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SUMMARY
Endogenous PIEZO1 channels of native endothelium lack the hallmark inactivation often seen when these
channels are overexpressed in cell lines. Because prior work showed that the force of shear stress activates
sphingomyelinase in endothelium, we considered if sphingomyelinase is relevant to endogenous PIEZO1.
Patch clamping was used to quantify PIEZO1-mediated signals in freshly isolated murine endothelium
exposed to the mechanical forces caused by shear stress and membrane stretch. Neutral sphingomyelinase
inhibitors and genetic disruption of sphingomyelin phosphodiesterase 3 (SMPD3) cause PIEZO1 to switch to
profoundly inactivating behavior. Ceramide (a key product of SMPD3) rescues non-inactivating channel
behavior. Its co-product, phosphoryl choline, has no effect. In contrast to ceramide, sphingomyelin (the
SMPD3 substrate) does not affect inactivation but alters channel force sensitivity. The data suggest that
sphingomyelinase activity, ceramide, and sphingomyelin are determinants of native PIEZO gating that enable
sustained activity.
INTRODUCTION

Shear stress is a frictional force that arises when fluid flows along

a cellular surface: it impacts many aspects of biology (Mammoto

and Ingber, 2010). Especially rapid flow occurs in the vasculature

where powerful shear stress arises from blood or lymph flowing

against the endothelium (Chiu and Chien, 2011). The ability of

endothelial cells to sense this force and respond appropriately

is critical in vascular development, health, and disease (Chiu

and Chien, 2011; Mammoto and Ingber, 2010). Yet, the underly-

ing molecular mechanisms (particularly how the force is sensed)

have been difficult to elucidate (Baratchi et al., 2017; Chiu and

Chien, 2011). Recently, an important molecular component

was revealed as the PIEZO1 channel (Beech and Kalli, 2019; Li

et al., 2014), which is a Ca2+-permeable non-selective cationic

channel that seems to have as its primary function the sensing

of mechanical force and its transduction into cellular response

(Beech and Kalli, 2019; Coste et al., 2010; Douguet et al.,

2019; Honoré et al., 2015; Murthy et al., 2017). Endothelial

PIEZO1 has been found to be important in numerous vascular

and other cardiovascular biology that depends on mechanical

force (Beech and Kalli, 2019), including vascular maturation in

the embryo (Li et al., 2014), blood pressure regulation (Rode

et al., 2017), vascular permeability (Friedrich et al., 2019), athero-

sclerosis (Albarrán-Juárez et al., 2018), response to shear stress

in endothelial cells in vitro and in vivo (Beech and Kalli, 2019; Li

et al., 2014; Rode et al., 2017), lymphatic structure, and the dis-
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ease of generalized lymphatic dysplasia (Fotiou et al., 2015). It

alone confers shear stress response on otherwise resistant cells

and responds quickly and reversibly in membrane patches

excised from endothelial cells, suggesting a membrane-de-

limited, perhaps direct, ability to sense shear stress (Beech

and Kalli, 2019; Li et al., 2014; Rode et al., 2017). It does not inac-

tivate in response to sustained flow and so impacts continuously

until flow ceases (Li et al., 2014; Rode et al., 2017). Here, we

focus on the non-inactivating property because it contrasts

with the rapid complete inactivation often seen when PIEZO1

is overexpressed in cell lines or other types of cells such as neu-

rons (Coste et al., 2010; Del Mármol et al., 2018; Zheng et al.,

2019). It raises the possibility that there is a process in endothe-

lial cells that disables the intrinsic fast inactivation gate of

PIEZO1 to enable compatibility with the sustained requirements

of vascular flow sensing.

A potential explanation for the non-inactivating properties is a

factor existing in sufficient quantity relative to PIEZO1 to disable

the inactivation gate. We were, therefore, interested in prior

vascular studies showing that fluid flow stimulates neutral sphin-

gomyelinase to generate ceramide lipids from the constituent

membrane lipid sphingomyelin (Airola andHannun, 2013; Czarny

et al., 2003; Czarny and Schnitzer, 2004).

Neutral and acidic sphingomyelinases of the sphingomyeli-

nase family were previously shown to contribute to the physi-

ology of cardiovascular cell types including endothelial cells

(Pavoine and Pecker, 2009). However, only neutral
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Figure 1. Inhibitors of Neutral Sphingomyelinase Suppress Sustained Flow-Evoked Depolarization

All data relate to the membrane potential recorded in amphotericin whole-cell mode from freshly isolated endothelium of second-order mesenteric arteries.

(A) Representative recording showing the sustained response to application of 20 mL s�1 fluid flow in the presence of the vehicle control (0.25% DMSO).

(B–D) Similar to (A) but showing responses after 10-min pre-incubation and the continuous presence of 10 mM desipramine (B), 10 mM GW4869 (C), or 10 mM

altenusin (D).

(E) Mean ± SEM data for experiments of the type shown in (A)–(D): control (Cont., n = 6 recordings, N = 3mice), desipramine (Desip., n = 6, N = 3),; GW4869 (GW.,

n = 7, N = 3), and altenusin (Alt., n = 6, N = 3). ‘‘Rest’’ indicates the resting membrane potential in static (no flow) condition. ‘‘Peak’’ indicates the maximum

depolarization of the membrane potential in response to flow (i.e., the initial response). Membrane potential values 1 and 2 min after the start of flow are also

shown.

(F) For the experiments of (E), the duration of the flow-evoked depolarization, which was the time from the onset of flow to when depolarization had faded back to

baseline. In Cont. and Desp., the duration of the response was the same as the duration of the exposure to flow because the depolarization did not decay. Mean ±

SEM data; *p < 0.05, ***p < 0.001.
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sphingomyelinase has been suggested to be mechanosensitive

(Czarny et al., 2003; Czarny and Schnitzer, 2004). Furthermore,

the prominent neutral sphingomyelinase sphingomyelin phos-

phodiesterase 3 (SMPD3 or nSMase2) appears to exert similar

functions in endothelial cells as PIEZO1 channels. Both proteins

can promote inflammation and atherosclerosis (Albarrán-Juárez

et al., 2018; Lallemand et al., 2018), indicating a possible

coupling between these two proteins in endothelial cells.

For this reason, we investigated the relevance of sphingomye-

linase to endothelial PIEZO1 and sought to determine whether it

might explain some of the distinct properties of native endothe-

lial PIEZO1 channels. We focused primarily on using patch-

clamp techniques because of their capability to provide high-

resolution time-resolved recordings of native PIEZO1 channel

activity in response to mechanical stimuli. Our previous work

has suggested the effectiveness of this approach when applied

to the endothelium of murine mesenteric arteries, in which

PIEZO1 channels are the dominantmechanically activated chan-

nels (Rode et al., 2017). Thus, we adopted a similar technical

approach here. Functional relevance of these channels to exer-

cise-dependent elevation of blood pressure has been suggested

by endothelial-specific PIEZO1 disruption in mice (Rode et al.,

2017). In this study, we investigated whether neutral sphingo-
2 Cell Reports 33, 108225, October 6, 2020
myelinase, particularly SMPD3, regulates PIEZO1 channels

and investigated the underlying cellular mechanism in endothe-

lial cells.

RESULTS

Neutral Sphingomyelinase Inhibitors Prevent Sustained
Response to Flow
Endothelium was freshly isolated from second-order mesenteric

arteries of adult mice and studied acutely without cell or organ

culture. Previous membrane potential recordings from this prep-

aration showed an essential role for endogenous PIEZO1 in

determining resting membrane potential and sustained depolar-

ization evoked by fluid flow (Rode et al., 2017). Here, we made

similar observations, again observing robust reversible depolar-

ization in response to fluid flowing out of a capillary tube (Fig-

ure 1A). To test the contribution of endogenous sphingomyeli-

nase, we first incubated cells with pharmacological inhibitors

of two different subtypes of this enzyme for 10 mins prior to

patch recordings and kept the presence of the inhibitor during

recordings. The inhibitor, or its combination with lipid in subse-

quent studies, was applied using this same protocol, unless

stated otherwise. Desipramine, a weak base that inhibits acid



Figure 2. Absence of Sustained Flow-Evoked

Depolarization in Smpd3fro/fro Mice

All data relate to membrane potential recorded in

amphotericin whole-cell mode from freshly isolated

endothelium of second-order mesenteric arteries.

(A) Representative recording showing response to

application of 20 mL s�1 fluid flow in the endothelium

of wild-type (WT) mice.

(B) Representative recording showing response to

application of 20 mL s�1 fluid flow in the endothelium

of Smpd3fro/fro mice (fro/fro).

(C) Mean ± SEM data for experiments of the type

shown in (A) and (B). Membrane potential values 1

and 2 min after the start of flow are also shown.

(D) For the experiments of (C), the duration of the

flow-evoked depolarization. In the WT group, the

duration of the response was the same as the

duration of the exposure to flow. Mean ± SEM data;

*p < 0.05, ***p < 0.001. WT: n = 8 recordings, N = 4

mice; Fro/fro: n = 6, N = 3.
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sphingomyelinase (Kornhuber et al., 2008), had no effect on the

flow response, but two inhibitors of neutral sphingomyelinase,

GW4869 and altenusin (Airola and Hannun, 2013; Kumar et al.,

2019; Luberto et al., 2002), caused flow responses to become

transient, such that sustained responses were no longer evident

(Figures 1B–1F). There was sustained response only in the

vehicle-control condition or the presence of desipramine (Fig-

ures 1E and 1F). None of the agents affected the resting mem-

brane potential (Figure 1E). The data suggest that a neutral

sphingomyelinase is required for the sustained response to flow.

Disruption of Smpd3 Prevents Sustained Response to
Flow
Small-molecule inhibitors are not necessarily specific and do not

shed light on the subtype of neutral sphingomyelinase, so we

sought to identify the underlying gene. A prominent neutral

sphingomyelinase in vascular biology is SMPD3 or nSMase2

(Pavoine and Pecker, 2009). It is encoded by the Smpd3 gene,

the best characterized gene of the four nSMase genes (Airola

and Hannun, 2013; Pavoine and Pecker, 2009). We therefore

investigatedmice homozygous for the fragilitas ossium (Fro) mu-

tation of the Smpd3 gene (Smpd3fro/fro), which causes a loss of

the C-terminal active domain of SMPD3 (Airola and Hannun,

2013; Aubin et al., 2005; Lallemand et al., 2018). Although these

mice exhibit skeletal dysplasia, they mature to be relatively

normal and are suitable for detailed adult cardiovascular pheno-

typing (Lallemand et al., 2018). Consistent with this relative

normality, the resting membrane potential of endothelium from

second-order mesenteric artery was similar to that of wild-type

(WT) mice (Figures 2A–2C). Strikingly, however, there was an

initial transient membrane potential response but no sustained

response to flow (Figures 2A–2D). The data suggest that

SMPD3 is the neutral sphingomyelinase required for sustained

flow-evoked depolarization.
Regulation by SMPD3 Is Local and Membrane Delimited
Sustained activation of PIEZO1 channels is preserved in mem-

brane patches excised from the endothelium, suggesting that

intracellular communication and organelles are not required

(Rode et al., 2017). All channel activity evokedby fluid flow in these

studieswas PIEZO1dependent and had the expected unitary cur-

rent properties of PIEZO1 channels (Rode et al., 2017). It is also

known that SMPD3 is a plasma-membrane-tethered enzyme (Air-

ola and Hannun, 2013). Therefore, we investigated if the SMPD3-

PIEZO1 relationship is functional in the excised cell-free mem-

brane by using voltage-clamped outside-out patches and the

stimulus of fluid flow out of a capillary tube. Smpd3fro/fro caused

PIEZO1 channels to become strongly inactivating (Figures 3A–

3D). Based on unitary current characteristics, the channels were

otherwise indistinguishable from those in patches fromWT endo-

thelium (Figure 3B1 cf. Figure 3A1). The unitary current size

(~1.95 pA at �80 mV) and therefore unitary conductance (~25

pS) were as expected for PIEZO1 channels (Rode et al., 2017).

Also consistent with the channels being mediated by PIEZO1,

the activity was suppressed but not abolished by Gd3+, which at

10 mM inhibits PIEZO1 channel currents (Coste et al., 2010;

Rode et al., 2017; Figures 3E–3H cf. Figures 3A–3D). Gd3+ is not

a specific PIEZO1 inhibitor. GW4869 similarly suppressed the

sustained response of these channels to flow in excised patches

(Figure S1). The data suggest that SMPD3 operates locally to sup-

press inactivation of PIEZO1 channels.

SMPD3 Prevents Pressure-Evoked Inactivation
Activation by flow is physiological but slower in onset than the

rapid force caused by pressure pulses and cell prodding used

in studies of overexpressed PIEZO1 channels (Coste et al.,

2010; Zheng et al., 2019). We therefore also applied pressure

pulses to cell-attached patches of endothelium. Similar to previ-

ous results in human umbilical vein endothelial cells (HUVECs)
Cell Reports 33, 108225, October 6, 2020 3



Figure 3. PIEZO1 and SMPD3 Function Together in a Membrane-Delimited Mechanism

All measurements were single-channel current recordings from outside-out patches excised from freshly isolated endothelium of second-order mesenteric

arteries. Holding potential was �80 mV.

(A and B) Representative recordings showing responses to 20 mL s�1 fluid flow in patches from endothelium of WTmice (A) or Smpd3fro/fro (fro/fro) mice (B). Note

the large initial peak current in the top panel of (B). (A1 and B1) Amplitude histograms for flow-evoked channel activity of (A) and (B). Current amplitudes for peaks

of the fitted distributions are indicated.

(C) For experiments of the type shown in (A) and (B), all data points and mean ± SEM for the channel currents at the end of recordings (but before application of

Gd3+) normalized to peak currents (WT: n = 3, recordings, N = 3 mice; fro/fro: n = 4, N = 3). ***p < 0.001.

(D) The values of peak and end currents for each patch shown in (A) and (B).

(E and F) Representative recordings showing responses to 20mL.s-1 fluid flow in patches from endothelium pretreated with Gd3+ ofWTmice (E) or fro/fromice (F).

(G) For experiments in the presence of 10 mM Gd3+, of the type exemplified in (E) and (F), all data points and mean ± SEM for the channel currents at the end of

recordings normalized to peak currents (WT: n = 4 recordings, N = 3 mice; fro/fro: n = 4, N = 3). ***p < 0.001.

(H) The values of peak and end currents for each patch shown in (E) and (F).
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(Li et al., 2014), there was sustained channel activation in

response to �5 to �40 mmHg pressure pulses applied to

patches on freshly isolated endothelium (Figure 4A). The currents

increased progressively in response to increased pressure steps

and reached a maximum at about �40 mmHg (Figure 4A). They

were large multi-channel currents, larger than those seen in

outside-out patches (Figure 4A cf. Figure 3A), perhaps at least

partly because larger patch pipettes were used for these record-

ings. The currents were absent in patches from mice that had

conditional endothelial-specific deletion of PIEZO1 (PIEZO1DEC)

(Rode et al., 2017), showing that they depended on PIEZO1 (Fig-
4 Cell Reports 33, 108225, October 6, 2020
ures 4A and 4B). We therefore compared the current kinetics for

patches exposed to �20 mmHg pressure from WT and

Smpd3fro/fro mice (Figures 4C–4F). Strikingly, in patches from

Smpd3fro/fro mice, the current inactivated, as shown by a strong

decay of the inward current despite the persistent pressure step

(Figure 4D). Unexpectedly, the initial peak current was larger

than the control (Figure 4E), but it then decayed to become

much smaller than the control (Figures 4F and 4G). The activation

time to reach peak current was not affected in cells from

Smpd3fro/fro mice (Figure 4H). GW4869 similarly caused the cur-

rent to inactivate strongly but did not cause an increase in



Figure 4. SMPD3 Is Also Important when the Stimulus Is a Pressure Pulse
All measurements were made from cell-attached patches on freshly isolated endothelium of second-order mesenteric arteries of adult mice.

(A) Representative currents elicited by increasing pressure steps from �5 to�40 mmHg, as illustrated schematically in the bottom panel. The top set of currents

was from a WT mouse and the set below from a PIEZO1DEC mouse.

(B) Mean ± SEM currents from experiments of the type exemplified in (A) (n = 6 recordings and N = 3 mice for WT and n = 8 and N = 3 for PIEZO1DEC).

(C and D) Representative recordings showing responses to�20mmHg steps of 200 ms duration for endothelium fromWTmice (C) and Smpd3fro/fro (fro/fro) mice

(D).

(E) Mean ± SEM data for the peak (maximum) inward current amplitude that occurred in experiments of the type shown in (C) and (D): WT recordings (n = 6

recordings, N = 3 mice) and Smpd3fro/fro (fro/fro) recordings (n = 6, N = 3). ***p < 0.001.

(F) As for (E) but showing analysis of the current decay rate for WT (n = 6) and Smpd3fro/fro (fro/fro) (n = 6) recordings.

(G) Mean ± SEM for experiments of the type shown in (C) and (D), showing the time for 20%decay of the current after reaching the peak:WT (n = 6 recordings, N =

3 mice) and Smpd3fro/fro (fro/fro) (n = 6 recordings, N = 3 mice). ***p < 0.001 by Student’s t test.

(H) Mean ±SEMdata for experiments of the type shown in (C) and (D), showing the time to reach peak inward current after first applying the pressure step:WT (n =

6 recordings, N = 3 mice) and Smpd3fro/fro (fro/fro) (n = 6 recordings, N = 3 mice).
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amplitude (Figure S2). The data suggest that SMPD3 also pre-

vents inactivation when the mechanical stimulus is a pressure

pulse.

Ceramide Rescues the Membrane Potential Response
to Flow
To test the roles of sphingomyelin and ceramide, we added

them after SMPD3 had been inhibited by GW4869 to see if

we could rescue the non-inactivating property of PIEZO1.

We first recorded the membrane potential from endothelium.
As expected, in the presence of GW4869, the flow response

was transient (Figure 5A). When flow was repeated in the

presence of 10 mM sphingomyelin, the response was again

transient and indistinguishable from the first flow response

in the absence of sphingomyelin, except for a slightly smaller

peak amplitude (Figures 5B and 5C). In contrast, when the

same experiment was repeated using 10 mM ceramide, there

was significant rescue of the sustained response to flow (Fig-

ures 5D–5F). To investigate if the rescue was PIEZO1 depen-

dent, we repeated the experiments with endothelium from
Cell Reports 33, 108225, October 6, 2020 5



Figure 5. Ceramide Rescues Sustained Flow-Evoked Depolarization after Inhibition of Neutral Sphingomyelinase
All data relate to the membrane potential recorded in amphotericin whole-cell mode from freshly isolated endothelium of second-order mesenteric arteries.

(A) Representative recording showing responses to 20 mL s�1 fluid flow in the presence of 10 mM GW4869 in the absence and then presence of 10 mM sphin-

gomyelin.

(B) Membrane potential mean ± SEM data for experiments of the type shown in (A).

(C) Response duration mean ± SEM data for experiments of the type shown in (A). Original raw data points are superimposed. (B and C) n = 6 recordings, N = 3

mice.

(D) Representative recording showing responses to 20 mL s�1 fluid flow in the presence of 10 mMGW4869 in the absence and then presence of 10 mM ceramide.

(E) Membrane potential mean ± SEM data for experiments of the type shown in (D).

(F) Response duration mean ± SEM data for experiments of the type shown in (D). Original raw data points are superimposed. (E and F) n = 12 recordings, N = 5

mice.

(G–I) Data from endothelium of PIEZO1DECmice. (G andH) Representative recordings showing responses to 20 mL s�1 fluid flow in the absence and then presence

of 10 mMceramide and in the absence (G) and presence (H) of 10 mMGW4869. (I) Membrane potential mean ±SEMdata for experiments of the type exemplified in

(G) and (H): n = 6 recordings and N = 3 mice for both groups.
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PIEZO1DEC mice. In these mice, there was no flow response

and ceramide had no effect, whether GW4869 was present

or not, suggesting that the flow and ceramide effects de-

pended on PIEZO1 (Figures 5G–5I). Matched data for WT

mice are shown for comparison in Figure S3. Therefore, the

sustainability of cell depolarization was abolished by the inhi-

bition of SMPD3 and recovered by acute application of cer-

amide. The immediate product of sphingomyelinase activity

alongside ceramide is phosphoryl choline (PC), but applica-

tion of 10 mM PC in the form 2-methacryloyloxyethyl PC had

no effect (Figure S3). The data suggest that ceramide is the

lipid that disables the PIEZO1 inactivation gate.
6 Cell Reports 33, 108225, October 6, 2020
Ceramide Rescue Is Membrane Delimited
To further investigate the role of ceramide, we used outside-

out patches for membrane-delimited studies and observation

of the single-channel signature of PIEZO1 channels. Again, re-

cordings were made in the presence of GW4869, which

conferred a transient response to flow (Figure 6A; Figure S1).

An addition of 10 mM sphingomyelin had no effect (Figures

6A–6C), whereas Gd3+, the PIEZO1 channel inhibitor, sup-

pressed the activity (Figure 6A). Amplitude histogram analysis

showed the unitary current amplitude to be ~1.95 pA and thus

the expected value for PIEZO1 channels (Figures 6A1 and

6A2). In contrast to the lack of an effect of sphingomyelin,



Figure 6. Ceramide Rescues Sustained Flow-Evoked Single-Channel Activity after Inhibition of Neutral Sphingomyelinase

All measurements were single-channel current recordings from outside-out patches excised from freshly isolated endothelium of second-order mesenteric

arteries. Holding potential was �80 mV.

(A) Representative recording showing response to 20 mL s�1 fluid flow in the presence of 10 mM GW4869 in the absence and then presence of 10 mM sphin-

gomyelin and then plus 10 mM Gd3+. Three sections of the traces are shown below on the expanded timescale. (A1 and A2) Amplitude histograms for channel

activity in flow and flow plus sphingomyelin, as shown in (A). Current amplitudes for peaks of the fitted distributions are indicated.

(B) For experiments of the type shown in (A), all data points and mean ± SEM for the channel currents at the end of recordings with the application of sphin-

gomyelin (before the addition of Gd3+) normalized to peak currents evoked by flow (n = 6 recordings, N = 3 mice).

(C) The values of peak current or the current at the end of recording for each patch shown in (A).

(D) Representative recording showing response to 20 mL s�1 fluid flow in the presence of 10 mMGW4869 in the absence and then presence of 10 mMceramide and

then plus 10 mMGd3+. Three sections of the traces are shown below on the expanded timescale. (D1 and D2) Amplitude histograms for channel activity in flow and

flow plus ceramide, as shown in (D). Current amplitudes for peaks of the fitted distributions are indicated.

(E) For experiments of the type shown in (D), all data points and mean ± SEM for the channel currents at the end of recordings with the application of ceramide

(before the addition of Gd3+) normalized to peak currents evoked by flow (n = 6 recordings, N = 3 mice). **p < 0.01.

(F) The values of peak current or the current at the end of recording for each patch shown in (D).
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ceramide strongly rescued channel activity after the initial

transient response to flow in the presence of GW4869 (Figures

6D–6F). Gd3+ inhibited this channel activity, consistent with its

mediation by PIEZO1 channels (Figure 6D). Moreover, the uni-

tary current amplitude was the expected value for PIEZO1

channels and indistinguishable from that activated by flow

alone (Figure 6D2 cf. Figure 6D1). As in membrane potential

recordings, PC was ineffective (Figure S4). The data are

consistent with ceramide disabling the inactivation gate by a

membrane-delimited mechanism.
Ceramide Rescues the Non-inactivating Response to
Pressure
As indicated above, GW4869 pre-treatment alone for 10 mins

caused pressure-activated currents in cell-attached patches to

become rapidly inactivating (Figures 7A, 7B, and 7C). We tested

the acute application of lipids on PIEZO1 in cells pre-treated with

GW4869. In the presence of ceramide, the inactivation was

strongly and apparently selectively inhibited (Figures 7A, 7A1,

7A2, 7D, and 7G). In contrast, sphingomyelin and PC had no ef-

fect, failing to rescue the non-activating property (Figures 7B,
Cell Reports 33, 108225, October 6, 2020 7



Figure 7. Ceramide and Sphingomyelin Have Distinct Effects

All measurements were made from cell-attached patches on freshly isolated endothelium of second-order mesenteric arteries of adult WT mice. The lipids were

acutely applied in the experiments exemplified in (A)–(C), whereas cells were pre-treated with the lipids for 10 mins in the experiments exemplified in (D)–(H).

(A) Representative currents elicited by�20mmHg pressure steps in the presence of 10 mMGW4869 and absence (control, red) and presence of 10 mMceramide

(green).

(B) Representative currents elicited by �20 mmHg pressure steps in the presence of 10 mM GW4869 and absence (control, red) and presence of 10 mM

sphingomyelin (cyan).

(C) Representative currents elicited by�20mmHg pressure steps in the presence of 10 mMGW4869 and absence (control, red) and presence of 10 mMPC (blue).

(A1 and A2) As for (A) but showing mean ± SEM data for the current decay rate and the time for 20% decay of the current after reaching the peak in the absence

and presence of 10 mM ceramide (n = 7 recordings, N = 3 mice). *p < 0.05. **p < 0.01. ***p < 0.001. (B1 and B2) As for (B) but showing mean ± SEM data for the

current decay rate and the time for 20%decay of the current after reaching the peak in the absence and presence of 10 mMsphingomyelin (n = 6 recordings, N = 3

mice). (C1 and C2) As for (C) but showing mean ± SEM data for the current decay rate and the time for 20% decay of the current after reaching the peak in the

absence and presence of 10 mM PC (n = 6 recordings, N = 3 mice). **p < 0.01 and ***p < 0.001 by Student’s t test.

(D–H) Representative currents elicited by increasing negative pressure steps from �5 to �40 mmHg, as illustrated schematically in the bottom panel. All re-

cordings were in the presence of 10 mM GW4869 and the absence (D) or presence of 10 mM ceramide (E), 10 mM 2-methacryloyloxyethyl PC (PC) (F), or 10 mM

sphingomyelin (G). (H) Recording in vehicle-control conditions.

(I) For experiments of the type exemplified in (D)–(H), mean ± SEM current amplitude normalized to the maximum at �40 mmHg plotted against the amplitude of

the pressure step. Data are shown for vehicle control (black), in the presence of 10 mM GW4869 (red), in the presence of 10 mM GW4869 and 10 mM ceramide

(green), in the presence of 10 mM GW4869 and 10 mM 2-methacryloyloxyethyl PC (PC; blue), and in the presence of 10 mM GW4869 and 10 mM sphingomyelin

(cyan). Each dataset is for n = 6 recordings and N = 3 mice.

(J) Generated from the data shown in (I); mean ± SEM pressure for half-maximal activation (P1/2). ***p < 0.001.

(K) Generated from the data shown in (I); mean ± SEM slope of the sigmoid fit (indicating force sensitivity). p = 0.018, p = 0.022, respectively, as indicated.
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7B1, 7B2, 7C, 7C1, and 7C2). The data further support the

conclusion that ceramide disables the inactivation gate.

Sphingomyelin Alters Pressure Sensitivity
Pressure sensitivity of PIEZO1 channels could also be influenced

by membrane lipid composition (Douguet and Honoré, 2019).

Therefore, we sought to determine whether SMPD3 has an addi-

tional effect on pressure sensitivity of native endothelial PIEZO1

channels. In control cell-attachedpatches, currentswere progres-

sively activated bypressure pulses of�5mmHgor greater, reach-

ing a maximum at about�40mmHg (Figure 4B), which generated

a saturating effect in most experimental groups. Unfortunately,

patch recording was prone to disruption by pressure pulses

greater than �40 mmHg in the cells pre-treated with GW4869 or

additional lipids. A similar methodological challenge has also

been reported in other type of cells when they were treated with

molecules influencing lipid bilayers (Bae et al., 2011). Currents at

all pressure steps were non-inactivating or slowly and partially in-

activating (Figure4A). In thepresenceofGW4869,all currentswere

inactivating (Figure 7D). In contrast, when ceramide was added

along with GW4869, currents returned to non-activating behavior

(Figure7E). Sphingomyelin andPChadnoobviouseffects on inac-

tivation (Figures 7F and 7G). The position of the current-pressure

curvewas right-shiftedby the inhibitorofSMPD3GW4869 (Figures

7I and 7J). Ceramide showed a tendency to reverse this effect (but

the effect did not achieve statistical significance), whereas sphin-

gomyelin moved the curve further to the right (Figures 7I and 7J).

GW4869 caused the curve to have a shallower slope (suggesting

lower pressure sensitivity) and this was reversed only by sphingo-

myelin (Figure 7K). The data suggest that SMPD3 also affects the

position of the pressure curve and the sensitivity of the channels to

pressure but that these effects are primarily mediated by sphingo-

myelin rather than ceramide.

DISCUSSION

Our findings build on previous work showing that fluid flow

stimulates neutral sphingomyelinase and increases vascular cer-

amide (Czarny et al., 2003; Czarny and Schnitzer, 2004). We sug-

gest that endothelial cells use this sphingomyelinase-based

mechanism to alter the local lipid environment of PIEZO1 chan-

nels and thereby suppress inherent inactivation and alter force

sensitivity, thus enabling physiologically important responses

tomechanical stimuli such as fluid flow.We suggest that the spe-

cific sphingomyelinase subtype is SMPD3 and that the local lipid

changes are increased ceramide (for suppressed inactivation)

and reduced sphingomyelin (for altered force sensitivity).

SMPD3 is at the inner leaflet of the bilayer and interactswith cal-

cineurin, a Ca2+- and calmodulin-dependent serine/threonine pro-

tein phosphatase that activates SMPD3 by regulating its phos-

phorylation status (Airola and Hannun, 2013; Filosto et al., 2010).

Because fluid-flow-evoked increases in ceramides have been de-

tectedwithin 1min (Czarny et al., 2003), they could be fast enough

to explain the sustained PIEZO1 activation by fluid flow in our

membrane potential and single-channel recordings.

We suggest that ceramide generated by SMPD3 largely re-

moves PIEZO1 inactivation when the PIEZO1 is in the native

endothelium. Pre-treatment of these endothelial cells with cer-
amide for 10 mins or acute application of ceramide conferred

similar non-inactivation properties on PIEZO1 in SMPD3-in-

hibited (GW4869-treated) endothelial cells. The effect caused

by acute application of ceramide was slightly less obvious, but

this could be due to the reduced delivery efficiency of ceramide

when it is exogenously applied. Other lipids such as polyunsatu-

rated fatty acids also inhibit PIEZO1 inactivation (Romero et al.,

2019) and are likely to contribute to effects in the endothelium,

depending on context.

We provide multiple lines of evidence for our claim that SMPD3

has the proposed role in regulating endothelial PIEZO1: pharma-

cology, gene modification, and lipid effects. The signals were

PIEZO1 dependent because they were absent in PIEZO1DEC

mice. We also argue that the channels were PIEZO1 channels

based on their distinctive unitary conductance of about 25 pS,

which is the expected conductance for PIEZO1 channels and

different from that of many other ion channels, including those

that have been suggested to be activated by fluid flow (Coste

et al., 2010; Li et al., 2014; Murthy et al., 2017; Rode et al., 2017).

Moreover, the channels were robustly activated by mechanical

force (a defining feature of PIEZO channels) and inhibited by

Gd3+ (an expected but not unique feature of these channels).

The similarity in the effects of neutral sphingomyelinase inhibitors

and Smpd3fro/fro on endothelial PIEZO1 inactivation is particularly

striking and argues in favor of a common mechanism, which we

suggest to be SMPD3 (Figures 2, 3, and S5). A difference between

the neutral sphingomyelinase inhibitor and Smpd3fro/fro effects

was that Smpd3fro/fro mice showed a larger initial current in

response topressure pulse (Figure 4E).Wedonot know the expla-

nation for this effect, but itmay bedue to compensation due to the

developmental disruption of SMPD3 in the mice compared with

the acute effects of the neutral sphingomyelinase inhibitors. We

suggest that the currents in Smpd3fro/fro mice were indeed due

to PIEZO1 channels because they had the expected unitary

conductance, were activated by fluid flow, were inhibited by

Gd3+, and showed rapid inactivation of the type described for

PIEZO1 in earlier studies (Coste et al., 2010; Zheng et al., 2019).

The initial large current seen in voltage-clamp experiments con-

trastedwith the small initial depolarization seen in constant current

mode. This couldbedue to the integratednatureof thedepolariza-

tion event,with other ion permeabilitymechanismscountering any

overshoot depolarization.

In complementary studies, we observed that exogenous sphin-

gomyelinase could modulate Ca2+ signals evoked by Yoda1, a

chemical agonist of PIEZO1 (FigureS6). Such studiesmay be rele-

vant to mechanical activation of the channels because Yoda1 is

thought to sensitize the channels to mechanical force (Syeda

et al., 2015). Intriguingly, the sphingomyelinase had the opposite

effectonoverexpressedPIEZO1comparedwithnativeendothelial

PIEZO1,suggesting that thestandardmethodological approachof

characterizing PIEZO1 overexpressed in a host cell line may

generate results that are not necessarily relevant to the physiolog-

ical setting. There is emerging evidence formultiple complex inter-

actions of PIEZO1 with various lipids (Chong et al., 2019; Romero

et al., 2019), and so, the complement of lipids in the vicinity of each

channel may determine which other lipids can act and then the

type of effect of each lipid. Intriguingly, the previous reports of ef-

fects of exogenous sphingomyelinase on gating properties of
Cell Reports 33, 108225, October 6, 2020 9
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voltage-gated ion channels, such as the slowing of inactivation in

voltage-gated Na+ channels, also depended on the host cell type

(Combs et al., 2013).

It will be interesting to investigate if the SMPD3-dependent

escape of PIEZO1 from inactivation and regulation of its force

sensitivity are important in other, non-endothelial cell types for

which rapid inactivation is also likely to be incompatible with func-

tion. An important cell type for investigation will be the red blood

cell for which mutations in PIEZO1 lead to dehydrated hereditary

stomatocytosis (Andolfo et al., 2013) and the PIEZO1channels are

non-inactivating or only slowly inactivating (Evans et al., 2020).

Osteoblasts also exhibit non-inactivating PIEZO1 activity (Sun

et al., 2019), and it may not be a coincidence that PIEZO1- and

Smpd3-disrupted mice both show abnormal bone formation (Au-

bin et al., 2005; Sun et al., 2019). Slow or little inactivation has also

been described in other cell types (Beech and Kalli, 2019) such as

embryonic stem cells (for which a role of PIEZO1 in the relatively

slow process of cell proliferation has been suggested) (Del Már-

mol et al., 2018) and other cells including cardiac fibroblasts

(Blythe et al., 2019), smooth muscle cells (Retailleau et al.,2015),

and renal epithelial cells (Peyronnet et al., 2013).

Based on the available evidence, we cannot say whether shear

stress acts by first stimulating SMPD3 to release PIEZO1 from

inactivation or whether SMPD3 is already sufficiently active to

enable a non-inactivating PIEZO1 that is then the first protein acti-

vated by shear stress. Moreover, it is important to emphasize that

we do not infer that the sphingolipid mechanism identified here is

specific toPIEZO1because sphingolipids (in particular the ceram-

ides and their associated cascade of lipid products) are well-es-

tablished as having multiple complex effects on cells (Hannun

andObeid, 2018; Pavoine andPecker, 2009). Stimulation of sphin-

gomyelinase by shear stress (Czarny et al., 2003; Czarny and

Schnitzer, 2004) is likely to have many downstream implications.

Furthermore, we do not argue that PIEZO1 is the only shear stress

sensor or that it is necessarily the first protein to be activated by

shear stress among the many candidate sensors so far described

(Baratchi et al., 2017). Future studies will hopefully unravel the

complexities of the overall shear stress-sensing system, including

the order in which the various events occur and the anatomical

sites and contexts in which the different factors prevail.

Our study does not reveal the molecular mechanisms by which

ceramideorsphingomyelinmodulate the functionofPIEZO1chan-

nels. Toexplore potential ideas,weusedmolecular dynamics sim-

ulations based on the available structural data for mouse PIEZO1

(FigureS7). Although these data lack information for N-terminal re-

gions, they include high-resolution data for the central pore region

and parts of the blades, which participate in force sensing. Cer-

amide lacks the head group of sphingomyelin, so replacing sphin-

gomyelin with ceramide in a membrane is likely to change some

properties of the membrane such as curvature. Changes in mem-

brane curvature can be important, as PIEZO1 channels alter the

membrane structure to create an inwardly directed dome, which

has been suggested to be important in PIEZO1 activation (Guo

and MacKinnon, 2017; Lin et al., 2019). Although it is possible to

see spontaneous membrane curvature in simulations (Hossein

and Deserno, 2020), theoretical and experimental studies have

shown that PIEZO1 in a membrane does indeed create an in-

ward-facing dome (Guo and MacKinnon, 2017). The depth of the
10 Cell Reports 33, 108225, October 6, 2020
previously suggesteddomewas~6nm,which is similar toour sim-

ulations (Figure S7) and other simulations in a 1-palmitoyl-2-oleyl-

phosphtidylcholine (POPC)membrane (Botello-Smith et al., 2019).

This model suggests that sphingomyelinase activity reduces the

depthof thedomebygeneratingceramideat theexpenseofsphin-

gomyelin. As with any technique, limitations of simulations exist.

However, theyenableotherwiseunachievable insight intodynamic

molecular mechanisms, and studies with realistic membranes (as

we performed) are becoming the norm in such simulations, with

increasing evidence that they can predict properties of native

membranes (Marrink et al., 2019). Nevertheless, we recognize

that the changes in the dome depth were relatively modest and

the functional significance of such changes is not yet known. It

would be premature to rule out other mechanisms that may

include, for example, altered membrane thickness (because ce-

ramides lack the headgroup of sphingomyelin), increased shear

membrane viscosity caused by ceramide (Catapano et al., 2017),

and direct lipid interactions with PIEZO1 amino acids. Multiple

mechanisms are indicated because the effects of sphingomyelin

andceramidewerenot simpleoppositesbut ratherdistincteffects.

Although previous work (Wu et al., 2017) suggested that mem-

brane tension has little role in inactivation kinetics of PIEZO1, this

study was carried out in PIEZO1-overexpressing HEK293 cells,

which our data suggest may not necessarily reproduce properties

of PIEZO1 in native endothelial cells.

In conclusion, we suggest that a sphingomyelinase (SMPD3)

suppresses PIEZO1 inactivation by catalyzing the production

of ceramides that favor the channel open state over closed

states such as the inactivated state. Although we support this

conclusion through potentially non-physiological experiments

in which we added exogenous lipids to the endothelium, we

argue that the mechanism is likely to be physiologically impor-

tant because genetic disruption of SMPD3, which physiologi-

cally regulates these lipids in their native membrane context,

remarkably switched the channels to the rapidly inactivating

behavior seen often in overexpression systems and natively in

some other cell types. The latter effect of SMPD3’s disruption

on PIEZO1 biophysics is unlikely to be explained by a grossly

disturbed phenotype of the Smpd3fro/fro mouse because we

could easily reproduce it if we acutely inhibited the enzyme phar-

macologically in WT endothelium. We suggest therefore that

sphingomyelinase activity is amajor determinant of native PIEZO

gating. This effect may have broad cell and tissue consequences

beyond those described here for the mesenteric endothelium

and extend to other ion channel types that were previously

shown to be modulated by exogenous sphingomyelinase and

perhaps other ion channels and other membrane proteins that

have not yet been investigated in relation to sphingomyelinase.
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Del Mármol, J.I., Touhara, K.K., Croft, G., and MacKinnon, R. (2018). Piezo1

forms a slowly-inactivating mechanosensory channel in mouse embryonic

stem cells. eLife 7, e33149.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All animal use was authorized by the University of Leeds Animal Ethics Committee and The Home Office, UK. All animals were main-

tained in GM500 individually ventilated cages (Animal Care Systems) at 21�C 50%–70% humidity, light/dark cycle 12/12 hr on RM1

diet (SpecialDiet Services, Witham, UK) ad libitum and bedding of Pure‘o Cell (Datesand, Manchester, UK). Genotypes were deter-

mined using real-time PCR with specific probes designed for each gene (Transnetyx, Cordova, TN). Male wild-type or Smpd3fro/fro

mice (Aubin et al., 2005) on 129/Sv background were 12-13 weeks old at the time of experiments. PIEZO1DEC have been previously

described and were used similarly (Rode et al., 2017). Otherwise, all mice were C57BL/6 males aged 10-14 weeks.

METHOD DETAILS

Isolation of Endothelium from Mesenteric Artery
Endothelium was freshly isolated from second-order branches of mouse mesenteric arteries as described previously (Rode et al.,

2017). Briefly, dissected second-order mesenteric arteries were enzymatically digested in dissociation solution (126 mM NaCl,

6 mMKCl, 10mMGlucose, 11mMHEPES, 1.2 mMMgCl2, 0.05mMCaCl2, with pH titrated to 7.2) containing 1mg.mL-1 collagenase

Type IA (Sigma-Aldrich, Dorset, UK) for 14 min at 37�C and then triturated gently to release endothelium on a glass coverslips for

recordings on the same day.

Patch-clamp Electrophysiology
Recordings were made at room temperature using an Axopatch-200B amplifier equipped with a Digidata 1550A and pCLAMP 10.6

software (Molecular Devices, Sunnyvale, CA, USA). Endothelium was in a standard bath solution containing (mM) 135 NaCl, 4 KCl, 2

CaCl2, 1 MgCl2, 10 glucose and 10 HEPES (titrated to pH 7.4 using NaOH). For membrane potential recordings in zero current mode,

heat-polished patch pipettes with tip resistances between 3 and 5 MU were used and contained amphotericin B (Sigma-Aldrich) as

the perforating agent, added to a pipette solution containing (mM) 145 KCl, 1MgCl2, 0.5 EGTA and 10 HEPES (titrated to pH 7.2 using

KOH). Outside-out and cell-attachedmembrane patch recordings weremade using the same equipment but in voltage-clampmode.

The tip resistances of recording pipettes for cell-attached recordings were between 3 and 5 MU, while for outside-out recordings

they were between 12 and 15 MU. Currents were sampled at 20 kHz and filtered at 2 kHz. For cell-attached recordings, the extra-

cellular (bath) solution contained (mM) 140 KCl, 1 MgCl2, 10 glucose and 10 HEPES (titrated to pH 7.3 using KOH), while the patch

pipette contained (mM) 130NaCl, 5 KCl, 1 CaCl2, 1MgCl2, 10 Tetraethylammonium.Cl and 10HEPES (titrated to pH 7.3 using NaOH).

For outside-out recordings, the external solution was standard bath solution and the patch pipette contained (mM) 145 KCl, 1 MgCl2,

0.5 EGTA and 10 HEPES (titrated to pH 7.2 using KOH). For application of fluid flow, endothelium or a membrane patch was maneu-

vered to the exit of a capillary tube with tip diameter of 350 mm, out of which ionic (bath) solution flowed at 20 mL.s-1. For pressure

pulses, 0.2 s duration square pulses were applied to the patch pipette every 5 s using a High Speed Pressure Clamp HSPC-1 System

(ALA Scientific Instruments, USA). Prior to the patch-recordings, freshly isolated endothelial cells were pre-treated with the inhibitors,

the combination of inhibitors with lipids or vehicle control (0.25%DMSO) for 10mins at room temperature. During the recordings, the

inhibitors or the combination of inhibitor with lipid was still continuously present. The only exception was made for the experiments

indicated in Figure 7 in which the lipids were acutely applied after the cells were pre-treated with the inhibitor alone for 10 minutes at

room temperature.

Culture and Transfection of Human Umbilical Vein Endothelial Cells (HUVECs)
HUVECs were purchased from Lonza and cultured in Endothelial Cell Basal Medium (EBM-2) supplemented with 2% fetal calf serum

and: 10 ng.mL-1 vascular endothelial growth factor (VEGF), 5 ng.mL-1 human basic fibroblast growth factor, 1 mg.mL-1 hydrocorti-

sone, 50 ng.mL-1 gentamicin, 50 ng.mL-1 amphotericin B and 10 mg.ml-1 heparin (BulletKitTM, Lonza). Experiments were performed

on cells from passage 2-5. HUVECs were transfected with 20 nM siRNA using Lipofectamine 2000 in OptiMEM (GIBCO) as per the

manufacturer’s instructions (Invitrogen). Mediumwas replaced after 4-5 hr and cells were used for experimentation 48 hr post-trans-

fection. PIEZO1 siRNA was GCCUCGUGGUCUACAAGAUtt (Ambion), which was previously validated (Li et al., 2014). Non-targeting

control siRNA was from Dharmacon.

PIEZO1 Tetracycline Inducible HEK293 Cell Line
HEK T-REx cells which overexpress human PIEZO1 on induction with tetracycline (P1-HEK cells) were as described previously

(Evans et al., 2018; Rode et al., 2017). Expression was induced by treating the cells for 24 hr with 10 ng.mL-1 tetracycline (Sigma).

Cells were cultured in Dulbecco’s modified Eagle’s medium-F12 GlutaMAX (Invitrogen, Paisley, UK) supplemented with 10% fetal

calf serum (Sigma) and 1% penicillin/streptomycin (Sigma-Aldrich). Subsequently, cells were treated with 10 mg.mL-1 blasticidin

and 200 mg.mL-1 zeocin (Invitrogen, Thermo Fisher Scientific) to select for stably transfected cells.
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Intracellular Ca2+ Measurement
Measurements were made at room temperature on a FlexStation 3 (Molecular Devices, California) bench-top fluorometer controlled

by Softmax Pro software v5.4.5. Cells were plated in clear 96-well plates (Corning, NY, USA) at a confluence of 90% 24 hours before

experimentation. Cells were incubated with fura-2AM (2 mM) (Molecular ProbesTM) in SBS containing 0.01% pluronic acid (Thermo

Fisher Scientific) for 60 min at 37�C. Cells were washed with SBS for 30 min at room temperature. Baseline fluorescence ratios were

recorded before the addition of the compound solution to the cell plate after 60 s, with recording thereafter for a total of 300 s. The

Standard Bath Solution (SBS) contained: NaCl 135 mM, KCl 5 mM, MgCl2 1.2 mM, CaCl2 1.5 mM, D-glucose 8 mM and HEPES

10 mM. pH was titrated to 7.4 using 4M NaOH.

PIEZO1 Channel Modeling
Structural data were obtained from the mouse cryo-EM structure PDB: 6B3R (Guo and MacKinnon, 2017). A total of 58 missing res-

idues (~2.3% of the overall protein length) were added with MODELER (v 9.19) (Fiser and Sali, 2003; Sali and Blundell, 1993). These

residues are 601-604, 876-879, 887-891, 1998-2014, 2066-2074, 2412-2423, 2457-2462 and 2547 (see Figure S7). The loop refine-

ment tool was used to remove a knot in one chain between residues 2066-2074. The loop was selected out of 10 candidates accord-

ing to the discrete optimized protein energy method (Shen and Sali, 2006). The final PIEZO1 mouse model does not comprises the

first N-terminal 576 residues and residues 718-781, 1366-1492, 1579-1654, 1808-1951. Therefore, each chain is composed by five

non-overlapping fragments: residues 577-717, 782-1365, 1493-1578, 1655-1807 and 1952-2547. The PIEZO1 model obtained was

further energy minimized in vacuum with GROMACS 5.0.7 (Abraham et al., 2015) prior simulations.

Coarse-Grained Simulations
The PIEZO1 model obtained as described above was converted to a coarse-grained (CG) resolution and energy minimized. The CG

molecular dynamics (CG-MD) simulations were performed using the Martini 2.2 force field (de Jong et al., 2013; Marrink et al., 2007)

andGROMACS 5.0.7 (Abraham et al., 2015). In theMartini force field, there is an approximate 4:1mapping of heavy atoms to coarse-

grained particles. To model the protein secondary and tertiary structure an elastic network model with a cut-off distance of 7 Å was

used. The elastic network restricts any major conformational change within the protein during the CG-MD simulations. This elastic

network was used in a number of studies that showed good agreement with experimental data (Corradi et al., 2019; De Vecchis et al.,

2019). Further, themodel was inserted in a complex asymmetric bilayer using the INSert membrANE tool (Wassenaar et al., 2015). For

the upper leaflet a concentration of 55% 1-palmitoyl-2-oleyl-phosphtidylcholine (POPC), 5% sphingomyelin, 20% 1-palmitoyl-2-

oleyl-phosphtidylethanolamine (POPE), and 20% cholesterol, was used. For the lower leaflet a concentration of 50% POPC, 20%

POPE, 5% sphingomyelin, 20% cholesterol, 5% 1-palmitoyl-2-oleyl-phosphtidylserine, and 5% phosphatidylinositol 4,5-bisphos-

phate, was used. Further simulations were performed substituting half of the sphingomyelin in the upper leaflet (i.e., 2.5%) with cer-

amide or by depleting all sphingomyelin (i.e., 5%) with ceramide. The systems were neutralized with 150 mM NaCl. The model was

further energy minimized and subsequently equilibrated for 500 ns with the protein particles restrained (1000 kJ.mol-1.nm-2) to allow

the membrane bilayer to equilibrate around the protein. After each equilibration, five unrestrained repeat simulations of 5 ms each

were run for every system starting from different velocities. Both equilibration and production runs were performed at 323 K to be

above the transition temperature of all the lipid species used and thus avoid non-fluid phases. Protein, lipids and solvent were sepa-

rately coupled to an external bath using the V-rescale thermostat (Bussi et al., 2007) (coupling constant of 1.0). Pressure was semi-

isotropically maintained at 1 bar (coupling constant of 1.0) with compressibility of 3 3 10�6 using the Berendsen (Berendsen et al.,

1984) and the Parrinello-Rahman (Parrinello, 1981) barostats, for the equilibration and productions, respectively. Lennard-Jones and

Coulombic interactions were shifted to zero between 9 and 12 Å, and between 0 and 12 Å, respectively.

Trajectory Analyses and Molecular Graphics
Root mean-square deviation (RMSD) and root mean-square fluctuation (RMSF) were performed using the g_rms and g_rmsf tools

from the GROMACS package. The analysis suggested a stable structure (Figure S7). Molecular graphics were generated with the

VMD 1.9.3 (Humphrey et al., 1996; http://www.ks.uiuc.edu/Research/vmd/) and data were plotted using Grace (https://

plasma-gate.weizmann.ac.il/Grace/). For the calculation of dome depth, the simulation trajectory was fitted to the protein coordi-

nates (reference structure). The coordinates of the CG phosphate particles in each frame of the fitted trajectory were extracted by

a Python script. The phosphate particles were then used to separate the bilayer leaflets using a branching network algorithm. Briefly,

this method started with a single phosphate particle, and identified the other phosphate particles whichwere within a cut-off distance

(2 nm) of the starting particle. The cut-off distance was selected to be smaller than the separation between the bilayer leaflets. Phos-

phate particles identified in this way were grouped into the same leaflet as the starting residue. This process iterated repeatedly until

no more new particles could be added, and the remaining particles were assumed to be part of the other leaflet. The process was

then repeated starting in the other leaflet to validate the initial identification. For each leaflet, the depth of the domewas calculated as

the difference between the surface level and the bottom of the dome. The surface level was taken to be the average z-coordinate for

the phosphate particles with z-coordinate in excess of the 90th centile. The average was used here to minimize the effect of random

fluctuation of the membrane. For the bottom of the dome, the z-coordinate of the phosphate particle with the absolute lowest z-co-

ordinate was used. This was because the bottom of the dome was prone to far less fluctuation, being fixed to PIEZO1, which in

turn was the fitting reference for the rest of the simulation. To calculate the 2-dimentional height map of the z-coordinate of the
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CG phosphate particles in our simulations, CG phosphate particles from each leaflet were binned along the x and y axes for each

frame; 75 bins for each axis. For each frame, the average z-coordinate of beads contained in each bin was calculated and stored

in a matrix. The matrices of all frames were averaged to create the final height map, which was plotted using the PyPlot library.

The code used was documented at: https://github.com/jiehanchong/membrane-depth-analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genotypes of mice were always blinded to the experimenter and mice were studied in random order determined by the genotype of

litters. Data were generated in pairs (control mice and Smpd3fro/fro mice) and datasets compared statistically by independent t test

without assuming equal variance. Paired t tests were used when comparing data before and after application of flow or a substance

to the samemembrane patch or cell. One-way ANOVA followed by Tukey posthoc test was used for comparing multiple groups. Sta-

tistical significance was considered to exist at probability (P) < 0.05 (* < 0.05, ** < 0.01, *** < 0.001). Where data comparisons lack an

asterisk, they were not significantly different. The number of independent recordings is indicated by n and the number of mice per

dataset by N (in total, murine data are from n = 278 recordings and N = 105 mice). For multi-well assays, the number of replicates is

indicated by N. For amplitude histogram analysis the bin width was 0.05 pA. Descriptive statistics are shown as mean ± s.e.mean.

Origin Pro software was used for data analysis and presentation.
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