1 ± 2.0 1 1.4 ± 1.2
P2010 0 2.3 ± 1.5 10 12.7 ± 3.6 4 4.2 ± 2.1
P2012 2 2.1 ± 1.5 13 (Z=1.1) 9.6 ± 3.1 6 (Z=1.6) 3.2 ± 1.8
P2013 2 2.8 ± 1.7 23 (Z=0.5) 20.8 ± 4.6 11 (Z=1.5) 6.9 ± 2.6
F2014 4 4.6 ± 2.1 115 (Z=1.8) 97.3 ± 9.9 50 (Z=3.1) 32.4 ± 5.7
DC2016 2 2.5 ± 1.6 7 15.6 ± 4.0 2 5.2 ± 2.3

Although the 𝑄10 of period observed in the most re-
cent models suggests that complexity is helpful in facilitat-
ing temperature compensation, it is not possible to attribute
this phenomenon to any regulation pattern in particular. For
example, because clock models presenting autoregulation pat-
terns display robustness against variation in translation rates
due to temperature changes, it might be tempting to explain
this robustness as a result of autoregulation patterns. How-
ever, this is not the case as shown in Figure S4, where out-
puts are presented for both P2012 and DC2016 models in the
absence of their autoregulation loops; temperature compen-
sation is maintained. Indeed, repeating investigations sim-
ilar to these but with changes to feedback and feedforward
loops revealed no clear patterns (see Figures S5 and S6 in
Supplementary Material).

Interestingly, when temperature compensation was tested
under constant dark condition in DC2016 model (see Figure
S7 in Supplementary Material), compensation was still ob-
served; however, the 𝑄10 of period was reduced from 0.97
to 0.94. Note that ELF4/LUX autoregulation coupled with
three-node feedback loops are not present in the DC2016
model under dark conditions (see Figure 1 in [15]). These
results suggest that autoregulation combines with three-node

feedback loops to form a highly inhibiting transcription net-
work which contributes to temperature compensation. These
ideas are tested in the following section.

3.2. Minimal models via random parameterisation
We defined three minimal structures for numerical inves-

tigation (S1, S2 and S3 in Figure 4) in order to test whether
the inclusion of certain well-defined regulatory patterns may
facilitate temperature compensation in simple models. Fig-
ure 6 depicts the main results when the behaviours of these
models are compared, using random parameterisations and
the criteria for periodicity and compensation as explained in
Methods. Surprisingly, across the range of random param-
eterisations, we found no important differences between the
models S1, S2 and S3 in terms of their ability to produce
sustained oscillations with the correct ordering of peaks in
gene expression (Figure 6A). Moreover, all structures pre-
sented high hitting rates, indicating that a large percentage
of parameter sets met our criteria of oscillatory behaviour
and proper order of peak mRNA levels. However, we did
find differences when temperature dependence was incorpo-
rated into these models. Figure 6B shows that the incorpo-
ration of autoregulation patterns improves the robustness of
the system across an extended temperature range; the model
S2 showed a much higher proportion of oscillating parame-
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Figure 5: The models P2012, P2013, F2014 and DC2016 exhibit temperature compensation. Simulations were carried out
following experimental protocols of [16] and [17]. The earliest clock models, L2005a, L2005b and L2006 allow incorporation of
temperature into the plant clock, but only function within a reduced temperature range; at temperatures lower than 20°C the
clock is disrupted. Temperature compensation is not observed in the models L2005a and L2005b, and nor in L2006 and P2010 for
the whole temperature range under consideration; the clock either slows down (L2005b, P2010) or speeds up (L2005a) markedly
as temperature increases in these early models. In contrast, the models P2012, P2013, F2014 and DC2016 show temperature
compensation effectively across the entire temperature range of 12°C - 28°C, with 𝑄10 values on this range equal to 1.11, 1.12,
1.06 and 0.97, respectively.

ter sets that tolerated temperatures between 12°C and 28°C
compared to the model S1. Note that the models S2 and S3
showed similar results, which suggests that feedforward loop
is not required to extend the tolerable temperature range, but
that three-node feedback and autoregulation patterns are re-
quired together to allow the system to oscillate in extended
temperature ranges.

Figure 6C shows the distribution of the 𝑄10 of period
for each model under random parameterisation. Although
model S1 displays robustness against temperature changes
with 62% of its parameter sets allowing the system to achieve
temperature compensation (𝑄10 lying within the range 0.8-
1.2), it is evident that adding autoregulation patterns signifi-
cantly improved this robustness. Outcomes of the model S2
showed that 83% of the parameter sets presented 𝑄10 val-
ues in the range for compensation. Moreover, the 𝑄10 dis-
tribution shifted to locating closer to perfect compensation
(i.e. 𝑄10 = 1); the median of the distribution shifted from a
𝑄10=0.83 in model S1 to a 𝑄10=0.90 in model S2. It is also
possible to observe a reduction in the dispersion of the distri-
bution; the range of the 𝑄10 values is reduced by 14%. How-
ever, this improvement was affected when feedforward loop
was incorporated into the system. In model S3, the percent-
age of parameter sets resulting in 𝑄10 values in the range for
compensation dropped to 76% and its distribution was more
spread out, the range of the modelled outcomes increased by
43% compared to model S2, and this increased variability is
mainly caused by values below the median.

These results were challenged by including temperature
dependence in the transcription rates of our models. As shown
in Figure 6D-E, similar results were found. Adding autoreg-
ulation patterns improved considerably the robustness of the
clock to cope with temperature variation; the proportion of
sets of random parameter combinations allowing the clock
to oscillate between 12°C and 28°C was doubled (Figure
6D) and the great majority of these parameter sets permit-
ted the system to be temperature compensated with 𝑄10 val-
ues closer to perfect compensation (Figure 6E). It was also
observed that adding a feedforward loop did not make a sig-
nificant difference; although on this occasion the model was
rhythmic between 12°C and 28°C for a slightly higher pro-
portion of sets, there was no improvement in terms of 𝑄10

values. In addition, we tested the clock behaviour by making
both translation and transcription rates temperature depen-
dent, and the results also supported a clock structure with au-
toregulation and three-node feedback loops (Figure 6F-G).

Note that when we compared between conditions rather
than between model structures, all models behaved more ro-
bustly under temperature-dependent translation rates. For
example, a 14.7% out of the selected parameters sets in model
S1 for translation-dependent rates produced sustained oscil-
lations on the temperature range of 12°C - 28°C (Table S3),
whereas a reduced percentage (9.6 %) was found for tran-
scription rates (Table S4). Moreover, when both rates were
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Figure 6: Autoregulation together with three-node feedback

structure improves the robustness of the system against tem-

perature changes. Results from random parameterisations of
models S1, S2 and S3 in Figure 4. (A) Normalized propor-
tion of parameter sets that showed sustained oscillations and
correct order of peak gene expression. (B, D, F) Proportion
of parameter sets that allowed the system to oscillate across
a 12°C - 28°C temperature range with respect to the num-
ber of sets obtained after searching (see Tables S3 to S5 in
Supplementary Material for absolute frequencies). (C, E, G)
Distribution of the modelled outputs of the parameter sets se-
lected to show oscillatory behaviour in the range 12°C - 28°C.

allowed to vary with temperature, the number of sets that
displayed oscillatory behaviour on this range was signifi-
cantly smaller (Table S5), making their resulting distribution
of 𝑄10 values less reliable.

4. Discussion and Conclusions

Particular subgraphs in transcription networks have been
argued to drive specific tasks and to favour particular be-
haviours in biochemical systems [25]. The interest in the
study of these graph structures is founded on the hypothe-
sis that they are the result of evolutionary selection [25]. We
studied whether temperature compensation can be explained
by the function of specific subgraphs (regulation patterns) in
the plant circadian network by exploring the structures in a
range of Arabidopsis circadian clock models, and by numeri-
cal investigation of three minimal models via random param-
eterisation. We found that temperature compensation can-
not be determined as a function of a particular substructure
of the currently published models, but it involves a global
property of this network, where autoregulation together with
three-node feedback loops in a transcription network domi-
nated by negative interactions favour the clock to be robust
to temperature variability.

Exploring the range of models for the plant circadian sys-
tem, we found that only clock models presenting autoregula-
tion patterns displayed robustness against variation in trans-
lation rates due to temperature changes. Surprisingly, we
also found that this cannot in itself be the cause of robustness
to temperature variation; results from modified P2012 and
DC2016 models to exclude autoregulation structures showed
that these models still exhibit temperature compensation (Fig-
ure S4 in Supplementary Material). Similarly, we observed
that compensated models have the particular feature of pre-
senting a much higher proportion of negative regulations com-
pared to uncompensated models (Table 1); however, remov-
ing the positive interactions or changing them by repressive
roles in P2010 model did not change the uncompensated dy-
namics of this model but instead, the clock function was dis-
rupted and no oscillations were observed (see Figure S8 in
Supplementary Material). Additionally, our results (Table
2) suggest that the three-node feedback loop might favor the
robustness of the plant clock against temperature changes,
as these patterns occur more often in compensated models.
This motivates the investigation of three minimal models, to
help understand the effect of adding new interaction patterns
to the Arabidopsis system under thermal variation. The re-
sults from these models show that adding autoregulation pat-
terns to a network with a three-node feedback loop improves
the temperature tolerance; however, adding a feedforward
loop reduces the performance of the oscillator in the face of
temperature changes.

We have shown the sufficiency of a clock structure hav-
ing autoregulation patterns together with a three-node feed-
back loop for robust temperature compensation. In order
to establish the necessity of a clock structure having those
regulation patterns, we have taken structure S1 (Figure 4)
and have removed the repressor effect of CL on EL so as to
withdraw the three-node feedback loop in a structure with
no autoregulation patterns. We then parameterised the re-
sulting clock network by random searches and analysed it as
described in Method section. From the 500,000 sets of ran-
dom parameter combinations, only 36 sets showed oscilla-
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tory behaviour and none showed the correct phase of peak of
the gene expression. Therefore, because this structure does
not fulfill our selection criteria (see Method section), which
is a basic yardstick to assess a representation of the plant
circadian oscillator, it may be reasonable to conclude that a
clock structure having autoregulation patterns together with
a three-node feedback loop is a condition necessary and suf-
ficient for temperature robustness.

The results from the minimal models rely on random
parameterisations, and may therefore be influenced by the
necessarily arbitrary range of values from where they were
chosen. To test whether the results are limited to parameter
values chosen at random from uniformly distributed num-
bers between 0 and 1, we implemented the proposed min-
imal models but with parameter values chosen with closer
reference to published parameter values. Explicitly, we took
the relevant parameter values of DC2016 model and allowed
these to vary according to a uniform distribution on the bound-
aries zero and two-fold their original values, independently
for each parameter. (We note, however, that defining a unique
correspondence between these minimal models and the pa-
rameters in the more complex DC2016 model is impossible.)
Similarly to the modelled inputs for Figure 6, Hill coeffi-
cients were chosen randomly on the range between 2 and 4,
and a total of 500,000 sets of parameter combinations were
generated for the analysis. Figure S9 in Supplementary Ma-
terial shows the modelled outputs of these random parame-
terisations. The same overall conclusion emerges; autoregu-
lation patterns together with a three-node negative feedback
loops in a network dominated by negative interactions favor
temperature compensation, which is consistent with the re-
sults of the analysis from the historical clock models. There
is, however, a notable change in the sensitivity of the propor-
tion of temperature compensated parameter sets; although
the ranking of models S1-S3 is unchanged, the differences in
the proportions are minimal. A principal components anal-
ysis explored these sets of parameter combinations in order
to examine whether there were patterns within the successful
parametrizations. No clusters emerged either on the basis of
the parameter sets that allowed the clock models to oscillate
within the temperature range 12°C - 28°C, or when outputs
were grouped to distinguish compensated sets.

We have applied ideas from systems biology to an ex-
ploratory analysis of the plant circadian clock. We found that
autoregulation and feedforward loops are not found more fre-
quently in these proposed Arabidopsis networks, compared
to random networks. However, three-node feedback loops
appear slightly more often in the hypothesised transcription
networks for Arabidopsis from 2012. Note that only the
F2014 model showed a Z score greater than 2, which is usu-
ally used as a threshold for statistical significance [24]. We
also found that the hypothesised networks are not sparse, but
they are dense. In the context of transcription networks, den-
sity values less than 0.001 are common, whereas the his-
torical models of circadian networks do not show densities
less than 0.27. Out degree distributions are not long tailed,
the degree distributions are compact, and there is no clear

pattern to their shapes. These facts are likely to be conse-
quences of the bottom-up modelling paradigm, where new
biological detail is added to models as and when empirical
evidence allows. We also observed that the hypothesised
transcription networks for the plant clock are highly clus-
tered (i.e. clustering coefficients much larger than density
values), which implies that their average clustering coeffi-
cient is larger than those in random graphs. The latter is
in agreement with observations of transcription networks of
other systems [25], but it has not proved possible to make
a theoretical link from this observation to statements about
general clock function and temperature robustness.

We assume for simplicity that translation rates vary with
temperature, but that rates of transcription and degradation
remain constant. We accept that there is evidence of tem-
perature sensitivity in these rates [32]. Previously, we have
shown that temperature dependence of translation and tran-
scription rates can facilitate a compensated clock, and that
degradation rates can be important in determining the range
of compensation; specifically, we observed that in some Ara-

bidopsis models degradation rates may drive the failure to
compensate [15]. Our simplified approach here is compa-
rable to that used in studies of Neurospora [33, 20], which
assume small activation energies for the degradation rates of
the model, making those practically insensitive to tempera-
ture, in comparison with larger values assigned to transcrip-
tion and translation rates. However, modelling the influence
of temperature in the full range of post-transcriptional and/or
post-translational processes is still an open question which
will merit attention when better empirical data become avail-
able.

Although the minimal models studied here necessarily
have some limitations, being highly oversimplified systems
to represent complex plant dynamics, they provide helpful
insights into what design principles of the Arabidopsis tran-
scription network have an important role in rhythmicity and
temperature robustness. Our observations support that math-
ematical and graph-theoretic approaches are useful in the
analysis of the plant clock as a whole system. The impor-
tance of external cues, whether of light, temperature, or both,
has the effect of enforcing dynamic networks of interaction
on the plant clock, a fact not taken into account in the tra-
ditional systems biology theories ([25]), and this is likely to
limit the applicability of the theory in general.

With this in mind, it may be useful for future studies of
circadian networks to embrace network analysis as applied
to social and ecological systems. For example, in behavioral
ecology, analyzing social network activity over time gives
valuable information about the causes and consequences of
animal sociality [34, 35]. Temporal sampling is carried out
to collect social data in order to construct an underlying so-
cial network, and temporal interactions between animals are
then represented by two types of networks: 1) time-ordered
networks, where the duration of the interactions is consid-
ered, and 2) time-aggregated networks (a simplification of
the time-ordered approach), where a sequence of static net-
works are analysed [36, 37]. It is also worth noting that
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the emergent outcomes of simulating ecological dynamics
on dynamically evolving networks can give new insight into
the robustness of systems [38]; the dynamic system may be
resilient to change in circumstances were an equivalent static
time-averaged network would not.

This network sampling approach can, in principle, be
adapted to the plant circadian network context. Indeed, we
have shown in [15] that the DC2016 model is in fact a repre-
sentation of a dynamic plant network governed by two dif-
ferent network structures depending on the phases of light
and dark (rather than one static clock structure, as is usu-
ally depicted). Thus, the question that naturally arises is,
is it possible to find underlying dynamic structures which
potentially could explain the mechanisms of the plant clock
to synchronize with the external environment? Answering
this question might also help to explain the dynamical plas-
ticity of the Arabidopsis clock [39]. A theoretical temporal
approach could help to elucidate the temperature input path-
way driving clock entrainment, and eventually to clarify the
time scales governing the relationship between production
and degradation of gene products which might explain the
temperature compensation mechanism.

Appendix

Supplementary Material of this article is available online

References

[1] Schmelling NM, Axmann IM. Computational modelling unrav-
els the precise clockwork of cyanobacteria. Interface Focus.
2018;8:20180038.

[2] Podkolodnaya OA, Tverdokhleb NN, Podkolodnyy NL. Computa-
tional modeling of the cell-autonomous mammalian circadian oscil-
lator. BMC Systems Biology. 2017;11:27–42.

[3] Fathallah-Shaykh HM, Bona JL, Kadener S. Mathematical model of
the Drosophila circadian clock: loop regulation and transcriptional
integration. Biophysical journal. 2009;97:2399–408.

[4] Rand DA, Shulgin BV, Salazar D, Millar AJ. Design principles un-
derlying circadian clocks. Journal of The Royal Society Interface.
2004;1:119–130.

[5] Rand DA, Shulgin B, Salazar D, Millar A. Uncovering the de-
sign principles of circadian clocks: Mathematical analysis of flex-
ibility and evolutionary goals. Journal of Theoretical Biology.
2006;238:616–35.

[6] Locke JCW, Millar AJ, Turner MS. Modelling genetic networks with
noisy and varied experimental data: the circadian clock in Arabidop-
sis thaliana. Journal of Theoretical Biology. 2005;234:383 – 393.

[7] Locke JCW, Southern MM, Kozma-Bognár L, Hibberd V, Brown PE,
Turner MS, et al. Extension of a genetic network model by iterative
experimentation and mathematical analysis. Molecular Systems Bi-
ology. 2005;1:0013.

[8] Locke JCW, Kozma-Bognár L, Gould PD, Fehér B, Kevei É, Nagy
F, et al. Experimental validation of a predicted feedback loop in the
multi-oscillator clock of Arabidopsis thaliana. Molecular Systems
Biology. 2006;2:59.

[9] Pokhilko A, Hodge SK, Stratford K, Knox K, Edwards KD, Thomson
AW, et al. Data assimilation constrains new connections and com-
ponents in a complex, eukaryotic circadian clock model. Molecular
Systems Biology. 2010;6:416.

[10] Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ,
Millar AJ. The clock gene circuit in Arabidopsis includes a repres-
silator with additional feedback loops. Molecular Systems Biology.
2012;8:574.

[11] Pokhilko A, Mas P, Millar AJ. Modelling the widespread effects of
TOC1 signalling on the plant circadian clock and its outputs. BMC
Systems Biology. 2013;7:23.

[12] Fogelmark K, Troein C. Rethinking Transcriptional Activation in
the Arabidopsis Circadian Clock. PLoS Computational Biology.
2014;10:e1003705.

[13] De Caluwé J, Xiao Q, Hermans C, Verbruggen N, Leloup JC, Gonze
D. A Compact Model for the Complex Plant Circadian Clock. Fron-
tiers in Plant Science. 2016;7:1–15.

[14] Bujdoso N, Davis SJ. Mathematical modeling of an oscillating gene
circuit to unravel the circadian clock network of Arabidopsis thaliana.
Frontiers in Plant Science. 2013;4:1–8.

[15] Avello PA, Davis SJ, Ronald J, Pitchford JW. Heat the Clock: Entrain-
ment and Compensation in Arabidopsis Circadian Rhythms. Journal
of Circadian Rhythms. 2019;17:5.

[16] Salomé PA, Weigel D, McClung CR. The role of the Arabidopsis
morning loop components CCA1, LHY, PRR7, and PRR9 in temper-
ature compensation. The Plant Cell. 2010;22:3650–61.

[17] Gould PD, Locke JCW, Larue C, Southern MM, Davis SJ, Hanano S,
et al. The molecular basis of temperature compensation in the Ara-
bidopsis circadian clock. The Plant Cell. 2006;18:1177–1187.

[18] Akman OE, Locke JCW, Tang S, Carré I, Millar AJ, Rand DA. Iso-
form switching facilitates period control in the Neurospora crassa cir-
cadian clock. Molecular Systems Biology. 2008;4:164.

[19] Hastings JW, Sweeney BM. On the Mechanism of Temperature
Independence in a Biological Clock. Proceedings of the National
Academy of Sciences of the United States of America. 1957;43:804–
811.

[20] Ruoff P, Loros JJ, Dunlap JC. The relationship between FRQ-protein
stability and temperature compensation in the Neurospora circadian
clock. Proceedings of the National Academy of Sciences of the United
States of America. 2005;102:17681–17686.

[21] Tsai TYC, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE. Ro-
bust, Tunable Biological Oscillations from Interlinked Positive and
Negative Feedback Loops. Science. 2008;321:126–129.

[22] Alon U. Network motifs: Theory and experimental approaches. Na-
ture Reviews Genetics. 2007;8:450–461.

[23] Mangan S, Alon U. Structure and function of the feed-forward loop
network motif. Proceedings of the National Academy of Sciences of
the United States of America. 2003;100:11980–11985.

[24] Wong E, Baur B, Quader S, Huang CH. Biological network motif
detection: principles and practice. Briefings in Bioinformatics. 2011
06;13:202–215.

[25] Alon U. An Introduction to Systems Biology: Design Principles of
Biological Circuits. Taylor & Francis; 2006.

[26] Shen-Orr S, Milo R, Itzkovitz S, Kashtan N, Chklovskii S, Alon
U. Network motifs in the transcriptional regulation network of Es-
cherichia coli. Nature Genetics. 2002;31:64–68.

[27] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U.
Network Motifs: Simple Building Blocks of Complex Networks. Sci-
ence. 2002;298:824–827.

[28] Ignasius Joanito SHW Jhih-Wei Chu, Hsu CP. An incoherent feed-
forward loop switches the Arabidopsis clock rapidly between two hys-
teretic states. Scientific Reports;8(13944).

[29] Adams S, Manfield I, Stockley P, Carré IA. Revised Morning Loops
of the Arabidopsis Circadian Clock Based on Analyses of Direct Reg-
ulatory Interactions. PLOS ONE. 2015;10:1–11.

[30] Kamioka M, Takao S, Suzuki T, Taki K, Higashiyama T, Kinoshita T,
et al. Direct Repression of Evening Genes by CIRCADIAN CLOCK-
ASSOCIATED1 in the Arabidopsis Circadian Clock. The Plant Cell.
2016;28:696–711.

[31] Hsu CP, Lee PH, Chang CW, Lee CT. Constructing quantitative mod-
els from qualitative mutant phenotypes: preferences in selecting sen-
sory organ precursors. Bioinformatics. 2006 03;22:1375–1382.

[32] Sidaway-Lee K, Costa MJ, Rand DA, Finkenstadt B, Penfield S. Di-
rect measurement of transcription rates reveals multiple mechanisms
for configuration of the Arabidopsis ambient temperature response.
Genome Biology. 2014;15:R45.

P. Avello et al.: Preprint submitted to Elsevier Page 10 of 35



Short Title of the Article

[33] Ruoff P, Rensing L. The temperature-compensated Goodwin model
simulates many circadian clock properties. Journal of Theoretical Bi-
ology. 1996;179:275–285.

[34] Farine DR, Whitehead H. Constructing, conducting and interpret-
ing animal social network analysis. Journal of Animal Ecology.
2015;84:1144–1163.

[35] Pinter-Wollman N, Hobson EA, Smith JE, Edelman AJ, Shizuka D,
de Silva S, et al. The dynamics of animal social networks: ana-
lytical, conceptual, and theoretical advances. Behavioral Ecology.
2013;25:242–255.

[36] Blonder B, Wey TW, Dornhaus A, James R, Sih A. Temporal dy-
namics and network analysis. Methods in Ecology and Evolution.
2012;3:958–972.

[37] Blonder B, Dornhaus A. Time-Ordered Networks Reveal Limitations
to Information Flow in Ant Colonies. PLOS ONE. 2011;6:1–8.

[38] Burns D, Pitchford JW, Parr CL, Franks DW, Robinson EJH. The costs
and benefits of decentralization and centralization of ant colonies. Be-
havioral Ecology. 2019;30:1700–1706.

[39] Webb AAR, Seki M, Satake A, Caldana C. Continuous dynamic ad-
justment of the plant circadian oscillator. Nature Communications.
2019;10:550.

P. Avello et al.: Preprint submitted to Elsevier Page 11 of 35



Short Title of the Article

Supplementary Material

Transcription matrices

𝐋𝟐𝟎𝟎𝟓𝐚 →

(𝐶𝐿 𝑇𝑂𝐶1

𝐶𝐿 −

𝑇𝑂𝐶1 +

)

𝐋𝟐𝟎𝟎𝟓𝐛 →

⎛⎜⎜⎜⎝

𝐶𝐿 𝑇𝑂𝐶1 𝑋 𝑌

𝐶𝐿 − −

𝑇𝑂𝐶1 + −

𝑋 +

𝑌 +

⎞⎟⎟⎟⎠

𝐋𝟐𝟎𝟎𝟔 →

⎛
⎜⎜⎜⎜⎝

𝐶𝐿 𝑇𝑂𝐶1 𝑋 𝑌 𝑃𝑅𝑅9∕7

𝐶𝐿 − − +

𝑇𝑂𝐶1 + −

𝑋 +

𝑌 +

𝑃𝑅𝑅9∕7 −

⎞
⎟⎟⎟⎟⎠

𝐏𝟐𝟎𝟏𝟎 →

⎛⎜⎜⎜⎜⎜⎜⎝

𝐶𝐿 𝑇𝑂𝐶1 𝑌 𝑃𝑅𝑅9 𝑃𝑅𝑅7 𝑃𝑅𝑅5

𝐶𝐿 − − + + +

𝑇𝑂𝐶1 + − −

𝑌 +

𝑃𝑅𝑅9 − +

𝑃𝑅𝑅7 − +

𝑃𝑅𝑅5 −

⎞⎟⎟⎟⎟⎟⎟⎠

𝐏𝟐𝟎𝟏𝟐 →

⎛⎜⎜⎜⎜⎜⎜⎝

𝐶𝐿 𝑃𝑅𝑅9 𝑃𝑅𝑅7 𝑃𝑅𝑅5 𝑇𝑂𝐶1 𝐸𝐿𝐹4 𝐸𝐿𝐹3 𝐿𝑈𝑋

𝐶𝐿 + + + − − − −

𝑃𝑅𝑅9 − +

𝑃𝑅𝑅7 − +

𝑃𝑅𝑅5 −

𝑇𝑂𝐶1 −

𝐸34𝐿 − − − −

⎞⎟⎟⎟⎟⎟⎟⎠

𝐏𝟐𝟎𝟏𝟑 →

⎛
⎜⎜⎜⎜⎜⎜⎝

𝐶𝐿 𝑃𝑅𝑅9 𝑃𝑅𝑅7 𝑃𝑅𝑅5 𝑇𝑂𝐶1 𝐸𝐿𝐹4 𝐸𝐿𝐹3 𝐿𝑈𝑋

𝐶𝐿 + + + − − − −

𝑃𝑅𝑅9 − +

𝑃𝑅𝑅7 − +

𝑃𝑅𝑅5 −

𝑇𝑂𝐶1 − − − − − −

𝐸34𝐿 − − − −

⎞
⎟⎟⎟⎟⎟⎟⎠

P. Avello et al.: Preprint submitted to Elsevier Page 12 of 35



Short Title of the Article

𝐅𝟐𝟎𝟏𝟒 →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶𝐶𝐴1 𝐿𝐻𝑌 𝑃𝑅𝑅9 𝑃𝑅𝑅7 𝑃𝑅𝑅5 𝑇𝑂𝐶1 𝐸𝐿𝐹4 𝐸𝐿𝐹3 𝐿𝑈𝑋 𝑅𝑉 𝐸8

𝐶𝐶𝐴1 − − − − − − − −

𝐿𝐻𝑌 − − − − − − − −

𝑃𝑅𝑅9 − − −

𝑃𝑅𝑅7 − − −

𝑃𝑅𝑅5 − − − − −

𝑇𝑂𝐶1 − − − − − − − −

𝐸34𝐿 − − − − − −

𝑅𝑉 𝐸8 + + + + +

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐃𝐂𝟐𝟎𝟏𝟔 →

⎛⎜⎜⎜⎝

𝐶𝐿 𝑃97 𝑃51 𝐸𝐿

𝐶𝐿 + − −

𝑃97 −

𝑃51 − − − −

𝐸𝐿 − −

⎞⎟⎟⎟⎠

P. Avello et al.: Preprint submitted to Elsevier Page 13 of 35



Short Title of the Article

Table S1

Parameters of the models affected by temperature.

ODE model Rate constants of translation

L2005a 𝑝1, 𝑝2
L2005b 𝑝1, 𝑝2, 𝑝3, 𝑝4
L2006 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝6
P2010 𝑝1, 𝑝2, 𝑝4, 𝑝6, 𝑝8, 𝑝9, 𝑝10
P2012 𝑝1, 𝑝2, 𝑝4, 𝑝8, 𝑝9, 𝑝10, 𝑝23, 𝑝27
P2013 𝑝1, 𝑝2, 𝑝4, 𝑝8, 𝑝9, 𝑝10, 𝑝23, 𝑝27
F2014 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝16, 𝑝23, 𝑝30, 𝑝31, 𝑝32
DC2016 𝑝1, 𝑝1𝐿, 𝑝2, 𝑝3, 𝑝4
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Minimal models

The S1 model

𝑑[𝐶𝐿]𝑚

𝑑𝑡
= 𝛽1 ∗

1

1 + (
[𝑃 97]𝑝

𝐾1
)𝑛 + (

[𝑃 51]𝑝

𝐾2
)𝑛

− 𝑑1 ∗ [𝐶𝐿]𝑚

𝑑[𝐶𝐿]𝑝

𝑑𝑡
= 𝑝1 ∗ [𝐶𝐿]𝑚 − 𝑑2 ∗ [𝐶𝐿]𝑝

𝑑[𝑃 97]𝑚

𝑑𝑡
= 𝛽2 ∗

1

1 + (
[𝐶𝐿]𝑝

𝐾3
)𝑛 + (

[𝐸𝐿]𝑝

𝐾4
)𝑛

− 𝑑3 ∗ [𝑃97]𝑚

𝑑[𝑃97]𝑝

𝑑𝑡
= 𝑝2 ∗ [𝑃 97]𝑚 − 𝑑4 ∗ [𝑃97]𝑝

𝑑[𝑃 51]𝑚

𝑑𝑡
= 𝛽3 ∗

1

1 + (
[𝐶𝐿]𝑝

𝐾5
)𝑛

− 𝑑5 ∗ [𝑃51]𝑚

𝑑[𝑃51]𝑝

𝑑𝑡
= 𝑝3 ∗ [𝑃 51]𝑚 − 𝑑6 ∗ [𝑃51]𝑝

𝑑[𝐸𝐿]𝑚

𝑑𝑡
= 𝛽4 ∗

1

1 + (
[𝐶𝐿]𝑝

𝐾6
)𝑛

− 𝑑7 ∗ [𝐸𝐿]𝑚

𝑑[𝐸𝐿]𝑝

𝑑𝑡
= 𝑝4 ∗ [𝐸𝐿]𝑚 − 𝑑8 ∗ [𝐸𝐿]𝑝

The S2 model

𝑑[𝐶𝐿]𝑚

𝑑𝑡
= 𝛽1 ∗

1

1 + (
[𝑃 97]𝑝

𝐾1
)𝑛 + (

[𝑃 51]𝑝

𝐾2
)𝑛

− 𝑑1 ∗ [𝐶𝐿]𝑚

𝑑[𝐶𝐿]𝑝

𝑑𝑡
= 𝑝1 ∗ [𝐶𝐿]𝑚 − 𝑑2 ∗ [𝐶𝐿]𝑝

𝑑[𝑃 97]𝑚

𝑑𝑡
= 𝛽2 ∗

1

1 + (
[𝐶𝐿]𝑝

𝐾3
)𝑛 + (

[𝐸𝐿]𝑝

𝐾4
)𝑛

− 𝑑3 ∗ [𝑃97]𝑚

𝑑[𝑃97]𝑝

𝑑𝑡
= 𝑝2 ∗ [𝑃 97]𝑚 − 𝑑4 ∗ [𝑃97]𝑝

𝑑[𝑃 51]𝑚

𝑑𝑡
= 𝛽3 ∗

1

1 + (
[𝐶𝐿]𝑝

𝐾5
)𝑛 + (

[𝑃51]𝑝

𝐾7
)𝑛

− 𝑑5 ∗ [𝑃 51]𝑚

𝑑[𝑃51]𝑝

𝑑𝑡
= 𝑝3 ∗ [𝑃 51]𝑚 − 𝑑6 ∗ [𝑃51]𝑝

𝑑[𝐸𝐿]𝑚

𝑑𝑡
= 𝛽4 ∗

1

1 + (
[𝐶𝐿]𝑝

𝐾6
)𝑛 + (

[𝐸𝐿]𝑝

𝐾8
)𝑛

− 𝑑7 ∗ [𝐸𝐿]𝑚

𝑑[𝐸𝐿]𝑝

𝑑𝑡
= 𝑝4 ∗ [𝐸𝐿]𝑚 − 𝑑8 ∗ [𝐸𝐿]𝑝
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Table S2

Selecting parameter sets for the clock structures in Figure 4. Percentages in brackets were calculated over the number of parameter
sets searched (third column). Last column shows the number of sets including the parameters to be applied Arrhenius equations.

Models
number of
parameters

sets
searched

sets
oscillating

oscillating

and phase

S1 23 500,000 2,114 (0.42%) 1,281 (0.26%)
S2 25 500,000 1,870 (0.37%) 239 (0.05%)
S3 26 500,000 1,880 (0.38%) 137 (0.03%)

The S3 model

𝑑[𝐶𝐿]𝑚

𝑑𝑡
= 𝛽1 ∗

1

1 + (
[𝑃 97]𝑝

𝐾1
)𝑛 + (

[𝑃 51]𝑝

𝐾2
)𝑛

− 𝑑1 ∗ [𝐶𝐿]𝑚

𝑑[𝐶𝐿]𝑝

𝑑𝑡
= 𝑝1 ∗ [𝐶𝐿]𝑚 − 𝑑2 ∗ [𝐶𝐿]𝑝

𝑑[𝑃 97]𝑚

𝑑𝑡
= 𝛽2 ∗

1

1 + (
[𝐶𝐿]𝑝

𝐾3
)𝑛 + (

[𝐸𝐿]𝑝

𝐾4
)𝑛

− 𝑑3 ∗ [𝑃97]𝑚

𝑑[𝑃97]𝑝

𝑑𝑡
= 𝑝2 ∗ [𝑃 97]𝑚 − 𝑑4 ∗ [𝑃97]𝑝

𝑑[𝑃 51]𝑚

𝑑𝑡
= 𝛽3 ∗

1

1 + (
[𝐶𝐿]𝑝

𝐾5
)𝑛 + (

[𝑃51]𝑝

𝐾7
)𝑛

− 𝑑5 ∗ [𝑃 51]𝑚

𝑑[𝑃51]𝑝

𝑑𝑡
= 𝑝3 ∗ [𝑃 51]𝑚 − 𝑑6 ∗ [𝑃51]𝑝

𝑑[𝐸𝐿]𝑚

𝑑𝑡
= 𝛽4 ∗

1

1 + (
[𝐶𝐿]𝑝

𝐾6
)𝑛 + (

[𝐸𝐿]𝑝

𝐾8
)𝑛 + (

[𝑃 51]𝑝

𝐾9
)𝑛

− 𝑑7 ∗ [𝐸𝐿]𝑚

𝑑[𝐸𝐿]𝑝

𝑑𝑡
= 𝑝4 ∗ [𝐸𝐿]𝑚 − 𝑑8 ∗ [𝐸𝐿]𝑝
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Figure S1: Modelled outputs do not change when a small number of replications is used. Modelled outcomes from DC2016
model for different number of replications. Simulations were carried out following experimental protocols of [16] and [17]. Results
show the distribution of the free-running period when random uniformly distributed activation energy values between 40 kJmol−1

and 60 kJmol−1 were allocated independently to the translation rates of the model.

P. Avello et al.: Preprint submitted to Elsevier Page 17 of 35



Short Title of the Article

12 14 16 18 20 22 24 26 28

Temperature (°C)

22

24

26

28

30

fr
ee

 r
un

ni
ng

 p
er

io
d

P2012

12 14 16 18 20 22 24 26 28

Temperature (°C)

22

24

26

28

30

fr
ee

 r
un

ni
ng

 p
er

io
d

P2013

12 14 16 18 20 22 24 26 28

Temperature (°C)

22

24

26

28

30

fr
ee

 r
un

ni
ng

 p
er

io
d

F2014

12 14 16 18 20 22 24 26 28

Temperature (°C)

22

24

26

28

30

fr
ee

 r
un

ni
ng

 p
er

io
d

DC2016

Figure S2: The models P2012, P2013, F2014 and DC2016 exhibit temperature compensation. Simulations were carried out
following experimental protocols of [16] and [17]. Results show the distribution of the free-running period when random uniformly
distributed activation energy values between 40 kJmol−1 and 60 kJmol−1 were allocated independently to the translation rates of
the model. Results support outputs obtained in Figure 5, where the influence of temperature was parametrized to be equal.
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Figure S3: The earliest clock models, L2005a, L2005b, L2006 and P2010 do not exhibit temperature compensation. Simulations
were carried out following experimental protocols of [16] and [17]. Results show the distribution of the free-running period when
random uniformly distributed activation energy values between 40 kJmol−1 and 60 kJmol−1 were allocated independently to the
translation rates of the model. Results support outputs obtained in Figure 5, where the influence of temperature was parametrized
to be equal.
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Figure S4: Autoregulation alone is inadequate to explain temperature compensation. The figure shows outputs from modified
P2012 and DC2016 models, where the autoregulation loops have been removed. In both cases, temperature compensation persists
in spite of the change to the network structure.
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Figure S5: Simulated CCA1/LHY expression under constant light for a disrupted three-node feedback. Upper figure: DC2016
model with loss of interaction of ELF4/LUX on PPR9/PRR7. Lower figure: P2012 model with loss of interaction of ELF4/LUX
on PRR9.
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Figure S6: Simulated CCA1/LHY expression under constant light for a disrupted feedforward. Upper figure: DC2016 model
with loss of interaction of PRR5/TOC1 on ELF4/LUX. Lower figure: P2012 model with loss of interaction of CCA1/LHY on
TOC1.
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Figure S7: Temperature compensation persists under continuous dark conditions but with a reduced 𝑄10 of period compared

to constant light. The figure shows outputs from DC2016 model, where ELF4/LUX autoregulation with a three-node feedback
loops are absent due to dark phase. A 𝑄10 equal to 0.94 is observed.
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Figure S8: Simulated CCA1/LHY expression under constant light for different temperatures. Upper figure: Outputs from
P2010 model, where positive interactions on CCA1/LHY, TOC1, PRR5, PRR9 and PRR7 are removed. Lower figure: Outputs
from P2010 model, where positive interactions on CCA1/LHY, TOC1 and PRR9 are changed to negative.
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Figure S9: Autoregulation together with three-node feedback structure improves the robustness of the system against tem-

perature changes. Results from random parameterisations of models S1, S2 and S3 in Figure 4 when modelled inputs were
chosen from uniform distributed numbers with mean equal to the published parameter values for DC2016 model rather than from
uniform distributed numbers between 0 and 1 as shown in Figure 6. (A) Normalized proportion of parameter sets that showed
sustained oscillations and correct order of peak gene expression. (B, D, F) Proportion of parameter sets that allowed the system
to oscillate across a 12°C - 28°C temperature range with respect to the number of sets obtained after searching (see Tables S6 to
S8 in Supplementary Material for absolute frequencies). Note that the ranking of models S1-S3 is unchanged from that in Figure
6, but that the relative differences are very much diminished. (C, E, G) Distribution of the modelled outputs of the parameter
sets selected to show oscillatory behaviour in the range 12°C - 28°C.
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Table S3

Parameter sets producing sustained oscillations on a range of 12°C to 28°C in temperature-
dependent translation rates. Parameterisations from uniformly distributed numbers be-
tween 0 and 1. Third column shows the number of modelled inputs for Figure 6C.

Models
sets

selected
sets

in [12°C ; 28°C]
%

obtained

S1 1,281 188 14.7
S2 239 72 30.1
S3 137 38 27.7

Table S4

Parameter sets producing sustained oscillations on a
range of 12°C to 28°C in temperature-dependent transcription rates. Parameterisations
from uniformly distributed numbers between 0 and 1. Third column shows the number of
modelled inputs for Figure 6E.

Models
sets

selected
sets

in [12°C ; 28°C]
%

obtained

S1 1,281 123 9.6
S2 239 52 21.8
S3 137 32 23.4

Table S5

Parameter sets producing sustained oscillations on a range of 12°C to 28°C in temper-
ature dependent translation and transcription rates. Parameterisations from uniformly
distributed numbers between 0 and 1. Third column shows the number of modelled inputs
for Figure 6G.

Models
sets

selected
sets

in [12°C ; 28°C]
%

obtained

S1 1,281 10 0.8
S2 239 9 3.8
S3 137 6 4.4
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Table S6

Parameter sets producing sustained oscillations on a range of 12°C to 28°C in temperature-
dependent translation rates. Parameterisations from uniformly distributed numbers be-
tween zero and two-fold the value of the relevant parameters published in DC2016. Third
column shows the number of modelled inputs for Figure S9C.

Models
sets

selected
sets

in [12°C ; 28°C]
%

obtained

S1 4,403 1,450 32.9
S2 1,141 418 36.6
S3 836 299 35.8

Table S7

Parameter sets producing sustained oscillations on a range of 12°C to 28°C in temperature-
dependent transcription rates. Parameterisations from uniformly distributed numbers be-
tween zero and two-fold the value of the relevant parameters published in DC2016. Third
column shows the number of modelled inputs for Figure S9E.

Models
sets

selected
sets

in [12°C ; 28°C]
%

obtained

S1 4,403 1,059 24.1
S2 1,141 317 27.8
S3 836 245 29.3

Table S8

Parameter sets producing sustained oscillations on a range of 12°C to 28°C in temper-
ature dependent translation and transcription rates. Parameterisations from uniformly
distributed numbers between zero and two-fold the value of the relevant parameters pub-
lished in DC2016. Third column shows the number of modelled inputs for Figure S9G.

Models
sets

selected
sets

in [12°C ; 28°C]
%

obtained

S1 4,403 343 7.8
S2 1,141 142 12.4
S3 836 111 13.3
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Figure S10: Temperature dependence in L2005a model. Modelled outcomes from L2005a model for an activation energy value
of 50 kJmol−1. Simulations were carried out following experimental protocols of [16] and [17]. Results show mRNA levels of
CCA1/LHY under free-running conditions for a range of temperatures.
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Figure S11: Temperature dependence in L2005b model. Modelled outcomes from L2005b model for an activation energy value
of 50 kJmol−1. Simulations were carried out following experimental protocols of [16] and [17]. Results show mRNA levels of
CCA1/LHY under free-running conditions for a range of temperatures.
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Figure S12: Temperature dependence in L2006 model. Modelled outcomes from L2006 model for an activation energy value
of 50 kJmol−1. Simulations were carried out following experimental protocols of [16] and [17]. Results show mRNA levels of
CCA1/LHY under free-running conditions for a range of temperatures.
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Figure S13: Temperature dependence in P2010 model. Modelled outcomes from P2010 model for an activation energy value
of 50 kJmol−1. Simulations were carried out following experimental protocols of [16] and [17]. Results show mRNA levels of
CCA1/LHY under free-running conditions for a range of temperatures.
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Figure S14: Temperature dependence in P2012 model. Modelled outcomes from P2012 model for an activation energy value
of 50 kJmol−1. Simulations were carried out following experimental protocols of [16] and [17]. Results show mRNA levels of
CCA1/LHY under free-running conditions for a range of temperatures.
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Figure S15: Temperature dependence in P2013 model. Modelled outcomes from P2013 model for an activation energy value
of 50 kJmol−1. Simulations were carried out following experimental protocols of [16] and [17]. Results show mRNA levels of
CCA1/LHY under free-running conditions for a range of temperatures.
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Figure S16: Temperature dependence in F2014 model. Modelled outcomes from F2014 model for an activation energy value
of 50 kJmol−1. Simulations were carried out following experimental protocols of [16] and [17]. Results show mRNA levels of
CCA1/LHY under free-running conditions for a range of temperatures.
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Figure S17: Temperature dependence in DC2016 model. Modelled outcomes from DC2016 model for an activation energy
value of 50 kJmol−1. Simulations were carried out following experimental protocols of [16] and [17]. Results show mRNA levels
of CCA1/LHY under free-running conditions for a range of temperatures.

P. Avello et al.: Preprint submitted to Elsevier Page 35 of 35


