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Standard network meta-analysis and indirect comparisons combine aggre-

gate data from multiple studies on treatments of interest, assuming that any

factors that interact with treatment effects (effect modifiers) are balanced

across populations. Population adjustment methods such as multilevel network

meta-regression (ML-NMR), matching-adjusted indirect comparison (MAIC),

and simulated treatment comparison (STC) relax this assumption using indi-

vidual patient data from one or more studies, and are becoming increasingly

prevalent in health technology appraisals and the applied literature. Motivated

by an applied example and two recent reviews of applications, we undertook an

extensive simulation study to assess the performance of thesemethods in a range

of scenarios under various failures of assumptions. We investigated the impact

of varying sample size, missing effect modifiers, strength of effect modification

and validity of the shared effect modifier assumption, validity of extrapolation

and varying between-study overlap, and different covariate distributions and

correlations. ML-NMR and STC performed similarly, eliminating bias when the

requisite assumptions were met. Serious concerns are raised for MAIC, which

performed poorly in nearly all simulation scenarios and may even increase bias

compared with standard indirect comparisons. All methods incur bias when an

effectmodifier ismissing, highlighting the necessity of careful selection of poten-

tial effect modifiers prior to analysis. When all effect modifiers are included,

ML-NMR and STC are robust techniques for population adjustment. ML-NMR

offers additional advantages over MAIC and STC, including extending to larger

treatment networks and producing estimates in any target population, making

this an attractive choice in a variety of scenarios.
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F IGURE 1 The two-study indirect comparison scenario with one A vs B and one A vs C study. IPD are available for the AB study; only

AgD are available for the AC study. An indirect comparison compares treatments B and C via the common A arm [Color figure can be viewed

at wileyonlinelibrary.com]

1 INTRODUCTION

Indirect comparison and network meta-analysis (NMA) are standard approaches for producing pooled estimates of rela-

tive treatment effects formultiple treatments frommultiple randomized controlled trials, where the treatments of interest

may not have all been compared in the same randomized controlled trial, but instead form a connected network of treat-

ment comparisons.1-6 For example, we may have a scenario (illustrated in Figure 1) where trials of treatments A vs B and

A vs C are available, but there are no trials comparing B vs C. An indirect comparison for the B vs C treatment effect

can be obtained via the common comparator A. NMA is the generalization of indirect comparisons to more complex

networks of treatment comparisons. Health technology assessments, such as those conducted by the National Institute

for Health and Care Excellence in the United Kingdom, require companies to submit evidence on the clinical and cost

effectiveness of their treatment compared with other relevant treatments. Indirect comparisons and NMA are routinely

used as part of the health technology assessment process, since the available trial evidence may not necessarily include a

single head-to-head study of all of the relevant treatment options, and is likely to instead consist of several studies each

comparing a subset of treatments.

Because the statisticalmethods used for indirect comparisons andNMA respect the randomization in the included tri-

als, results are not affected by any differences between trials in the distribution of prognostic variables—those that affect

absolute outcomes regardless of treatment. However, bias will be introduced if there are any differences between trials in

the distribution of effectmodifying variables—those that alter the relative effect of treatment asmeasured on a given scale.

If individual patient data (IPD) are available from every study then an IPDnetworkmeta-regression is the “gold-standard”

approach to adjusting for differences in effect modifiers.7-11 However, this level of data availability is rare in health tech-

nology appraisal: it is much more common for a submitting company to have IPD from their own study or studies, and

only published aggregate data (AgD) from their competitors’. Several methods have been proposed in this scenario where

there are studies with IPD and studies with AgD, aiming to use available IPD to produce a “population-adjusted” indirect

comparison.

Matching-adjusted indirect comparison (MAIC)12,13 and simulated treatment comparison (STC)13,14 are popula-

tion adjustment methods designed specifically for a two-study indirect comparison scenario. In this scenario there

is a single IPD study comparing treatments A and B, and a single AgD study comparing treatments A and C

(Figure 1). MAIC is a weighting approach, and STC is based on regression adjustment. The relative effect of treat-

ment B vs treatment A in the aggregate study population is predicted, based on weighting (for MAIC) or regression

(for STC), and used to construct a population-adjusted indirect comparison with the aggregate relative effect of

C vs A.

Multilevel networkmeta-regression (ML-NMR) is an extension of the NMA framework to incorporate both individual

and aggregate data from a connected network formed by any number of studies and treatments.15,16 In contrast to previous

approaches based on NMA where mean covariate values are “plugged in” to an individual-level model for those studies

with AgD,17-21 ML-NMR instead integrates an individual-level model over the covariate distribution in each AgD study,

thus avoiding aggregation bias when the model is nonlinear.

Population adjustment methods are increasingly being used in health technology appraisal submissions and in the

wider literature,22-24 yet to date have largely only been investigated in limited simulation studies designed to demonstrate

performance under ideal scenarios where they would be expected to perform well. ML-NMR, as the most recently pub-

lished of the threemethods, has yet to be examined in a simulation study. In this article, we aim to assess the performance

of ML-NMR, MAIC, and STC population adjustment methods in a range of ideal and nonideal scenarios under various

failures of assumptions using a simulation study. We base our simulations on the two-study setting presented in Figure 1.

The simulation scenarios are designed to probe the underlying assumptions and properties of the methods,22,23 and are
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motivated by recent reviews of technology appraisals submitted to the National Institute of Health and Care Excellence

in the United Kingdom and of applications in the literature.22,25

We begin in Section 2 by describing the methods of standard indirect comparison, MAIC, STC, and ML-NMR. This

is followed in Section 3 by a motivating example of population adjustment applied to a network of plaque psoriasis treat-

ments. Section 4 then provides an overview of the assumptions, properties, and issues often encountered in practical

applications of population adjustment methods, based on recent methodological22,23 and applied22,25 reviews. Motivated

by the example and these reviews, we set out the simulation study design in Section 5, and report the results in Section 6.

We conclude with a discussion in Section 7.

2 METHODS FOR POPULATION ADJUSTMENT

Indirect comparisons follow the same general form, regardless of the method used to estimate them. In a population P,

the relative effect dBC(P ) of treatment C vs treatment B is determined from the difference in the relative effects of B and C

against treatment A:

dBC(P) = dAC(P) − dAB(P). (1)

Differences between methods are due to how the relative effects dAB(P ) and dAC(P ) are estimated, and in which

population. Equation (1) describes an anchored indirect comparison, since the comparison is made via the common com-

parator A. We focus on anchored indirect comparisons in this article. However, it is also possible to produce unanchored

comparisons, without reliance on a common comparator, under much stronger assumptions (see Section 4.1 and the

discussion).

2.1 Standard indirect comparison

A standard indirect comparison, without any population adjustment, is performed following the Bucher method.1 The

relative effects are assumed to be constant across populations, so that the relative effect of B vs A in the population of

the AB study is the same in the population of the AC study, dAB(AB) = dAB(AC) = dAB, and similarly for the C vs. A effect

dAC(AB) = dAC(AC) = dAC, and the C vs B effect dBC(AB) = dBC(AC) = dBC. The standard indirect comparison is then

d̂BC = d̂AC − d̂AB (2a)

with standard error

sBC =

√

s2
AC

+ s2
AB
, (2b)

where d̂AB and d̂AC are the relative effects estimated from the AB and AC studies respectively with standard errors sAB
and sAC. Standard indirect comparisons will be biased if there are differences between studies in the distribution of

effect-modifying covariates.

2.2 Simulated treatment comparison

For STC, a regression model is fitted to the IPD in the AB study, with linear predictor

g(𝜃ik(AB)) = 𝜇(AB) + xT
ik(AB)

𝜷1 + (xT
ik(AB)

𝜷2,B + 𝛾B)I(k = B), (3)

where g(⋅) is a suitable link function (eg, the logit function for logistic regression) transforming the expected outcome

𝜃ik(AB) for individual i on treatment k in the AB study with covariate vector xik(AB), 𝜇(AB) is the intercept, 𝜷1 are coefficients

for prognostic variables, 𝜷2,B are coefficients for effect modifier interactions with treatment B, and 𝛾B is the individual
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level effect of treatment B vs A at the reference level of the covariates. The predicted average treatment effect of B vs A in

the AC population is then given by

d̂AB(AC) = x
T

(AC)�̂�2,B + �̂�B, (4)

where x(AC) is the vector of mean covariate values in theAC study population. A population-adjusted indirect comparison

between treatments B and C in the AC study population is then estimated as

d̂BC(AC) = d̂AC(AC) − d̂AB(AC) (5a)

with standard error

sBC(AC) =
√

s2
AC(AC)

+ s2
AB(AC)

, (5b)

where d̂AC(AC) is the relative effect estimate from the AC study with standard error sAC(AC), and sAB(AC) is the standard

error of d̂AB(AC) from the regression. STC produces estimates which are specific to the AC study population. However,

making the shared effect modifier assumption (which is investigated in simulation scenario c, Section 6.3) means that

the estimated C vs B relative effect is constant, dBC(AB) = dBC(AC) = dBC, and thus applicable in any target population. STC

is designed with this two-study indirect comparison scenario in mind, and does not easily generalize to larger networks

of studies or treatments.

2.3 Matching-adjusted indirect comparison

MAIC estimates weights wik for each individual in the AB study, which match the moments of the reweighted covariate

distributions to those in the AC study.12 Weights are estimated using the method of moments12 or entropy balancing,26-28

which have been shown to be equivalent.29 Given the weights, the predicted mean outcomes on treatment k=A,B in the

AC population are estimated by taking a weighted average of the outcomes yik(AB) of the Nk(AB) individuals on treatment

k in the AB population

ŷk(AC) =

∑Nk(AB)

i=1
yik(AB)wik

∑Nk(AB)

i=1
wik

, (6)

and the predicted average treatment effect of B vs A in the AC population is then given by

d̂AB(AC) = g(ŷB(AC)) − g(ŷA(AC)). (7)

The population-adjusted indirect comparison between treatments B and C in the AC study population is again given

by (5). Typically both themean and variance of each continuous covariate arematched between the two study populations

(only proportions are matched for discrete covariates), and the standard error sAB(AC) is estimated using either bootstrap-

ping or robust sandwich estimators.12,22 MAIC produces estimates which are specific to the AC study population. Again

however, making the shared effect modifier assumption means that the estimated C vs B relative effect is constant across

populations. Like STC, MAIC is designed with this two-study indirect comparison scenario in mind, and does not easily

generalize to larger networks of studies or treatments.

2.4 Multilevel network meta-regression

ML-NMR extends the network meta-analysis framework to synthesize evidence from a connected network of studies

where some studies provide IPD and some provide AgD. The general ML-NMR model is16
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Individual level:

yijk ∼ 𝜋Ind(𝜃ijk) (8a)

g(𝜃ijk) = 𝜂jk(xijk) = 𝜇j + xT
ijk
(𝜷1 + 𝜷2,k) + 𝛾k (8b)

Aggregate level:

y•jk ∼ 𝜋Agg(𝜃•jk) (8c)

𝜃•jk = ∫
𝔛

g−1(𝜂jk(x))fjk(x)dx (8d)

The individual- and aggregate-level data are given appropriate likelihood distributions 𝜋Ind(⋅) and 𝜋Agg(⋅). 𝜃ijk and 𝜂jk(xijk)

are the conditional mean outcome and linear predictor for an individual i in trial j on treatment k with covariate vector

xijk. 𝜃•jk is the marginal mean outcome on treatment k in trial j. g(⋅) is a suitable link function, and𝔛 denotes the support

of x. The coefficients 𝜇j are study-specific baselines, 𝜷1 are coefficients for prognostic variables, and 𝜷2,k are coefficients

for effect modifiers specific to each treatment k. The effect of the kth treatment (at the individual level), 𝛾k, is defined

with respect to the reference treatment A, and we set 𝛾A = 0 and 𝜷2,A = 0. The shared effect modifier assumption is not

required for ML-NMR if sufficient data are available to identify the model parameters (eg, in larger networks); however,

in a two-study indirect comparison scenario wemake the shared effect modifier assumption setting 𝜷2,B = 𝜷2,C to identify

the model.

Numerical integration may be used to evaluate the integral (8d) for the aggregate-level model. The quasi-Monte Carlo

integration approach described by Phillippo et al15,16 is flexible, efficient, and widely applicable regardless of the model

form or complexity. However, this approach typically requires assumptions regarding the forms of the marginal distribu-

tions and the covariate correlations in the AgD study or studies, as these are rarely reported in publications (Section 4.5).

These assumptions are investigated in simulation scenarios g, h, and i (Section 6.6).

Using ML-NMR, the population-adjusted average treatment effects in each study population P=AB, AC are given by

dab(P) = x
T

(P)(𝜷2,b − 𝜷2,a) + 𝛾b − 𝛾a, (9)

where a, b∈ {A,B,C} and x(P) is the vector of covariate means in population P.

Unlike MAIC or STC, ML-NMR extends naturally to larger networks: Equation (8) applies equally to networks with

any number of treatments and any number of AgD or IPD studies. Moreover, through Equation (9) we can produce

population-adjusted treatment effects for any target population with given covariate values, not just the AgD AC study

population. Notably theML-NMRmodel (8) reduces to standardAgDNMAwhenno covariates are included in themodel,

and reduces to IPD network meta-regression when IPD are available from every study.16

3 EXAMPLE: PLAQUE PSORIASIS

We now demonstrate the application of MAIC, STC, and ML-NMR to a real example. Figure 2 displays the treat-

ment network formed by four phase 3 trials comparing six treatments for moderate-to-severe plaque psoriasis. In

UNCOVER-1, UNCOVER-2, andUNCOVER-3, patients were randomized to receive placebo, etanercept (inUNCOVER-2

andUNCOVER-3 only), ixekizumab every 2weeks (Q2W), or ixekizumab every 4weeks (Q4W).30,31 In FIXTURE, patients

were randomized to receive placebo, secukinumab 150 mg, secukinumab 300 mg, or etanercept.32 IPD were only avail-

able from UNCOVER-1, UNCOVER-2, and UNCOVER-3. We analyze a binary outcome, success/failure to achieve 75%

improvement on the Psoriasis Area and Severity Index (PASI) scale (PASI 75) at 12 weeks, on the standardized mean dif-

ference (SMD) scale (ie, using a probit link function). Five clinically relevant covariates considered to be potential effect

modifiers are available for individuals in the UNCOVER trials and as summary statistics from the FIXTURE trial, with

some differences between studies in the distribution of these covariates: mean body surface area covered ranges from

26.0% to 34.4%; mean duration of psoriasis ranges from 16.5 to 19.6 years; the proportion of individuals having previous
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PBO

ETN

a

b

c

F IGURE 2 The UNCOVER30,31 and FIXTURE32 trials form a network of six treatments.

Shading indicates comparisons made in: (a) UNCOVER-2 and UNCOVER-3; (b) UNCOVER-1;

(c) FIXTURE. The thick and thin lines represent availability of IPD and AgD on a comparison,

respectively. ETN, etanercept; IXE, ixekizumab; PBO, placebo; SEC, secukinumab. IXE and SEC

were each investigated with two different dosing regimens. Reproduced from Phillippo et al16

[Color figure can be viewed at wileyonlinelibrary.com]

systemic treatment ranges from 57.1% to 71.3%; the proportion of individuals with psoriatic arthritis ranges from 14.7%

to 26.3%; and mean weight ranges from 83.3 to 92.2 kg. The within-study variation in each covariate is much greater than

the variation between studies, with standard deviations between 16.5% and 18.9% for body surface area, 11.9 to 12.5 years

for duration of psoriasis, and 20.8 to 23.8 kg for weight. Full details are given by Phillippo et al.16

MAIC has previously been used to estimate a population-adjusted indirect comparison between ixekizumabQ2Wand

secukinumab 300 mg (the approved dosages), adjusting for these baseline covariates, via the common etanercept arms in

UNCOVER-2 andUNCOVER-3 and FIXTURE.16,33Wealso estimate this comparison using STC.However, for bothMAIC

and STC, data from UNCOVER-1 could not be included as this study did not include an etanercept arm. Furthermore,

comparisons made using MAIC and STC are valid only for the population of the study with AgD (here FIXTURE) unless

the shared effect modifier assumption is made (Sections 2.2 and 2.3).

Using ML-NMR allows all of the available data to be incorporated and to produce population-adjusted indirect com-

parisons between any pair of treatments in any chosen target population.Weuse quasi-MonteCarlo numerical integration

to implement the aggregate-level model, integrating the individual-level model (8b) over the covariate distribution in the

FIXTURE trial.16 The forms of the marginal distributions for each covariate in the FIXTURE trial are chosen based on

theoretical properties and on the observed distributions in the UNCOVER trials: weight and duration are given a Gamma

distribution to account for skewness, and body surface area as a percentage is given a scaled logit-Normal distribution.

Previous systemic treatment and psoriatic arthritis are binary covariates. Correlations between covariates in the FIXTURE

study are assumed to match those observed in the UNCOVER trials since these are not reported, and are accounted for

in the numerical integration using a Gaussian copula.16

We then fit a ML-NMRmodel to the PASI 75 outcomes, including interaction terms for the five potential effect modi-

fiers. We take a Bayesian approach implemented in Stan,34 placing a noninformative N(0, 1002) prior distribution on each

parameter. With only two AgD secukinumab treatment arms available, it is not possible to identify a model with five dis-

tinct effect modifier interactions and a treatment effect for each secukinumab dose. However, since secukinumab and

ixekizumab share modes of action as interleukin-17A blockers, we assume that the effect modifier interaction parame-

ters are common between these treatments across all doses (the shared effect modifier assumption) to identify the model.

Four parallel chains were run for 2000 iterations each (the first 1000 iterations were discarded as warm-up). Convergence

was assessed using the potential scale reduction factor R̂,35 and effective sample sizes and Monte Carlo standard errors

guided the choice of number of iterations. There were no divergent transitions. Full details of the analysis are given by

Phillippo et al.16

The treatment contrast estimates forMAIC, STC, andML-NMRare summarized in Table 1. There are small differences

in the estimated average treatment effects in each population, for example, etanercept appears slightly more effective

relative to placebo in the FIXTURE study population than in the UNCOVER study populations. Using MAIC, the com-

parison between ixekizumab Q2W and secukinumab 300 mg in the FIXTURE population is estimated as a SMD of 0.28

(0.00, 0.56) in favor of ixekizumab Q2W; with STC, this comparison estimate is 0.25 (−0.02, 0.52); with ML-NMR, we

estimate 0.34 (0.10, 0.58). The standard indirect comparison estimate is 0.37 (0.12, 0.63). The point estimates are similar

between the three population adjustment approaches, but ML-NMR has reduced uncertainty compared with MAIC and

STC due to incorporating all available information from the studies. Phillippo et al16 also fitted a standard random effects

NMA to this data, finding that ML-NMR also reduced uncertainty compared with the NMA. For example, the random

effects NMA estimate for the comparison between ixekizumab Q2W and secukinumab 300 mg was 0.45 (−0.02, 0.92).

Since the differences in effect modifiers between trials are small, the possible bias in a standard indirect comparison or
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TABLE 1 ML-NMR estimated SMD

contrasts and 95% credible intervals for

each treatment against placebo, plus the

contrast targeted MAIC and STC, in each

study population

Study population

Contrast FIXTURE UNCOVER-1 UNCOVER-2 UNCOVER-3

IXE Q2W vs PBO 2.94 2.98 2.95 2.93

(2.74, 3.14) (2.80, 3.17) (2.77, 3.13) (2.76, 3.11)

IXE Q4W vs PBO 2.65 2.69 2.66 2.64

(2.45, 2.84) (2.51, 2.89) (2.47, 2.84) (2.46, 2.82)

ETN vs PBO 1.74 1.65 1.64 1.65

(1.55, 1.93) (1.47, 1.83) (1.46, 1.81) (1.47, 1.81)

SEC 150 vs PBO 2.29 2.33 2.30 2.28

(2.07, 2.53) (2.10, 2.58) (2.07, 2.54) (2.05, 2.52)

SEC 300 vs PBO 2.60 2.64 2.61 2.59

(2.36, 2.83) (2.40, 2.90) (2.36, 2.86) (2.35, 2.83)

SEC 300 vs IXE Q2W −0.34a −0.34 −0.34 −0.34

(−0.58, −0.10) (−0.58, −0.10) (−0.58, −0.10) (−0.58, −0.10)

Note: The ML-NMR contrast estimates between ixekizumab and secukinumab treatments are the same

in every population due to the shared effect modifier assumption for these treatments.
aMAIC estimate is −0.28 (−0.56, −0.00). STC estimate is −0.25 (−0.52, 0.02). Standard indirect

comparison estimate is −0.37 (−0.63, 0.12).

NMA is likely to also be small; however, ML-NMR increases the precision of the estimates by explaining the within-trial

variation due to effect modification.

This example raises a number of issues which we will investigate in the simulation study. First, we made explicit

assumptions regarding the joint covariate distribution in the FIXTURE study forML-NMR, andMAIC and STC alsomake

implicit assumptions about the joint covariate distribution (see Section 4.5). The shared effect modifier assumption was

required to identify theML-NMRmodel, and is also necessary if the results ofMAICandSTCare to be applicable to a target

population other than the FIXTURE study. While this assumption seems reasonable in this example since ixekizumab

and secukinumab are in the same class of treatments, this may not always be the case. For all three population adjustment

methodswe assume that all effectmodifiers have been suitably adjusted for; however, theremay be unobserved or omitted

effect modifiers. Finally, while the differences in covariate distributions between study populations were relatively minor,

in many cases there may be more substantial differences (see Section 4.7), which raises questions regarding sufficient

between-study overlap and validity of extrapolation, particularly with continuous covariates. We would like to investigate

the potential impact of each of these assumptions, particularly as they are often unverifiable (although some validation

may be possible in larger networks using ML-NMR, see Section 7).

4 ASSUMPTIONS AND ISSUES IN PRACTICAL APPLICATIONS OF
POPULATION ADJUSTMENT

We now provide a more detailed overview of the assumptions, properties, and issues often encountered in practical

applications of population adjustment methods, based on recent methodological22,23 and applied22,25 reviews.

4.1 Anchored indirect comparisons

Anchored indirect comparisons make use of a common comparator treatment to compare relative effects (Figure 1).

That is, in a population P, the relative effect dBC(P ) of treatment C vs treatment B is determined from the difference in

the relative effects of B and C against treatment A following Equation (1). Standard indirect comparisons make the con-

stancy of relative effects assumption, which requires that there are no differences in the distribution of any effect modifiers
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between studies, so that the relative effects in (1) are constant across study populations. Anchored population adjust-

ment methods relax this assumption to conditional constancy of relative effects, that is, all of the effect modifiers with

respect to the chosen comparison scale (eg, log odds ratios) that are imbalanced between studies have been suitably

adjusted for.22,23

Unanchored indirect comparisons may be performed when there is no common comparator between randomized

controlled trials or if a comparison involves single arm studies, under much stronger assumptions.22,23 We focus on an

anchored scenario in the simulation study (see Section 5.2), but expect the results and conclusions to apply widely to

unanchored comparisons also. We discuss this further in Section 7.

4.2 Covariate selection and unobserved effect modifiers

For anchored indirect comparisons, we are concerned with identifying and adjusting for effect-modifying covariates, so

that the conditional constancy of relative effects assumption holds. Potential effect modifiers should be identified prior

to analysis;22,23 however, in practical applications there has often been no justification of effect modifier status, or any

attempt to check for effect modifiers that are missing from the model (either omitted or unobserved).22,25 In the plaque

psoriasis example we adjusted for five covariates that had been selected in a previous analysis by expert opinion,33 and

assumed that relative effects were constant given these (Section 3). We therefore assess the performance of the three

population adjustment methods when all effect modifiers are accounted for and when there is a missing effect modifier,

across all simulation scenarios. We also compare performance against a standard indirect comparison that makes no

adjustment for effect modifiers.

4.3 Combining compatible estimates

When considering noncollapsible measures of treatment effects such as odds ratios or hazard ratios, care must be taken

to ensure that compatible estimates that have been adjusted in the same way are combined. This is because, for such

effect measures, adjustment for a covariate moves the treatment effect estimate away from the null and adjusted and

unadjusted estimands do not typically coincide, even without interaction or effect modification.36,37 Standard indirect

comparison and MAIC typically combine unadjusted treatment effects (eg, crude log odds ratios). However, STC as

commonly implemented22 combines an adjusted treatment effect estimate (from the STCmodel) with an unadjusted esti-

mate from the AC study, which may lead to bias. An adjusted estimate from the AC study may be used instead, but it

is unlikely that this estimate has been adjusted in the same manner as the STC model, if an adjusted estimate is even

available. ML-NMR correctly combines adjusted and unadjusted effect measures at each level of the model, through the

integration in Equation (8d). Network meta-regression with full IPD (the “gold-standard” approach) combines adjusted

treatment effects from each study, so we consider adjusted population-average treatment effects as the target estimands

of interest in this simulation study (Section 5.3). We discuss this issue and the interpretation of our results further in

Section 7.

4.4 Producing estimates for a chosen target population

When effect modification is present, relative effect estimates are population specific. What is required for health technol-

ogy assessment are estimates in the population that represents the target population for making decisions.22 For MAIC

andSTC, the resulting population-adjusted estimates are valid in the population of theAC study—which is oftennot repre-

sentative of the decision at hand, as found by the review of technology appraisals.25 The shared effect modifier assumption

is required to generalize the resulting relative effect estimate to other target populations, and means that the effect mod-

ifiers of the active treatments are the same and interact with each treatment in the same way.22,23 In the plaque psoriasis

example (Section 3), this assumption was required for the MAIC and STC estimates to be applicable to a target popula-

tion other than the FIXTURE study. This assumption may also be required to identify the ML-NMR model in smaller

networks, as demonstrated in the plaque psoriasis example where effect modifier coefficients were shared between ixek-

izumab and secukinumab. While this assumption seems reasonable in this example since ixekizumab and secukinumab

are in the same class of treatments, this may not always be the case. We therefore investigate the impact of making this
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assumption when it does not hold. Using ML-NMR in a larger network may allow this assumption to be assessed or

relaxed; however, this is not possible using any of the approaches in the two-study scenario, where the assumption is

unverifiable.16

4.5 Availability of the joint covariate distribution

The joint distribution of covariates is not typically published, instead onlymarginal covariate summaries are available (eg,

mean and standard deviation for continuous covariates, proportions for categorical covariates). However, for ML-NMR

the covariate joint distribution in the AgD studies is required in order to perform the integration step. Thus when imple-

menting ML-NMR, assumptions regarding the marginal distributional forms and the correlation structure are typically

required to construct a joint distribution from the marginal summaries.16 In the plaque psoriasis example, we used IPD

from the UNCOVER studies to guide the choice of marginal distributional forms and to compute a correlation matrix,

to construct a joint distribution for the FIXTURE study (Section 3). This is a potential limitation of ML-NMR, and we

thus wish to assess the performance of ML-NMR when incorrect assumptions regarding the covariate joint distribution

are made. MAIC and STC typically ignore the correlations between covariates22,23 which may in turn affect the perfor-

mance of these methods, for example, if correlations differ between studies, and we also assess this in the simulation

study.

4.6 Study sample size

In practical applications of population adjustment methods, sample sizes of the included studies are variable, ranging

from several thousand down to less than a hundred participants.22,25 We therefore assess performance of the methods at

a range of sample sizes in this simulation study.

4.7 Overlap between populations

An important property of population adjustment methods is that they require sufficient overlap between the population

of the IPD study and the AgD study.22,23 As a weightingmethodMAIC cannot extrapolate, and thus requires that the AgD

study population is contained within the IPD study population in order to effect an adjustment. However, considerable

reductions in effective sample size after weighting in MAIC are often seen in practice. In the two reviews of applications,

the average reduction in effective sample size was 70% in technology appraisals25 and 80% in the applied literature,22

and in some cases was as high as 98%. This indicates that in many cases there may be poor overlap between the study

populations. The issue of overlap is also related to the choice of covariates to include in the adjustment. As the number

of covariates increases the effective overlap between populations must decrease, a phenomenon that we observe later

in the results of the simulation study (Section 6.1). To date, no simulation studies have investigated the performance of

population adjustment methods as the level of overlap decreases. We therefore assess all methods at a range of levels

of between-study overlap. Regression-based approaches such as STC and ML-NMR are not restricted to scenarios with

sufficient overlap, but any resulting extrapolation requires an additional assumption about the validity of predictions

beyond the range of the IPD. We therefore also assess performance when extrapolation outside of the range of the IPD

study is invalid.

5 SIMULATION STUDY PLAN

This simulation study plan follows the ADEMP framework,38 which breaks down the simulation study into five key

elements: aims, data-generating mechanisms, estimands, methods, and performance measures. The following sections

are devoted to describing each of these elements in turn.
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5.1 Aims

The simulation study aims to assess the performance of ML-NMR, MAIC, and STC alongside standard indirect compari-

son in a range of ideal and nonideal scenarios under various failures of assumptions. The primary concerns are bias and

efficiency of the estimators, along with coverage.

5.2 Data-generating mechanisms

For this simulation study, we will consider a binary outcome, generated under a logit (log odds ratio) model. The basic

data structure involves three treatments (A, B, C) investigated in two studies, AB and AC (Figure 1). We will simulate

two continuous covariates which modify the effect of treatments B and C. IPD are available for the AB study as a binary

outcome and covariate information for each individual. Only AgD are available for theAC study, given as an overall event

count and summary covariate information. For theAC study, individual outcomes will be simulated and then aggregated.

The underlying model is of the form

yijk ∼ Bern(𝜃ijk)

logit(𝜃ijk) = 𝜇j + q(xT
ijk

−mT

j )𝜷k + 𝛾k

xijk ∼ 𝜙j,

where outcomes yijk for individual i in study j receiving treatment k are generated from a Bernoulli distribution with

individual event probability 𝜃ijk. We define an outcome model on the logit scale with study intercept 𝜇j, covariate vector

xijk and coefficients 𝜷k, and treatment effects 𝛾k. The covariates are generated following the joint distribution 𝜙j. The

function q(⋅) defines a (potentially nonlinear) relationship between the covariates and outcome. Covariates are centered

in the regression model against the mean in each studymj, so that the model coefficients are more easily interpreted as

log odds and log odds ratios at the mean.

We set 𝛾A = 0, 𝛾B = −2, 𝛾C = −1.5, 𝜇AB = 1, 𝜇AC = 1.5. The values of 𝜷k will be set depending on the scenarios set out

below, but always 𝜷A = 0 because A is the reference treatment.

In the AB trial, the two covariates will be generated with means mX1(AB) = 1 and mX2(AB) = 0.5, and standard devia-

tions 𝜎X1(AB) = 0.5 and 𝜎X2(AB) = 0.1 (as either a Normal or Gamma covariate, see g and h below). The distributions of the

covariates in the AC trial are set to achieve the required overlap (see e below).

We shall consider varying the following parameters (where the reference levels for each parameter are

bold and underlined below):

a. Overall sample size N in AB and AC trials (100, 500, 1000). We will use 1:1 randomization within each study.

b. Strength of effect modification. Modifying the treatment effect log odds ratio by 0.1, 0.5 per AB covariate SD, that is,

𝜷k = 0.1𝝈X(AB) or 0.5𝝈X(AB). This corresponds to roughly ±10% and ±50% modification of treatment effects within ±2

SD of the mean covariate valuemX(AB) in the AB study.

c. Shared effect modification. Effect modifier coefficients are shared (𝜷B = 𝜷C) or not between treatments B and C.

d. Strength of correlation between covariates in each study (𝜌(AB) = 𝜌(AC) = 0, 0.25, 0.5).

e. Between-study overlap. Full overlap (AC contained entirely within AB), and 50%, 100% of AC population outside of

AB. Set using a proxy parameter 𝜅 (see below).

f. Covariate-outcome relationship. Linear, nonlinear beyond the range of the AB study.

g. Distribution of covariates in AB. ConsiderNormal covariates and Gamma covariates.

h. Distribution of covariates in AC. ConsiderNormal covariates and Gamma covariates.

i. Correlation structures. Same in both studies (𝜌(AB) = 𝜌(AC)), different in each study (𝜌(AB) ≠ 𝜌(AC)).

For the purposes of computation time and reporting, we will not consider a full-factorial design of all possible

data-generating mechanisms. Instead, each parameter will be varied independently. However, we will consider a facto-

rial examination of scenarios e and f (investigating validity of extrapolation), and of g, h, and i (investigating validity of

assumptions regarding the joint covariate distribution in the AgD study).
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F IGURE 3 The function q(⋅) is approximately linear within

the range of the AB study, but attenuates outside this range [Color

figure can be viewed at wileyonlinelibrary.com]

For scenario e, we wish to vary the overlap between the study populations, that is, the proportion of the AgD AC

population lying within the IPD AB population (see Appendix A). We vary a proxy parameter 𝜅, where approximately

𝜅 = 0 corresponds to no overlap, 𝜅 = 0.5 to 50% overlap, and 𝜅 = 1 to full overlap. Using 𝜅, we then define the mean and

standard deviation of each covariate in the AC population as

mX(AC) = (1.1 + (1 − 𝜅)2)mX(AB),

𝜎X(AC) = 0.75𝜎X(AB),

noting that these are set to differ from the AB population even when 𝜅 = 1.

For scenario f, the nonlinear relationship will be specified with a sigmoid function, parametrized so that y≈ x within

±2 SD of the mean covariate value in the AB study, but then attenuating outside this range (Figure 3):

q(x) = 8𝜎X(AB)

(

1

1 + exp(−(x −mX(AB))∕2𝜎X(AB))
−
1

2

)

+ 1. (10)

5.3 Estimands

The estimands of interest will be adjusted population-average relative effects between each treatment, as would be

estimated by a “gold standard” correctly specified IPD network meta-regression, with target population:

1. Represented by the AC trial population, denoted dAB(AC), dAC(AC), dBC(AC);

2. Represented by the AB trial population, denoted dAB(AB), dAC(AB), dBC(AB).

ML-NMR estimates all six of these relative effects (see Section 2.4). MAIC and STC only estimate dAB(AC), dBC(AC), and

dBC(AB) (see Sections 2.3 and 2.2), and so we only report results for these relative effects. For comparison, we report the

same three relative effects for standard indirect comparison. For MAIC, STC, and standard indirect comparison, dAB(AB)
and dAC(AC) are taken to be the observed relative effects in the AB and AC studies respectively and are thus unchanged

between these methods.

5.4 Methods under evaluation

We compare ML-NMR, MAIC, STC, and standard indirect comparison, as described above in Section 2. For ML-NMR,

MAIC, and STC we will consider models with a full set of effect modifiers or missing one effect modifier. For standard

indirect comparison, no effect modifiers are adjusted for.

For MAIC, we match both the mean and variance of the covariates between the study populations and estimate

the standard error sAB(AC) using bootstrapping.22 For STC, we fit a logistic regression model to the IPD in the AB study,
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TABLE 2 Overview of simulation study scenarios and index of results

Scenario Investigating Results section Appendix

a Sample size 6.1 B.1

b Strength of effect modification 6.2 B.2

c Shared effect modifier assumption 6.3 B.3

d Correlation between covariates 6.4 B.4

e and f Between-study overlap and covariate-outcome relationship 6.5 B.5

g, h, and i Covariate distributions and correlation structures 6.6 B.6

with linear predictor given by (3) and a logit link function. For both MAIC and STC, making the shared effect modifier

assumption (which is investigated in scenario c, Section 6.3) means that the estimated B vs C relative effect is constant

across populations, dBC(AB) = dBC(AC) = dBC.

For ML-NMR, we use a logit link function, a Bernoulli individual-level likelihood 𝜋Ind(𝜃ijk) = Bern(𝜃ijk), and a Bino-

mial aggregate-level likelihood 𝜋Agg(𝜃•jk) = Bin(Njk, 𝜃•jk). In this two-study scenario, we require the shared effectmodifier

assumption to identify themodel: we set 𝜷2,B = 𝜷2,C. This assumption is investigated in scenario c (Section 6.3). We evalu-

ate the integral (8d) for the aggregate-level model using quasi-Monte Carlo numerical integration, with a Gaussian copula

to account for the correlations between covariates. In the AgD study we only have marginal covariate information (here,

means and standard deviations); therefore, the joint covariate distribution f (AC)(x) in the AgD study is assumed to have

the same form of marginal distributions and covariate correlations as in the IPD study, an assumption that we investigate

in scenarios g, h, and i (Section 6.6).

We implement ML-NMR in a Bayesian framework using Stan.34 We use vague N(0, 1002) prior distributions for all

parameters, and summarize uncertainty in the parameter estimates with standard errors and credible intervals from the

posterior distribution.

5.5 Performance measures

To assess the performance of each method, we compute the bias, empirical standard error, model standard error, and

coverage probability in each simulation scenario. Bias is the difference between the expected value of an estimator and the

truth, estimated as the average difference between the repeated estimates and the truth. An unbiased estimator (bias of

zero) is desirable. The empirical standard error is the true variability of the estimator, estimated as the observed standard

error of the repeated estimates. The model standard error is the average standard error reported by a method over all

repetitions (taken on the variance scale). We thus desire both that the empirical standard error is small (the estimator

is precise) and that the empirical standard error is well estimated by the model standard error (so that uncertainty is

appropriately quantified). The coverage probability is the probability that the confidence or credible intervals contain the

true value, estimated as the proportion of repetitions with intervals that include the true value, which we wish to be at

the nominal level (here 95%).

6 RESULTS

The simulation study was run in R 3.4.1,39 using the package simsalapar40 to facilitate parallelization, error handling,

and saving of results. Each scenario was replicated 2000 times to achieve Monte Carlo standard errors (on the log odds

ratio scale) below 0.035 for bias and 0.025 for empirical standard error, for all methods (other than a small number of

scenarios for which MAIC was highly unstable).

Due to the size of simulation study, additional figures (including coverage plots) and tabulated summaries of results

can be found in Appendix B. For reference, Table 2 summarizes the simulation scenarios and lists the corresponding

results sections and appendices.



PHILLIPPO et al. 13

6.1 Scenario a: Sample size

In scenario a, the sample sizes of the two studies were varied between 100, 500, and 1000. Figure 4A shows the bias in

the population-average contrast estimates for eachmethod, adjusting for all effect modifiers, along with 95%Monte Carlo

confidence intervals. To aid comparison between methods, the points are colored by contrast, with lighter shades for

the AB population and darker for the AC population. Figure 4B shows the corresponding empirical and model standard

errors. Coverage zip plots38 for the dBC(AC) contrast estimate are shown in Figure B1. Table B1 provides the results in

tabular format.

We see that ML-NMR and STC are comparable in terms of both bias and standard error, largely eliminating the bias

that the Bucher method (standard indirect comparison) incurs, with similar empirical standard errors that are well esti-

mated by the model standard errors. For the smallest sample size (100), the model standard errors slightly underestimate

the empirical standard errors. Some small bias remains in each of the estimates for ML-NMR and STC, and is most pro-

nounced at the smallest sample size; this is likely due to the small sample bias inherent to logistic regression and the low

average number of events on treatment B (13.6 from 50 individuals).41 As expected, ML-NMR produces more precise esti-

mates (ie, with lower standard error) for contrasts between treatments where there is direct evidence than those based

on indirect evidence (dAB(AB) and dAC(AC) are more precisely estimated than the remaining contrasts). ML-NMR and STC

also perform similarly in terms of coverage, achieving nominal coverage for sample sizes 500 and 1000. Both methods

display slight undercoverage at the smallest sample size (100), 90.6% (89.3, 91.8) for ML-NMR, and 93.6% (92.6, 94.7) for

STC, perhaps due to increased small-sample bias. The standard indirect comparison is always below nominal coverage,

and coverage drops off severely with increasing sample size as a biased estimator is more precisely estimated (note the

rightward skew to the zip, which agrees with Figure 4A).

MAIC does not perform aswell asML-NMRor STC in this scenario. The reference level of between-study overlap is set

at 50%, but this means that any reweighting scheme such as MAIC cannot hope to eliminate the bias since extrapolation

is not possible. As a result, MAIC provides a lesser bias reduction than ML-NMR and STC for sample sizes 500 and 100,

and for the smallest sample size actually substantially increases the bias compared with a standard indirect comparison.

Empirical standard errors for MAIC are larger than for ML-NMR and STC, and the MAIC model standard error is only

a good estimate at the largest sample size. For sample size 500, the MAIC model standard errors (derived through boot-

strapping) are extremely unstable, as the weights are highly dependent on a small number of individuals, and were only

successfully obtained 47% of the time. For sample size 100, estimation failed entirely 23% of the time, and no attempts to

obtain model standard errors were successful. Coverage for sample size 500 is at the nominal value, despite remaining

bias and unstable standard errors. For sample size 1000, coverage of 90.7% (89.4, 91.9) is below the nominal value, as the

standard errors have stabilized but the estimator remains biased.

When one of the two effect modifiers is not adjusted for, none of the methods are able to eliminate bias from the

estimates (Figure 5A, also Table B2). ML-NMR and STC show slightly reduced standard errors compared with themodels

with the full set of effect modifiers (Figure 5B). Again, the empirical standard errors are well estimated by the model

standard errors for the larger sample sizes, with a slight underestimation for the smallest sample size.MAIC hasmarkedly

reduced standard errors compared with adjustment for both effect modifiers, and the bootstrap model standard errors

are now stable for the larger sample sizes. This is because the overlap between studies is necessarily lower as the number

of covariates increases. However, MAIC is still unstable for the smallest sample size. Coverage of all three population

adjustment methods begins to drop from the nominal level as sample size increases, down to around 92% for sample size

1000 (Figure B2). This is due to the bias remaining in the estimates, as further evidenced by the rightward skew to the zip

plots. However, coverage is still well above that of the standard indirect comparison, as bias is reduced. Similar results to

Figure 5 are seen across the remaining scenarios when an effect modifier is missing; here onward, we discuss any notable

differences in the main text and refer to Appendix B for figures and tabulated results.

6.2 Scenario b: Strength of effect modification

In scenario b, the strength of effect modificationwas varied fromweak (0.1 change in log odds ratio per covariate standard

deviation in the AB study) to strong (0.5 change in log odds ratio per covariate standard deviation in the AB study), and

was the same for both treatments B and C (so the shared effect modifier assumption holds). Figure 6A shows the bias in

the population-average contrast estimates for eachmethod, adjusting for all effect modifiers, along with 95%Monte Carlo

confidence intervals. Figure 6B shows the corresponding empirical and model standard errors. (See also Table B3.) Both
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F IGURE 4 Bias, A, and standard errors, B, for the population-average contrast estimates for scenario a, along with 95% Monte Carlo

confidence intervals. Each method (other than Bucher) adjusts for the full set of effect modifiers. Sample size is varied between 100, 500, and

1000. The points are colored by contrast, with lighter shades for the AB population and darker for the AC population [Color figure can be

viewed at wileyonlinelibrary.com]
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F IGURE 5 Bias, A, and standard errors, B, for the population-average contrast estimates for scenario a, along with 95% Monte Carlo

confidence intervals. One of the two effect modifiers was not adjusted for. Sample size is varied between 100, 500, and 1000. The points are

colored by contrast, with lighter shades for the AB population and darker for the AC population [Color figure can be viewed at

wileyonlinelibrary.com]
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ML-NMR and STC have successfully removed the bias from the standard indirect comparison, and display very similar

standard errors. The standard errors are largely unaffected by the strength of the effect modification, although the model

standard errors for ML-NMR and STC slightly underestimate the empirical standard errors when the effect modification

is strong. MAIC has also removed most of the bias, though some remains due to lack of overlap between the two studies,

and appears to do better when the effect modification is stronger. Empirical standard errors for MAIC are higher than

for ML-NMR and STC, and again the bootstrap model standard errors are extremely unstable. Coverage for all three

population adjustment methods is at the nominal level (Figure B3), although there is a small drop for ML-NMR and STC

to 93.0% (91.9, 94.2) and 93.9% (92.9, 94.9) when the effect modification is stronger due to the slight underestimation of

the standard error. Coverage for the standard indirect comparison drops to zero when the effect modification is strong,

as the incurred bias is so large.

When one of the two effect modifiers is not adjusted for, all population adjustment methods fail to remove the bias

(Figure B4a, also Table B4). As expected, the amount of bias remaining is larger when the missing effect modifier is

stronger. The standard errors of all population adjustment methods are reduced compared with adjustment for all effect

modifiers, and again do not differ by the strength of effect modification (Figure B4b). The coverage for all population

adjustment methods drops further when the missing effect modifier is stronger (Figure B5), due to the increased residual

bias.

6.3 Scenario c: Shared effect modifier assumption

In scenario c the shared effect modifier assumption is broken, so that treatment B is subject to weak effect modification,

while treatment C is subject to strong effect modification and vice versa. We expect to see that all population adjustment

methods are capable of producing unbiased estimates in theAC population, but that extrapolation into other populations

is biased, and indeed this is what occurs (Figure 7A). Standard errors (Figure 7B) and coverage (Figure B6) are largely

unchanged from scenario b (see also Table B5). Again, ML-NMR and STC show slight underestimation of the empirical

standard error when there is strong effect modification, leading to a small drop in coverage down to around 93%.

The increase in bias for a standard indirect comparison when treatment B is strongly modified compared with weakly

modified (Figure 7A) is due to the focus on the AC population. Since a standard indirect comparison does not adjust

for population differences, the estimates of dAB, dAC, and dBC are the same regardless of population. However, when the

target of inference is a comparison in the AC population, the estimate of dAC(AC) is unbiased and bias in the estimate of

dAB(AC) (and thus dBC(AC)) is driven by the strength of effect modification of treatment B. If the target of inference was

instead a comparison in the AB population, this pattern would be reversed (bias now being driven by the strength of

effect modification of treatment C). A similar pattern, driven by the same mechanism, is observed in scenario b (see

Figure 4A).

When one of the two effect modifiers is not adjusted for, further bias is introduced into the estimates, in all target

populations (Figure B7a, see also Table B6). This bias is generally larger for estimates involving extrapolation of treatment

effects affected by strong unobserved effect modifiers, for example, dAC(AB) and dBC(AB) when C is strongly modified by

a missing effect modifier. Again, standard error is reduced when fewer effect modifiers are adjusted for (Figure B7b).

Coverage for dBC(AC) is close to nominal level for all population adjustment methods when the missing effect modifier for

B is weak as the incurred bias is small, but drops severely when the missing effect modifier for B is strong as the incurred

bias is large (Figure B8).

6.4 Scenario d: Correlation between covariates

In scenario d, the correlation between covariates is varied between 0, 0.25, and 0.5, and the correlation is the same

in both study populations. Figure 8A shows that ML-NMR and STC are unaffected by the correlation between covari-

ates, achieving bias removal regardless of the correlation. Standard errors are similarly unaffected (Figure 8B), and

coverage is at the nominal level (Figure B10). Table B7 shows the results in tabular format. For MAIC, both bias and

standard error are reduced as the correlation between covariates increases. This is because, as the correlation increases,

the effective number of covariates decreases and the overlap between study populations increases (Figure B9). The sim-

ulation parameter 𝜅 is only a proxy for overlap and does not account for correlation between covariates, so the true
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F IGURE 6 Bias, A, and standard errors, B, for the population-average contrast estimates for scenario b, along with 95% Monte Carlo

confidence intervals. Strength of effect modification is varied from weak (0.1 change in log odds ratio per covariate standard deviation in the

AB study) to strong (0.5 change in log odds ratio per covariate standard deviation in the AB study). Each method (other than Bucher) adjusts

for the full set of effect modifiers. The points are colored by contrast, with lighter shades for the AB population and darker for the AC

population [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 7 Bias, A, and standard error, B, for the population-average contrast estimates for scenario c, along with 95% Monte Carlo

confidence intervals. Each method (other than Bucher) adjusts for the full set of effect modifiers. The shared effect modifier assumption is

broken, so that treatment B is subject to weak effect modification, while treatment C is subject to strong effect modification and vice versa.

The points are colored by contrast, with lighter shades for the AB population and darker for the AC population [Color figure can be viewed at

wileyonlinelibrary.com]
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overlap changes with the correlation despite holding 𝜅 constant at 0.5. Since MAIC cannot eliminate the bias, cover-

age drops as the standard error decreases (as the correlation increases), down to 93.4% (92.3, 94.6) when the correlation

is 0.5.

When one of the two effect modifiers is not adjusted for, all population adjustment methods produce biased esti-

mates (Figure B11a, see also Table B8). However, as we expect, the amount of bias reduces as the correlation between the

observed and missing effect modifiers increases. If we were to continue simulations with correlations tending closer to

1, the bias due to a missing effect modifier would disappear entirely. Again, standard error is reduced when fewer effect

modifiers are adjusted for (Figure B11b). Coverage for all population adjustment methods was slightly below the nominal

level (around 93%) due to the remaining bias (Figure B12).

6.5 Scenarios e and f: Between-study overlap and covariate-outcome relationship

In scenarios e and f, the between-study overlap and covariate-outcome relationship are varied jointly. The between-study

overlap is varied between 0 (no overlap, all of AC population outside of the AB population), 0.5 (approximately 50% of

AC outside of AB), and 1 (full overlap, all of AC within AB), and the covariate-outcome relationship is either linear or

nonlinear (Equation (10)).

When the covariate-outcome relationship is linear, both ML-NMR and STC produce unbiased estimates (Figure 9A,

Table B9). MAIC is unable to produce any estimates when there is no overlap between study populations, and remains

biased when the overlap is 0.5. Only when the study populations overlap completely does MAIC produce unbiased

estimates.

When the covariate-outcome relationship is nonlinear, ML-NMR and STC (set to fit a linear relationship) are both

biased when there is no overlap between the study populations. There is no discernible bias when the overlap is 0.5

or 1, as Equation (10) behaves linearly within the range of the AB population. However, prediction into another target

population with a greater difference in covariate values from the AB and AC populations would still result in bias. Again,

MAIC cannot produce estimates when there is no overlap between study populations.

Standard errors for all population adjustmentmethods decrease as the level of overlap increases (Figure 9B). Empirical

standard errors are well estimated by model standard errors for ML-NMR and STC; however, MAIC only produced stable

bootstrap model standard errors when the overlap was 1.

For the population adjustment methods, nominal coverage is achieved when the covariate-outcome relationship is

linear (Figure B13). With a nonlinear relationship, coverage drops slightly to 93.0% (91.9, 94.2) for ML-NMR and to 93.4%

(92.4, 94.5) when there is no overlap, but is unaffected at 0.5 and full overlap as there is no discernible bias.MAIC achieves

nominal coverage for 0.5 and full overlap.

When one of the two effect modifiers is not adjusted for, all population adjustment methods produce biased estimates

(Figure B14a, Table B10). As expected, the bias due to the missing effect modifier reduces as the overlap between studies

increases, since the difference in the missing effect modifier between the study populations becomes smaller. Due to this,

coverage shows the opposite relationship with overlap, dropping as the overlap decreases (Figure B15). Again, standard

error is reduced when fewer effect modifiers are adjusted for (Figure B14b).

6.6 Scenarios g, h, and i: Covariate distributions and correlation structures

In scenarios g, h, and i, the covariate distributions and correlation structures in each study population are varied jointly.

The covariate distributions are set to either Normal or Gamma in each of the study populations, and the correlation

between covariates in the AC population was varied between 0, 0.25, and 0.5. The correlation between covariates in the

AB population was held constant at 0.25.

We are particularly interested in the performance of ML-NMR in this scenario, sinceML-NMRmakes the assumption

that distributional form and correlation structure are the same in the AgD studies as in the IPD. Scenarios g, h, and i break

this assumption. Despite this, ML-NMR is not seen to incur any bias when the distributional form and/or correlation

structure are different in each population (Figure B16). The empirical standard errors, and their estimation by the model

standard errors, are also unaffected (Figure B17). The bias and standard error of MAIC are slightly smaller when the

covariates in the AB population are Gamma distributed compared to Normally distributed; however, this is due to the

skew of the Gamma distribution slightly increasing the true overlap between the study populations (compare row 1 with
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F IGURE 8 Bias, A, and standard errors, B, for the population-average contrast estimates for scenario d, along with 95% Monte Carlo

confidence intervals. The correlation between covariates is varied between 0, 0.25, and 0.5. Each method (other than Bucher) adjusts for the

full set of effect modifiers. The points are colored by contrast, with lighter shades for the AB population and darker for the AC population

[Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 9 Bias, A, and standard errors, B, the population-average contrast estimates for scenarios e and f, along with 95% Monte

Carlo confidence intervals. Each method (other than Bucher) adjusts for the full set of effect modifiers. The between-study overlap and

covariate-outcome relationship are varied jointly. The points are colored by contrast, with lighter shades for the AB population and darker for

the AC population [Color figure can be viewed at wileyonlinelibrary.com]
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3, and 2 with 4, in Figure B18). Nominal coverage is achieved by all population adjustment methods, regardless of the

covariate distributions or correlation structure (Figure B19). See Table B11 for a table of these results.

Once again, when one of the two effect modifiers is not adjusted for, all population adjustment methods produce

biased estimates (Figure B20) but standard error is reduced (Figure B21). Coverage is slightly reduced for all population

adjustment methods, to around 94%, as a result of the bias (Figure B19). The results are tabulated in Table B12.

7 DISCUSSION

In this simulation study, we have investigated the performance of ML-NMR in comparison with current population

adjustment methods (MAIC and STC) in a wide range of scenarios, including varying sample sizes, strength of effect

modification, overlap between studies, and joint covariate distributions. Scenarios were chosen to be realistic, reflecting

the issues raised by the applied example and the findings of two recent reviews of applications.22,25 As well as validating

the performance of the different methods when assumptions were met, we were particularly interested in how the meth-

ods fared when assumptions were broken in realistic ways. We investigated conditional constancy of relative effects (ie,

no missing effect modifiers), the shared effect modifier assumption, validity of extrapolation beyond the IPD study popu-

lation, and (for ML-NMR) correctly specifying the form of the marginal distributions and correlations between covariates

in the AgD study.

ML-NMR and STC performed very similarly throughout the simulation study. This is to be expected, as the twometh-

ods are both regression adjustment methods. Both methods were seen to perform well when the requisite assumptions

were met, largely eliminating the bias incurred by a standard indirect comparison and estimating standard errors well.

ML-NMR offers additional advantages over STC, including the ability to synthesize a larger network of treatments, and to

produce estimates in any target population. ML-NMR makes explicit assumptions about the covariate distributions and

correlation structure in the aggregate population in order to derive the aggregate likelihood through integration, typically

that they are the same as in the IPD population. However, the performance of ML-NMR was not found to be sensitive to

this assumption (see scenarios g, h, and i, Section 6.6). MAIC and STC typically ignore covariate correlations (Section 4.5),

but the performance of these methods was also not seen to be sensitive to the implicit assumptions that this invokes.

Serious questions must be raised about the use of MAIC for population adjustment. MAIC performed poorly in all

simulation scenarios, and in some cases even increased the bias compared with a standard indirect comparison. Boot-

strap error estimation was also extremely unstable, except for the largest sample sizes. The issues with MAIC stem from

the fact that it is a reweighting method, and therefore cannot extrapolate. As such, bias can only be completely removed

when the population of the AgD study is entirely contained within the population of the IPD study (see scenario e,

Section 6.5). However, when the two study populations overlap entirely there is unlikely to be much bias in a standard

indirect comparison as the imbalance in effect modifiers is necessarily small, and thus population adjustment methods

may not be needed. Furthermore, this means that MAIC is only valid from at most one company’s perspective of the indi-

rect comparison—that of the company whose study (for which they have IPD) has a broader distribution of covariates.

MAIC analysis from the other company’s perspective (who has IPD on the other study, with a more restricted covariate

distribution)will result in estimates that are biased, possibly bymore than a standard indirect comparison (aswell as being

produced for a different target population). If the two study populations do not overlap at all, then no MAIC analyses are

possible. The simulation study therefore raises serious questions regardingwhetherMAIC is fit for purpose. Previous sim-

ulation studies investigating MAIC have not observed this issue regarding overlap.26,27,42-45 For some studies,26,27 this is

because they were not designed to vary the overlap of continuous covariates between studies, instead basing simulations

on scenarios with good overlap where, as we found, MAIC works well. For others,44,45 this is because they were focused

on binary covariates, where issues only arise when covariate proportions are close to zero or one in the IPD study. (The

remaining studies42,43 were available only as conference abstracts, and full details of the simulation scenarios were not

available.) It is particularly worrying that, in practical applications of MAIC, study sample sizes are typically small and

there is often a lack of overlap between studies (as evidenced by large reductions in effective sample size)25—situations

where we have shown MAIC to perform poorly. Given the severe issues with MAIC surrounding covariate overlap, we

find it unlikely that there are realistic scenarios where MAIC may consistently outperform STC and ML-NMR.

In this simulation study, we focused on continuous covariates only. However, the underlying assumptions made by

each of themethods are unchangedwhether covariates are discrete or continuous, and sowe expect the conclusions of this

simulation study to apply regardless of the type of covariates. Continuous covariates were chosen for this simulation study

since issues with between-study overlap can arise in much less extreme situations with continuous covariates than with
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discrete covariates. In the binary covariate case, issues only appear as the covariate proportions in the IPD study approach

0 or 1, at which point no methods will work (there is no information to estimate the interaction term for ML-NMR or

STC, and no individuals to reweight forMAIC).When covariate proportions are not close to 0 or 1 there can be no overlap

issues—estimates may be imprecise if groups are small, but they should not be biased. We would expect the performance

of all methods with binary covariates to be similar to that seen in the full overlap scenario in this simulation study,

except when proportions are close to 0 or 1 (when no methods will work). This also aligns with the results of previous

simulation studies based on binary covariates,44,45 which have observed no bias with nonextreme covariate proportions.

The continuous covariate scenario is of greater practical concern, as there is greater potential for methods to break down.

Practical applications often involve a mix of discrete and continuous covariates, as demonstrated in the plaque psoriasis

example (Section 3). As we have seen with continuous covariates bias can occur for MAIC even when the overlap is

moderate, and ML-NMR and STC must be concerned with the validity of extrapolation (Section 6.5, scenarios e and f).

We have not considered including correlations between covariates in the MAIC matching in this simulation study, as

these are typically unavailable andwe are unaware of any practical applicationswhere this has been done (see Section 4.5).

Nevertheless, it is possible to also match covariate correlations to the aggregate study in MAIC if these are known or

perhaps imputed from the IPD study. However, we did not find any notable impact of correlations on the performance

of MAIC (or indeed ML-NMR or STC) in the scenarios considered, except through the impact on effective overlap (see

scenarios d, g, h, and i, Sections 6.4 and 6.6).

For this simulation study the estimands of interest are adjusted population-average treatment effects in a given study

population, as would be estimated by a “gold-standard” IPDnetworkmeta-regressionwith a correctly specified regression

model. Due to the noncollapsibility of the log odds ratio, these estimands differ from the unadjusted population-average

treatment effects (ie, the unadjusted crude log odds ratios in each study population). MAIC, as it is typically implemented

(see Section 2.3), targets this latter estimand since unadjusted log odds ratios (after weighting) are combined. This mis-

match of estimands has the potential to introduce additional bias into our evaluation of MAIC; however, this does not

seem to be the case in the scenarios considered here, as MAIC is seen to estimate an unbiased treatment effect when

there is full overlap between study populations (Section 6.5). The typical implementation of STC which we have used22

is flawed for noncollapsible effect measures since it combines an adjusted effect estimate (dAB(AC) from the STC model)

with an unadjusted effect estimate (dAC(AC) from the AC trial). We assessed this version of STC, since it seems to be the

most prevalent in the literature. Moreover, a corrected version of STC combining two adjusted estimates requires that

the aggregate AC study reports a dAC(AC) treatment effect estimate that has been adjusted in the same manner as the STC

regression model, which seems unlikely to be available in practice. Our simulations did not show any noticeable bias for

STC when the requisite assumptions were met, despite the flawed combination of estimands; however, other simulation

studies have demonstrated bias for STC due to this issue.45 Both MAIC and STC (and indeed standard indirect com-

parisons and NMA) may incur bias if incompatible estimates are combined. ML-NMR correctly combines adjusted and

unadjusted effect measures at each level of the model through the integration in Equation (8d). Furthermore, ML-NMR

can produce estimates of any population-average quantity of interest, including unadjusted treatment effects, through

integration over the corresponding covariate distribution.16

AlthoughMAIC and STC are designed with a two-study indirect comparison scenario in mind, it is commonplace for

larger networks of treatments and studies to be available in practice (as demonstrated in the plaque psoriasis example,

Section 3). In the review of applied literature, 73% of applications involved multiple IPD or AgD studies and/or addi-

tional treatments,22 and 56% of technology appraisals had larger networks present.25 ML-NMR extends naturally to

larger networks of studies and treatments, as we describe in Section 2.4. While this simulation study focused on the

two-study scenario for comparisonwithMAIC, STC, and standard indirect comparison, we expect the conclusions regard-

ing ML-NMR to extend to larger networks since the underlying assumptions remain the same. Further research could

explore the properties of ML-NMR in larger networks in more detail.

Although ML-NMR offers the possibility to analyze larger networks of studies and treatments, with larger networks

of evidence there is increased potential for heterogeneity and inconsistency—and also the possibility to check for such

issues. WhenML-NMR is used in larger networks, Phillippo et al16 suggest performing standard checks for heterogeneity

and inconsistency.46 The presence of residual heterogeneity or inconsistency may indicate a failure of assumptions, such

as unobserved effect modifiers or an invalid shared effect modifier assumption.

The ML-NMR model described in Section 2.4 assumes that aggregate studies provide outcome data on each arm

(eg, event counts or mean outcomes). However, this can be extended to incorporate contrast-based aggregate data (eg, log

odds ratios or mean differences) by using a Normal likelihood for studies providing evidence as contrasts (multivariate
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Normal for multi-arm studies), with linear predictor given by Equation (9).15 This is analogous to the usual approach to

handling contrast-based data in NMA.6,47,48

MAIC and STC require the shared effect modifier assumption in order to produce estimates outside of the AC study

population. We also made this assumption for ML-NMR to identify themodel in the two-study scenario. This assumption

may be relaxed for ML-NMR in larger networks if sufficient data are available, but this is data-intensive.15 If additional

information is available from aggregate studies such as reported regression coefficients or subgroup analyses, this can

be used to aid estimation of a ML-NMR model. For example, if regression coefficients and their covariance matrix are

reported then thesemay be used as an informative prior distribution, and factorial subgroup analysesmay be incorporated

through a simple extension of the numerical integration approach.15 However, further research is necessary to consider

scenarios where regression coefficients are only univariate or reported without correlations, or where multiple univariate

subgroup analyses are reported. Moreover, reporting bias may be introduced if “significant” regression coefficients or

subgroup analyses are selectively reported, and care should be taken to only consider evidence from prespecified analyses.

Practical applications of population adjustment include a large majority of “unanchored” comparisons, involving

single arm studies or where there is no common comparator.22,25 In this case, the expected outcomes YB(P ) and YC(P ) on

each treatment are compared directly

dBC(P) = g(YC(P)) − g(YB(P)), (11)

on a suitable transformed scale via the link function g(⋅). Unanchored indirect comparisons rely on the much stronger

assumption of conditional constancy of absolute effects.22,23 This requires that all prognostic variables as well as all effect

modifiers are suitably adjusted for, in order to reliably predict absolute outcomes across populations. Quantifying themag-

nitude of residual bias due to unobserved effect modifiers or prognostic factors is crucial; some approaches are suggested

by Phillippo et al,22 and this is an area for further research. A common comparator with which tomake an anchored com-

parison was available in 64% of the applications in the published literature;25 however, only 11% of technology appraisals

employing population adjustment methods used anchored comparisons. While we have focused on simulation scenarios

involving “anchored” indirect comparisons of randomized controlled trials with a common comparator treatment, we

expect the results and conclusions to apply broadly to unanchored comparisons also. The key difference is that bias will

be present if any prognostic variables, not just effect modifiers, are alsomissing from the analysis. As a result, the required

number of adjustment variables will be higher, and this implies that between-study overlap will be further reduced and

that larger sample sizes may be necessary to achieve good bias correction. Ongoing research looks to extend ML-NMR to

incorporate evidence from single-arm or observational studies, for example, by extending approaches previously used for

NMA,49-52 and to investigate methods of verifying the strong assumptions required.

Standard model fit and model comparison techniques may be employed for the ML-NMR model described in

Section 2.4, such as the Deviance Information Criterion.53 With more general individual-level likelihoods where the

aggregate likelihood has no closed form (eg, for time-to-event data), alternative model comparison techniques are

required,15 and this is an area for further research. However, we recommend that (at least for technology assess-

ment purposes) applicable guidance on covariate selection is followed; that is, effect-modifying covariates should be

prespecified.22

As regression methods, ML-NMR and STC are able to extrapolate beyond the range of the IPD, producing estimates

even when there is no overlap between study populations. However, when extrapolation occurs, estimates will only be

unbiased if such extrapolation is valid. For example, in scenarios e and f (Section 6.5), ML-NMR and STC produced biased

estimates when there was no overlap between populations and the true covariate-outcome relationship was nonlinear

outside of the range of the IPD, but only a linear relationship was accounted for (Figure 3).

Notably, all population adjustment methods are susceptible to bias (and as a result, undercoverage) when an effect

modifier is missing from the adjustment, and thus the conditional constancy of relative effects assumption is invalid.

This highlights the necessity of careful and considered selection of potential effect modifiers prior to analysis.22,23

When all effect modifiers have been identified and included in the adjustment model, ML-NMR and STC are both

robust techniques for obtaining population-adjusted indirect comparisons. ML-NMR offers additional advantages over

MAIC and STC, including extending naturally to incorporate larger networks of evidence and producing estimates in

any target population of interest,16 making this an attractive choice for population adjustment in a wide variety of

scenarios.
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APPENDIX A

A1 Defining between-study overlap

There is no standard definition of the “overlap” between study populations. In this article, we define the overlap between

the study populations as the proportion of the AC joint density 𝜙(AC) contained within the 95% highest density region

(HDR) of the AB joint density 𝜙(AB). Thus the overlap is given by the integral

∫
𝔛

I(x ∈ R(AB),0.05)𝜙(AC)(x)dx, (A1)

where the (1 − 𝛼)% HDR is the region R(AB),𝛼 = {x ∶ 𝜙(AB)(x) ≥ c(AB),𝛼}, with c(AB),𝛼 the largest constant satisfying P(x ∈

R(AB),𝛼) ≥ 1 − 𝛼. Clearly the exact relationship between the parameters of the joint distribution in each study and the true

overlap is highly complex, and so instead we vary the proxy parameter 𝜅 in our simulation study. The “true” overlap can

be calculated using numerical integration to evaluate the integral (A1).


