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Abstract. The coastal state of Kerala, India experienced unprecedented levels of rainfall and 

flooding in August 2018, resulting in huge life and property loss. Since then the impact 

reservoir management may have had on the severity of the 2018 Kerala floods has been in 

question. This study presents a novel approach to developing a reservoir model using HEC-

HMS and HEC-ResSim models, combined with satellite remote sensing data. In order to 

establish a link between flood severity and reservoir management, a model of the Kakki 

reservoir in southern Kerala was created. Simulations were carried out for six long term, two 

short term, and two immediate run cases. It was found that all cases except the immediate 

simulation run resulted in a reduced peak flow. The long simulation run, which altered the 

guide curve after the heavy rainfall occurring on 14th August 2018, while constraining the 

outflow, was found to produce the greatest reduction in peak outflow. The significant peak 

outflow reduction achieved suggests that improved reservoir management could have reduced 

the severity of the 2018 floods. 

Keywords: Kerala, Flood, Reservoir, Simulation, HEC-HMS, HEC-ResSim, GPM 

Precipitation 

1.  Introduction 

Kerala, an Indian state located on the south west coast, normally receives about 70 % of the annual 

rainfall during the south west monsoon period (June-September). The State of Kerala experienced an 

abnormally high rainfall from 1 June 2018 to 19 August 2018. However, the flood severity was 

compounded by the fact that 20-25% of this rainfall fell on three days: 15-17th August. As per India 

Meteorological Department (IMD) data [1], Kerala received 2346.6 mm of rainfall from 1 June 2018 

to 19 August 2018 in contrast to an expected 1649.5 mm of rainfall (about 42% above the normal). 

This combined with most major reservoirs being at 90% capacity or more resulted in an extreme peak 

discharge which caused widespread damage to over 175,000 buildings and resulted in an estimated 

433 casualties [2]. The abnormal rainfall in 2018 resulted in an unprecedented and severe flooding in 

13 out of 14 districts in the State. Subsequently, the role that reservoir management played in this 

disaster has been brought into question. Mishra et al. performed a study on the impact of rainfall and 

storage reservoirs on the Kerala floods of 2018 considering seven major reservoirs in the State, by 

developing the storage curves and depth-duration-frequency curves of rainfall [3]. Mishra et al. also 

reported that the study used the daily gridded rainfall for the analysis and that gauged station rainfall 
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data and actual monitored releases could have given a better picture of the scenario. Sudheer et al. 

performed a detailed analysis on the Periyar basin located in central Kerala [4]. The study reported the 

results and analysis of a modelling exercise using HEC-HMS to simulate and analyse the role of 

reservoir operations in the flood of August 2018. The study concluded that the operation of dams had 

no major role in damages experienced after the 2018 floods. Recently Anandalekshmi et al. used 

Copulas as a modeling tool for investigating the joint dependencies of reservoir storage and extreme 

rainfall in four reservoirs in Kerala, namely: Idamalayar, Idukki, Kakki and Kallada reservoirs [5]. 

They reported that the planned management might have alleviated the flood damage and that Kakki 

and Idukki planned releases might have reduced the impact of flood damage. This study aims to 

quantitatively analyse reservoir management though a reservoir model to determine whether flood 

severity could have been reduced by improved reservoir management of the Kakki.  

 

The specific objectives of the study are to: 

• Develop a catchment and reservoir model for the Kakki reservoir using satellite remote 

sensing topography and rainfall data. 

• Examine the impact of reservoir management on the flood magnitude downstream of Kakki 

through simulation runs of the developed reservoir model. 

2.  Methodology 

This study uses HEC-HMS software to derive a reservoir inflow time series based on NASA Global 

Precipitation Measurement (GPM) data. Subsequently, the inflow was inputted intothe HEC-ResSim 

reservoir model which produced an outflow time series. A summary of this methodology is given in 

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Flowchart showing data and methodology 

2.1.  Study Area 

The Pamba river basin in southern Kerala is one of the major basins affected by the Kerala flood of 

2018. The catchment has relatively few reservoirs, with the majority of the storage capacity contained 

within one reservoir, the Kakki reservoir. This allows a single reservoir model to be largely 

representative of the behavior of all storage in the basin.  The Kakki Reservoir’s sub-basin also 

experienced the uncharacteristic extreme rainfall from 15th-17th August [3]. It has been reported that 

the catchment experienced 700% higher rainfall compared to the long term mean in this three-day 

period [3]. The Kakki Reservoir, which began operations in 1966, is primarily a hydroelectric power 

generation reservoir. Accordingly, there is a minimum outflow from the reservoir to ensure it can 

generate electricity continuously. The location map of the Kakki reservoir is shown in Figure 2. 
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2.2.  Inflow generation using HEC-HMS 

The first step uses HEC-HMS to produce a reservoir inflow time series, using remotely sensed 

precipitation and catchment topography data. The rainfall data from a local gauge is normally one of 

the most reliable sources of data input to run a hydrologic model. However, due to the lack of a daily 

time series, NASA GPM data [6] was used to create a rainfall intensity time series. Precipitation data 

for the catchment was obtained for the area bound by the coordinates 9.35N, 77.23E and 

9.23N,77.12E. However, the total precipitation was lower than that reported from gauge data. 

Therefore, a bias correction factor of 3.73 was applied to the data, considering the real gauge total 

estimate of 1762.7mm of rainfall between 1st June 2018 and 17th August 2018 reported by IMD. 

Thus, the GPM data is considered to be a proxy record that is bias corrected. It is not a direct gauged 

measurement record but is representative of the actual rainfall experienced in the study area. Analysis 

of the catchment topography was carried out using MERIT DEM [7] topography data. This enabled 

the catchment area and average slope to be determined directly, while providing the required 

parameters to determine the catchment lag time. The coordinates at the centre of the catchment are 

9°17’30’’N, 77°10’20’’E, the catchment area of 219.8 km2 and the average slope of 68.95% were 

determined using QGIS. The catchment lag time (Tlag) was calculated using the Curve Number based 

equation stated by Costache [8]. To calculate Tlag, the longest drainage path length of 25.21 km and 

average catchment slope of 68.95%, were used. The average curve number was determined assuming 

a maximum water retention of 100mm Costache [8], as the heavily wooded nature of the catchment is 

clear from satellite imagery. This resulted in an average curve number of 71.75. The final estimate of 

Tlag was found to be 1.66 hours (99.9 minutes).  

The daily Evapotranspiration data of Pathanamthitta District for 1901-2000 was collected from the 

India Water Portal [9] and converted to average monthly totals and inputted into the HEC-HMS 

model. In the absence of reliable flow gauge data, the SCS curve number technique was selected for 

runoff computation, as a calibration series is not required. The curve number was set as 77 [10] as the 

catchment is heavily wooded with negligible areas of open space around access roads. Assuming a 

canopy category of 1 (as the majority of the catchment’s canopy is undisturbed) a canopy storage 

capacity of 80 mm was estimated [11]. 

Figure 2. Location of the Kakki 

reservoir and its catchment (red outline) 

and its location within the southern tip of 

India 
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While it is likely that there are several inflows into the reservoir, for ease of computation the entire 

catchment has been modelled to produce a single inflow time series for input into the reservoir model. 

The precipitation series, the primary input for the hydrology model, and the inflow times series 

produced from HEC-HMS model are shown in Figure 3. 

 

 

2.3.  Reservoir Characteristics 

In order to properly model the reservoir, several characteristics had to be determined and inputted into 

HEC-ResSim. Most of these characteristics were obtained from a time series of reservoir elevation and 

volume dating back to 1st January 2005 collected from the Water Resources Information System of 

India, 2012 [12]. First the storage-elevation (S-E) curve was prepared. It fits an exponential curve of 

S=(1*10-22 )e0.0505E with an R2of 0.9769, where S is the storage in billion cubic metres (BCM), and 

E is the elevation from Mean Sea Level (MSL) in m. In order to determine the maximum capacity of 

the reservoir, the maximum water elevation is required. This was found to be 981.45m [12]. This 

coincides with the highest elevation recorded in the elevation and storage time series, suggesting that 

the information is reliable.  

No area-elevation curves were readily available for the reservoir; therefore, these were derived 

from remotely sensed topography (MERIT DEM) at 90m resolution for observable elevations between 

990-1040 m. This area-elevation (A-E) curve followed an exponential curve of A=e0.0404E with R2 

of 0.872 (in which A is reservoir area in km
2
 and E is elevation in m above MSL). This relationship 

was then extrapolated to derive areas below the normal water levels elevations i.e. elevations between 

910-990 m. 

In order to determine how the reservoir has been managed in the past, the elevation time series was 

used to determine a historic guide curve. First, a monthly elevation time series for 2018 was created 

from daily averages and plotted to produce a guide curve representative of the reservoir management 

in the year in question. Then an average guide curve was taken from the most recent five years of data 

available (2014-2018) to determine whether management varied from the average in 2018. Figure 4 

illustrates that the 2018 guide curve has a higher elevation throughout the year when compared to the 

average curve, clearly suggesting a departure from typical operations in 2018. Figure 4 shows that the 

reservoir’s minimum level for the year is reached earlier, in May rather than in June, and is over 10m 

higher than the average minimum. At this stage it was identified that the reservoir’s poor performance 

in the flood event may be partially attributed to this deviation from normal operations. 

Figure 3. GPM bias adjusted precipitation and reservoir 

inflow from HEC-HMS model of reservoir catchment. 
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As part of the decision-making process within HEC-ResSim, the software uses four elevation time 

series to control the reservoir, effectively dividing the reservoir capacity into four sections for which 

separate rules determining outflow can be applied. The highest and first level is the flood control zone 

(set to the maximum capacity of the reservoir), which is not used in everyday operation but is made 

available for flood control. The second storage zone is the guide curve (conservation curve). For the 

purposes of recreating actual reservoir performance, the 2018 behavior curve was used as the guide 

curve, then the averaged curve was used for alternative simulation runs. The third level is the buffer 

zone which is the capacity that is typically not utilised unless there is a drought, the level of this zone 

was set at an estimated typical value of 20% of capacity. The fourth and final level of storage is the 

inactive level at which it is unlikely that a reservoir would ever reach in its operational life. The 

elevation of this level was set at 5% of the reservoir’s capacity. 

In order to properly simulate the operations of the reservoir, the outflow requirements for functions 

such as irrigation, water supply and electricity generation must be known. This ensures that any 

changes to the reservoir regime made to improve flood control performance don’t restrict the primary 

function of the reservoir. To estimate this required minimum outflow, the change in storage per day 

was calculated using the storage time series. This change in storage was then converted to m
3
/s and 

subtracted from the inflow time series from the hydrology model. This then produced an approximate 

outflow time series for 2018 as shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From observation we can see a period from 1st January 2018 to 1st February where there is no 

reservoir inflow but there is a constant outflow of 7.99 m3/s. Therefore, the minimum required 

outflow for the simulation has been estimated as equal to this constant outflow of 7.99 m3/s.  

Figure 4. Average guide curve for 2014-18 for the Kakki Reservoir and guide curve for 2018. 

The 2018 curve ends at October due to the data availability at time of modelling. 

Figure 5. Reservoir outflow time series applying the estimated minimum release. 
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The maximum possible release capacity of this reservoir is 1785 m3/s [12], which may not be relevant 

here as the focal objective is to keep the peak outflow as low as possible. In order to estimate the 

seepage from the reservoir, it was determined that the local soil type, referred to as forest soil, is a mix 

of clay and loam [13]. For loam soil, the seepage ranges between 8 – 20 mm/day [14], the lower bound 

value of 8 mm/day was chosen as the catchment is dominated by loam. Seepage rates in m3/s were 

calculated at 10m elevation intervals from 910-990m MSL using the derived A-E curve.  

2.4.  Reservoir management using HEC-ResSim 

HEC-ResSim is arranged into three modules; watershed setup, reservoir network, and simulation [15]. 

First the watershed (or catchment) was defined and the reservoir was placed into the catchment. As the 

hydrological model produced a single inflow time series, an arbitrary stream alignment was drawn, 

and the reservoir drawn onto the alignment. Two computation points, one upstream for the inflow and 

one downstream for the outflow time series were placed. In order to define the physical characteristics 

of the reservoir, the storage volume (in m
3
) and the reservoir area (in hectares) at 10 m elevation 

intervals, average monthly evaporation, average monthly seepage from the reservoir in m
3
/s, and 

maximum reservoir outflow were inputted into HEC-ResSim. Then the operational rules and storage 

zones for the model were also set and a minimum flow operational rule was applied to all zones to 

ensure that the reservoir always provides the minimum outflow required. 

After inputting the require parameters, various simulation runs were carried out to determine the 

impact that changing the rules and guide curves of the reservoir had on the outflow time series 

produced.  To investigate the impact of alternative management regimes on peak outflow, three 

simulation run durations (long, short and immediate) were tested. All the three durations aimed to 

limit this peak through either freeing up capacity prior to the event and/or artificially limiting the 

outflow capacity. In order to determine whether alternative management regimes were successful, a 

baseline must first be set using actual performance of the reservoir. In order to recreate the actual 

management of the reservoir, the 2018 guide curve was inputted into the model. To enable comparison 

between this baseline and all alternative regimes considered, the start date of the longest run time was 

used (1
st
 July 2018). Running the simulation produced an out-flow time series with a peak of 492m

3
/s 

on 14
th
 August 2018.  

Once the baseline performance was established, alternative regimes were considered which had the 

possibility of resulting in a lower peak outflow. This was done in three types of simulation, the first 

being a long-term simulation beginning on 1st July 2018 and running until the 31th August 2018. This 

represents the best-case option with over a month to correct the reservoir’s operations prior the 14-17
th

 

August’s heavy rainfall. A second simulation timescale was considered starting on the 7
th
 August, 

giving a week to alter the reservoir’s storage level to best mitigate the effects of the heavy rainfall. A 

third and final type of simulation was carried out which began on 13
th
 August 2018 and represents the 

worst-case scenario where the reservoirs regime is unchanged up until that point and there is only one 

day to prepare the reservoir for the flood event. Each of these main types of simulation was iterated 

upon to produce the most efficient operational regime. The management strategies are to be chosen by 

prioritising the objectives keeping in mind that a regime designed to improve flood control 

performance must not restrict the reservoir’s ability to carry out its other functions. 

3.  Results and discussion 

3.1.  Reservoir Simulation 

Long run simulations (LRS) have been taken as the best-case scenario where the reservoir operators 

have over a month before the flood event occurs to alter its regime to best withstand the flood event. 

The optimal management strategy for this time period was developed over six simulation runs by 

altering the operational parameters to gradually reduce the peak outflow. The results of the six LRS 

along with the recreated baseline time series are given in Figure 6. 
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Table 1. Six Scenarios of LRS and their effect on reservoir peak outflow 
Scenario Description Flood Event Peak Features and Effect 

LRS1 

Substituted the averaged 

2014-2018 guide curve 

for the baseline 2018 

curve 

465m3/s 

(~5% reduction) 

Note that there is an artificially large release at 

the start of this run as the model adjusts to the 

enforced reservoir guide curve. 

LRS2 

The guide curve was 

edited to coincide with 

the starting elevation of 

964.78m for the   

simulation 465 m3/s (~5 % reduction) 

Avoids initial artificial release of storage volume 

seen in LRS1. Similar performance as LRS1. 

 

 

LRS3 

The same parameters 

as LSR2 were used but 

an upper limit of 

200m
3
/s outflow was 

enforced. 

Continuous outflow of 200m
3
/s during 

13-19 August 

Peak flow rather than total volume was the key 

factor in flood severity; therefore, this represents 

a significant improvement. However, several 

early pre-event releases of excess volume are 

required by the model to achieve this. 

 

LRS4 

The same parameters as 

LSR2 were used but an 

upper limit of 100m3/s 

outflow capacity was 

applied. 

Continuous outflow of 100m
3
/s during 

13-28 August 

Wouldn’t result in flooding, therefore, represents 

a significant improvement. However, several 

early pre-event releases of excess volume are 

required by the model to achieve this. 

 

LRS5 

The guide curve was 

edited to fully utilise the 

flood control zone 

after 14th of August 

when the heavy 

rainfall occurs. 

 

Shorter outflow peak before the 

extreme rainfall occurs after which the 

outflow drops down to its minimum 

value. 

 

 

Represents a reduction in the volume of water 

released during the peak period and enables a 

staggering of peak flows. The peak outflow from 

the reservoir occurs prior to the event and the 

peak flow from runoff in other areas of the 

catchment would occur shortly after the peak 

rainfall. Therefore, this regime theoretically 

provides significant benefits for flood severity in 

the catchment. 

LRS6 

LRS5 parameters were 

maintained. The peak 

outflow was further 

limited to50m
3
/s. 

Continuous outflow of 50m3/s during 

1-24 July 

Shorter and earlier peak outflow obtained in 

LRS5 has been maintained while further reducing 

the peak. 

Figure 6. Outflow 

time series of Kakki 

reservoir model for 

long simulation runs, 

showing the reduced 

peak flows resulting 

from six alternative 

management 

strategies. 
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Short run simulation (SRS) were carried out from 7th August 2018, one week prior to the extreme 

rainfall event. This allowed one week to optimize the reservoir’s elevation for maximum flood 

mitigation. Figure 7 graphically compares the resultant outflows for the time period considered for 

both short simulation runs and the baseline performance. SRS1 was carried out using the modified 

2014-2018 average guide curve (as used for LRS5) and resulted in the outflow reaching maximum 

capacity on the first day. Therefore, this run doesn’t provide benefits over the baseline performance. 

For SRS2, the run followed the same operational rules as SRS1, but imposed an artificial outflow limit 

of 200m
3
/s. This enables the large outflows resulting from transferring from the 2014-2018 curve to 

the 2018 curve to be eliminated. Further runs were attempted but 200m3/s was determined to be the 

lowest peak outflow obtainable within the timescale of the short run simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The immediate run simulation (IRS) are intended to be the worst-case scenario and represents the last 

opportunity for positive intervention to reduce flood severity. The timescale considered in these 

scenarios starts on the 13th August, giving one day to make alterations to the reservoir’s regime. IRS1 

utilized the same modified average guide curve as LRS5, where the guide curve is moved to the flood 

control zone after the event to allow use of the reservoir’s entire capacity. Using only this curve 

resulted in a relatively insignificant reduction in peak flow (475 m3/s). IRS2, was modified in order to 

improve on IRS1, and the same guide curve was used along with an artificial limit on outflow of 400 

m3/s. This however resulted in the water level rising above the maximum of 981.45m, risking dam 

failure. As a peak of 400m3/s cannot be achieved during this timescale and any higher limits wouldn’t 

represent a significant improvement in flood severity.   

3.2.  Implications for management of Kakki reservoir 

The results of this study suggest that alternative management of Kakki reservoir could have resulted in 

drastically lower peak outflows, without inhibiting other functions of the reservoir. By following the 

average guide curve for 2014-2018 and utilising the flood control zone from the 14th August onwards, 

the peak outflow was reduced to 50m3/s in long run 6. Not only this, but the reduction was made 

without any impact on main reservoir function, meaning there is virtually no disadvantage to such 

management. The fact that with a month to alter the reservoir’s elevation, such drastic improvements 

Figure 7. Outflow 

time series of Kakki 

reservoir model for the 

two short simulation 

runs. 
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can be made may be indicative of poor or lack of flood mitigation awareness. However, implementing 

management options such as these would require a clear awareness of rainfall forecasts and perhaps 

procedures geared towards preparation for the monsoon conditions. 

One key recommendation for future reservoir management is the reservation of flood storage to 

enable peak inflows to be absorbed by the reservoir. If many reservoirs weren’t already at 90% or 

higher capacity, the flood severity may have been much less. Early release could have also helped in 

alleviating the flood damage, waiting until maximum capacity is reached to begin releasing resulted in 

little opportunity for flood mitigation and an exacerbation of the flood peak.  Another finding of this 

study was that out of the three time periods considered, all were able to significantly reduce the peak 

outflow except the immediate runs starting one day prior to the event. Therefore, as might be 

expected, more than a day is required to change the flood performance of the reservoir in a meaningful 

way. On the other hand, the results suggest that even with just one week to alter the regime, a peak 

outflow reduction of over 50% would have been possible. Reliable seven-day rainfall forecasts are 

certainly viable and perhaps closer cooperation between reservoir managers and the Indian 

Meteorological Service would bring about improved risk reduction in future.  

Most of the studies using HEC-ResSim software reported in the past [16], [17] used gauge data and 

reservoir surveys to create an accurate model. While some accuracy may be sacrificed, this study 

demonstrates that a representative reservoir model can be created with freely available remote sensing 

data. This further increases the possibilities with remote sensing and could enable valid models to be 

created of remote reservoirs quickly and readily in the future. This study attempted the recreation of a 

real past flood event. By showing that representative models can be created with remote sensing data, 

it is hoped that this study will encourage further modelling of past flood events to improve future 

management. 

4.  Conclusion 

This study presents a novel framework for integrating HEC-HMS and HEC-ResSim for reservoir 

modeling using inflows and reservoir characteristics generated using satellite remote sensing data 

which it is hoped will be applied to future events to democratize reservoir management data, which 

can be difficult to obtain. 

The long run simulation results showed that editing the guide curve to fully utilize the flood control 

zone after 14
th
 of August (when the heavy rainfall occurs) was able to produce a peak outflow of 50 

m3/sec. Through the methods described, the peak outflow was reduced from 493 m
3
/sec to 50 m

3
/sec. 

This is likely to represent a significant reduction in flood severity without negatively affecting any 

other aspect of the reservoir’s operation. However, this will require operational changes to the 

reservoir management. 

Therefore, we can conclude that flood severity could have been reduced through improved 

reservoir management in the 2018 floods in Kerala. Reserving sufficient storage to absorb extreme 

flows during flood events, minimising the peak outflow from the reservoir and early release of water 

to avoid high peak outflows are possible management strategies for minimizing flood severity in the 

future.  

The novel methodology which makes use of remote sensing data is an efficient alternative to in situ 

data-based models when the lack of data would otherwise hinder the creation of the reservoir model. 

The proposed method is a generalized one which can be applied to any other region for flood 

management. 

Acknowledgements 

Acknowledgements go to Professor P.A.M.Basheer, University of Leeds, UK & Professor S.Ayoob, 

TKM College of Engineering, India and Shaarad Sharma, The Royal Academy of Engineering, UK, 

for co-organizing the “Rebuilding a Resilient Kerala after the floods” Workshop, held in January 

2019, which lead to this collaboration effort. 



5th International Conference on MODELING AND SIMULATION IN CIVIL ENGINEERING

IOP Conf. Series: Earth and Environmental Science 491 (2020) 012005

IOP Publishing

doi:10.1088/1755-1315/491/1/012005

10

 

 

 

 

 

 

References 

[1] India Meteorological Department, 2018. Customised Rainfall Information System. [Online] 

Available  at: 

http://hydro.imd.gov.in/hydrometweb/(S(y04urs45g5n1sa55nv3mklif))/landing.aspx 

[Accessed 3 April 2019]. 

[2] United Nations, 2018. Kerala Post Disaster Needs Assessment Floods and Landslides – August 

2018, s.l.: UN.  

[3] Mishra V, Aaadhar S, Shah H, Kumar R, Pattanaik DR, Tiwari AD (2018) The Kerala flood of 

2018: combined impact of extreme rainfall and reservoir storage. Hydrol Earth Syst Sci 

Discuss, https://doi.org/10.5194/hess-2018-480 

[4] Sudheer KP, Bhallamudi SM, Narasimhan B, Thomas J, Bindhu VM , Vema V, Kurian  C 

(2019) Role of dams on the floods of August 2018 in Periyar River Basin, Kerala. Current 

Science 116 (5): 780-794 

[5] Anandalekshmi A, Seenu T Panicker, Adarsh S,Muhammed Siddik A, Sajna Aloysius, 

Mehjabin M(2019) Modeling the concurrent impact of extreme rainfall and reservoir storage 

on Kerala Floods 2018: A Copula approach. Modeling Earth Systems and Environment 

(DOI: 10.1007/s40808-019-00635-6) 

[6] NASA, 2019. GPM_3IMERGDL: GPM IMERG Late Precipitation L3 1 day 0.1 degree x 0.1  

degree   V05.[Online] Available at: 

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDL_V05/summary?keywords=gpm 

[Accessed 30 March 2019]. 

[7] Yamazaki D, Ikeshima D, Tawatari R, Yamaguchi T, O'Loughlin F, Neal JC, Sampson CC, 

Kanae S, Bates PD 92017) A high accuracy map of global terrain elevations. Geophysical 

Research Letters 44: 5844-5853. http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/ 

[8] Costache, R., 2014. Using GIS Techniques for Assessing Lag Time and Concentration Time in 

Small River Basins. Case Study: Pecineaga River Basin, Romania. Geographia Technica, 

09(1), pp. 31-38. 

[9] India Water Portal, 2002. Met_Data. [Online] Available at: 

http://www.indiawaterportal.org/met_data/ [Accessed 25 March 2019]. 

[10] Purdue University, n.d. SCS Curve Number Method. [Online] Available at: 

https://engineering.purdue.edu/mapserve/LTHIA7/documentation/scs.htm [Accessed 20 

March 2019]. 

[11] Chappell, N. A., Bidin, K. & Tych, W., 2001. Modelling rainfall and canopy controls on net-

precipitation beneath. Plant Ecology, Volume 153, pp. 215-229. 

[12] Water Resources Information System of India, 2012. Kakki(Eb) Dam D03369. [Online] 

Available at: http://india-wris.nrsc.gov.in/wrpinfo/index.php?title=Kakki(Eb)_Dam_D03369  

[Accessed 5 January 2019]. 

[13] Department of Soil Survey and Soil Conservation, 2019. Soils of Kerala. [Online] Available at: 

http://www.keralasoils.gov.in/index.php/2016-04-27-09-26-39/soils-of-kerala#forest-soils 

[Accessed 25 March 2019]. 

[14] Green Clean Guide, 2012. How to calculate water losses through seepage?. [Online] Available 

at: https://greencleanguide.com/water-losses-through-seepage/ [Accessed 25 March 2019]. 

[15] Klipsch JD, Hurst MB (2013). HEC-ResSim Reservoir System Simulation User's Manual, 

Davis, CA: US Army Corps of Engineers Institute for Water Resources Hydrologic 

Engineering Centre. 

[16] Osroosh M, Makenanizadeh H, Torfi S (2012) HEC – Res Sim Model for Simulating utilization 

from reservoir in the form of multiple-dam. International Journal of Structronics & 

Mechatronics. 

[17] Babazadeh, H., Sedghi, H., Kaveh, F. & Jahromi, H. M., 2007. Performance Evaluation of Jiroft 

Storage Dam Operation Using HEC-ResSim 2.0. Eleventh International Water Technology 

Conference, pp. 449- 459. 

http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/

