
This is a repository copy of Causal relationships between body mass index, smoking, and 
lung cancer: univariable and multivariable mendelian randomization..

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/165485/

Version: Accepted Version

Article:

Zhou, W., Liu, G., Hung, R.J. et al. (29 more authors) (2021) Causal relationships between
body mass index, smoking, and lung cancer: univariable and multivariable mendelian 
randomization. International Journal of Cancer, 148 (5). pp. 1077-1086. ISSN 0020-7136 

https://doi.org/10.1002/ijc.33292

This is the peer reviewed version of the following article: Zhou, W., Liu, G., Hung, R.J., 
Haycock, P.C., Aldrich, M.C., Andrew, A.S., Arnold, S.M., Bickeböller, H., Bojesen, S.E., 
Brennan, P., Brunnström, H., Melander, O., Caporaso, N.E., Landi, M.T., Chen, C., 
Goodman, G.E., Christiani, D.C., Cox, A., Field, J.K., Johansson, M., Kiemeney, L.A., Lam,
S., Lazarus, P., Le Marchand, L., Rennert, G., Risch, A., Schabath, M.B., Shete, S.S., 
Tardón, A., Zienolddiny, S., Shen, H. and Amos, C.I. (2020), Causal Relationships between
Body Mass Index, Smoking, and Lung Cancer: Univariable and Multivariable Mendelian 
Randomization. Int. J. Cancer., which has been published in final form at 
https://doi.org/10.1002/ijc.33292. This article may be used for non-commercial purposes in
accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Causal Relationships between Body Mass Index, 

Smoking, and Lung Cancer: Univariable and 

Multivariable Mendelian Randomization 

 

Wen Zhou1,2, Geoffrey Liu3, Rayjean J. Hung4,5, Philip C. Haycock6,7, Melinda C. 

Aldrich8, Angeline S. Andrew9, Susanne M. Arnold10, Heike Bickeböller11, Stig E. 

Bojesen12, Paul Brennan13, Hans Brunnström14, Olle Melander14, Neil E. Caporaso15, 

Maria Teresa Landi15, Chu Chen16, Gary E. Goodman16, David C. Christiani17, Angela 

Cox18, John K. Field19, Mikael Johansson20, Lambertus A. Kiemeney21, Stephen Lam22, 

Philip Lazarus23, Loïc Le Marchand24, Gad Rennert25, Angela Risch26, Matthew B. 

Schabath27, Sanjay S. Shete28, Adonina Tardón29, Shanbeh Zienolddiny30, Hongbing 

Shen1*, Christopher I. Amos2* 

 

*Equal Contributors 

 

1Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, 

Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 

Nanjing, China 

2Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA 

3Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada 

4Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, 

Sinai Health System, Toronto, ON, Canada 

5Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, 

Canada 

6MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK 

7Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK 

8Department of Thoracic Surgery and Division of Epidemiology, Vanderbilt University Medical 

Center, Nashville, TN, USA 

9Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA 

10Markey Cancer Center, University of Kentucky, Lexington, KY, USA 



11Department of Genetic Epidemiology, University Medical Center, Georg-August-Universität 

Göttingen, Göttingen, Germany 

12Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University 

Hospital, Herlev, Denmark 

13Genetic Epidemology Group, International Agency for Research on Cancer, Lyon, France 

14Clinical Sciences, Lund University, Lund, Sweden 

15Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA 

16Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research 

Center and Department of Epidemiology, School of Public Health, University of Washington, Seattle, 

WA, USA 

17Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public 

Health, Boston, MA, USA 

18Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, UK 

19Department of Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research 

Programme, The University of Liverpool Cancer Research Centre, Liverpool, UK 

20Department of Radiation Sciences, Umeå University, Umea, Sweden 

21Department for Health Evidence, Radboud university medical center, Nijmegen, The Netherlands 

22Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada 

23Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, 

Washington State University, Spokane, WA, USA 

24Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA 

25Department of Community Medicine and Epidemiology, Carmel Medical Center and Bruce 

Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and Clalit National Cancer 

Control Center, Haifa, Israel 

26Cancer Center Cluster Salzburg at PLUS, Department of Molecular Biology, University of Salzburg, 

Heidelberg, Austria 

27Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, 

FL, USA 

28Department of Biostatistics, Division of Basic Sciences, The University of Texas MD Anderson 

Cancer Center, Houston, TX, USA 

29Faculty of Medicine, University of Oviedo and ISPA and CIBERESP, Oviedo, Spain 

30The National Institute of Occupational Health (STAMI), Oslo, Norway 



 

Correspondence to: Christopher I. Amos, Institute for Clinical and Translational 

Research, Baylor College of Medicine, E-mail: chrisa@bcm.edu or Hongbing Shen, 

Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and 

Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 

Medical University, E-mail: hbshen@njmu.edu.cn 

 

Short title: Causal Relationships between BMI, Smoking, and Lung Cancer 

 

Key words: Causal relationship, body mass index, smoking phenotypes, lung cancer, 

Mendelian randomization 

 

Abbreviations: 

BMI: body mass index 

CI: confidence interval 

FTS: two-sample conditional F-statistic 

GIANT: Genetic Investigation of ANthropometric Traits 

GWAS: Genome wide association study 

GSCAN: GWAS and Sequencing Consortium of Alcohol and Nicotine use 

ILCCO: International Lung Cancer Consortium 

IV: instrumental variable 

IVW: inverse-variance weighted 

LD: linkage disequilibrium 

MAF: minor allele frequency 

MR: Mendelian randomization 

MVMR: multivariable Mendelian randomization 

NOME: NO Measurement Error 



OR: odds ratio 

SNP: single nucleotide polymorphism 

TRICL: Transdisciplinary Research in Cancer of the Lung 

UVMR: univariable Mendelian randomization. 

 

Article category: Research Articles 

 

Novelty and Impact 

Associations between body mass index (BMI) and several cancers are well established. 

However, the causal relationship of BMI on lung cancer is contradictory among studies. 

Here, using univariable and multivariable Mendelian randomization (MR), we confirmed 

an inverse direct effect of BMI on lung adenocarcinoma and a direct causal effect on 

small cell lung cancer, but did not observe direct effect of BMI on lung squamous cell 

carcinoma. The results highlight the histology-specific impact of BMI on lung 

carcinogenesis. 

  



Abstract 

At the time of cancer diagnosis, body mass index (BMI) is inversely correlated with lung 

cancer risk, which may reflect reverse causality and confounding due to smoking 

behavior. We used two-sample univariable and multivariable Mendelian randomization 

(MR) to estimate causal relationships of BMI and smoking behaviors on lung cancer and 

histological subtypes, based on an aggregated genome wide association studies 

(GWASs) analysis of lung cancer in 29,266 cases and 56,450 controls. We observed a 

positive causal effect for high BMI on occurrence of small cell lung cancer (odds ratio 

(OR) = 1.60, 95% confidence interval (CI) = 1.24-2.06, P = 2.70 x 10-4). After adjustment 

of smoking behaviors using multivariable Mendelian randomization (MVMR), a direct 

causal effect on small cell lung cancer (ORMVMR = 1.28, 95% CI = 1.06-1.55, PMVMR = 

0.011), and an inverse effect on lung adenocarcinoma (ORMVMR = 0.86, 95% CI = 0.77-

0.96, PMVMR = 0.008) were observed. A weak increased risk of lung squamous cell 

carcinoma was observed for higher BMI in univariable Mendelian randomization 

(UVMR) analysis (ORUVMR = 1.19, 95% CI = 1.01-1.40, PUVMR = 0.036), but this effect 

disappeared after adjustment of smoking (ORMVMR = 1.02, 95% CI = 0.90-1.16, PMVMR = 

0.746). These results highlight the histology-specific impact of BMI on lung 

carcinogenesis and imply mediator role of smoking behaviors in the association 

between BMI and lung cancer.  



Introduction 

Although body mass index (BMI) is known to be associated with the risk of several 

cancers1, many epidemiological studies1-6 have found that BMI is inversely correlated 

with lung cancer risk. At the time of or 1 to 2 year leading up to cancer diagnosis, lung 

cancer cases tend to have lower BMI compared to age, population, and sex matched 

controls7. This observation may reflect reverse causality related to the latent effects of 

lung cancer on BMI due to cachexia and the disease process8 and confounding due to 

smoking behavior4, 9-11, which suppresses appetite. 

Mendelian randomization (MR) complements traditional epidemiological methods as 

it uses genetic variants as instrumental variables (IVs) to estimate causal effects and is 

free from the effects of confounders and reverse causality12 but could be influenced by 

pleiotropy or linkage disequilibrium among the markers13. The conventional, univariable 

MR analysis evaluates the effect of a single predictor on an outcome. There are three 

assumptions for a valid IV – it must be: (i) associated with the exposure (the “relevance” 
assumption); (ii) independent of the outcome given the exposure (the “exclusion 
restriction”); and (iii) independent of all (both observed and unobserved) confounders 

(the “exchangeability” assumption).14, 15 If an IV is associated with a confounder of 

exposure and outcome then there is a conflict with these assumptions, which may lead 

to potential biases and erroneous conclusions. If associations between the IV and both 

the exposure and the confounder are measured, then their effects on the outcome can 

be estimated jointly using multivariable MR16. 

Multivariable MR is an extension of univariable MR that takes pleiotropy among 

multiple traits into account. The assumptions of multivariable MR is broader than that of 

univariable MR: genetic variants could influence multiple measured exposures, and the 

exclusion restriction and exchangeability assumption extend accordingly.16 Under the 

scenario that there is a secondary exposure acts as a mediator of the relationship 

between primary exposure and outcome, multivariable MR can provide a consistent 

estimator of the direct effect of the exposure on the outcome that does not work via the 

mediator.17 

In this study, we performed Mendelian randomization analyses to investigate causal 

effects of BMI and smoking phenotypes on lung cancer using univariable MR and 

multivariable MR methods. Sensitivity analyses were conducted to evaluate the impact 

that assumptions had on the findings and to ensure the robustness of the results. 

 



Materials and Methods 

Genetic instruments for BMI and smoking phenotypes 

Genetic instruments for BMI were identified using results from the largest available 

meta-analysis of genome wide association studies (GWASs) for BMI, which combined 

summary statistics from the Genetic Investigation of ANthropometric Traits (GIANT) 

consortium18 with GWAS for BMI performed in UK Biobank participants of European 

ancestry, reaching about 700,000 individuals.19 The former association testing was 

performed with the inverse normally transformed BMI residuals using linear regression 

assuming an additive genetic model. The associations identified in the latter study were 

estimated using linear mixed model assuming an infinitesimal model. METAL20 was 

used to perform fixed-effect inverse variance weighted meta-analysis. 

Genetic instruments for smoking phenotypes were obtained from the most recent 

meta-analysis on tobacco and alcohol consumption based on over 30 GWASs, which 

identified 566 genetic variants associated with four smoking phenotypes in over 1.2 

million individuals of European ancestry.21 Detailed information about the smoking 

phenotypes have been described elsewhere21. Briefly, they included smoking status 

(Ever/Never), age of smoking initiation, smoking cessation (Current/Former), and 

number of cigarettes smoked per day (either as a current smoker or former smoker, 

quantitative measures were binned into five bins or collected with pre-defined bins as 

follows: 1 = 1-5, 2 = 6-15, 3 = 16-25, 4 = 26-35, 5 = 36+ cigarettes per day). The 

association statistics were generated using a linear mixed model for all phenotypes in 

family studies and quasi-continuous phenotypes (age of smoking initiation and 

cigarettes per day) in unrelated individuals. A logistic model was utilized to estimate 

additive genetic effects for binary phenotypes (smoking status and smoking cessation) 

in studies of unrelated individuals. Meta-analysis was performed using rareGWAMA22. 

The IVs for MR anayses were selected based on the following criteria: (i) r2 measure 

of linkage disequilibrium (LD) among instruments < 0.01 at a 10Mb window; (ii) P value 

less than the genome-wide significant level identified in the corresponding study (1 x 10-

8 for BMI, 5 x 10-8 for smoking phenotypes); (iii) minor allele frequency (MAF) > 0.01; 

(iv) non-palindromic single nucleotide polymorphisms (SNPs) (A/T and G/C 

polymorphisms were considered for removal but there was no ambiguity in effects). We 

further split the genetic instruments for BMI into those that only affect BMI (“BMI-Only 

SNP”) and those that affect both smoking and BMI (“BMI&Smoking SNP”) by using the 

P values in the tobacco use GWAS meta-analysis: If the P value of any of smoking 

phenotypes was less than 0.05, it was classified as the “BMI&Smoking SNP”. 



 

Genetic associations of SNPs with lung cancer risk 

Summary statistics on lung cancer risk, including odds ratio (OR) estimates and 

standard errors for instrumental SNPs, were available from the Transdisciplinary 

Research in Cancer of the Lung (TRICL) and International Lung Cancer Consortium 

(ILCCO) based on an aggregated GWAS analysis of lung cancer in 29,266 cases and 

56,450 controls.23 The associations between instrumental SNPs and histological 

subtypes of lung cancer were also provided in the original study. These analyses were 

restricted to European-descent participants, defined as having 80% or more derived 

European ancestry. 

 

Mendelian Randomization 

The relationship between BMI, smoking, and lung cancer is illustrated in Figure 1. The 

direct effect of BMI on lung cancer is the effect that not via smoking, which is equal to 

βXZ. The total effect of BMI on lung cancer is the effect of BMI on lung cancer directly 

plus the effect of BMI on lung cancer via smoking, which is equal to βXZ + αXYβYZ. We 

performed univariable MR analyses for BMI and smoking on lung cancer risk separately 

to estimate the total causal effects of BMI on lung cancer and smoking behaviors on 

lung cancer. To evaluate whether BMI was causal for smoking phenotypes or smoking 

phenotypes have causal effects on BMI, we conducted bidirectional MR for BMI and 

smoking phenotypes. Specifically, MR analyses were first performed from BMI to 

smoking phenotypes, and then the direction was reversed. 

To investigate the direct effects of BMI and smoking behaviors on lung cancer, we 

performed multivariable MR16 analysis, which is an extension of univariable MR that 

allows detecting causal effects of multiple risk factors jointly.17 Multivariable MR takes 

into account the relationship between BMI and smoking phenotypes and the fact that 

the SNPs used in the MR analyses are often associated with both BMI and smoking (i.e. 

SNPs in our analyses were associated with BMI and at least one smoking phenotype 

with P < 0.05, the “BMI&Smoking SNP”). The SNPs used to conduct multivariable MR 

were combinations of instrumental variables of each exposure. We restricted the 

analysis to SNPs that were clumped on r2 < 0.01 within 10Mb. MR analyses and 

clumping were conducted using the packages “TwoSampleMR”24 and 

“MendelianRandomization” (https://cran.r-

project.org/package=MendelianRandomization) in R. 



 

Sensitivity analysis 

We applied several MR methods to perform MR analyses. For univariable MR, we used 

inverse-variance weighted (IVW)25, 26, weighted median27, weighted mode28, and MR-

Egger13 approaches. For multivariable MR, we used regression-based IVW16 and 

Egger29. We calculated R2 to estimate the proportion of phenotypic variance explained 

and F-statistics to evaluate the strength of instruments30. The two-sample conditional F-

statistics (FTS)17, 31 were also estimated to evaluate the strength of SNP-exposure 

conditional on other exposures. The intercept test of MR-Egger was used to assess 

horizontal pleiotropic effects, IGX
2 statistic to check the violation of “NOME (NO 

Measurement Error) assumption”, which states the potential relative bias due to 

measurement error. The heterogeneity estimated by Cochran’s Q test was to appraise 

whether any single instrumental variable was driving the results and to check for 

consistency of the analyses with MR assumptions. The outliers in IVW and MR-Egger 

regression models was identified using RadialMR32. In addition, we calculated the 

power of our study using the mRnd power calculator for conventional MR.33 

 

Results 

Genetic instruments 

In total, 842 independent SNPs were included as instrumental variables for BMI and 

110, 7, 10, and 29 SNPs for smoking phenotypes of smoking status, age of smoking 

initiation, smoking cessation, and cigarettes per day, respectively (Supporting 

Information Table S1). The F-statistic values (Supporting Information Table S2) for 

individual SNPs ranged from 30 to 1360, with means of 64, 41, 39, 53, and 92 for BMI, 

smoking status, age of smoking initiation, smoking cessation, and cigarettes per day, 

respectively. However, the two-sample conditional F-statistics were all less than 10 for 

BMI and all smoking phenotypes, indicating the strength of genetic instruments was 

significantly lower after conditioning on other exposures, which may result in greatly 

reduced power for multivariavle MR to estimate causal effects. Despite a reduction in 

strength, the BMI instrument had an FTS over 8 reflecting moderate strength31. The 

variability explained by these genetic instruments were 7.33% for BMI, 0.71% for 

smoking status, 0.1% for age of smoking initiation, 0.17% for smoking cessation, and 

1.03% for cigarettes per day(Supporting Information Table S2). Power calculations for 

the univariable IVW MR analyses (Supporting Information Figure S1) indicated greater 

than 80% statistical power to detect an odds ratio bigger than 1.077 for per 1 unit 



increase of BMI, 1.26 for ever smoking, 1.77 for one age younger of smoking initiation, 

1.57 for current smoking, and 1.213 for per 10 cigarettes increase of cigarettes per day. 

There were 451 instrumental variables for BMI identified as “BMI&Smoking SNP” and 
390 identifed as “BMI-Only SNP” (Supporting Information Table S1). 

 

Univariable MR analyses 

From the univariable MR analyses (Table 1, Supporting Information Table S3 and 

Figure S2) we observed that increased BMI has a positive effect on occurrence of 

overall lung cancer when using all BMI associated SNPs (OR = 1.19, 95% confidence 

interval (CI) = 1.10-1.28, P = 7.24 x 10-6). This effect was also significant in histological 

subtypes of lung squamous cell carcinoma (OR = 1.36, 95% CI = 1.22-1.52, P = 3.59 x 

10-8) and small cell lung cancer (OR = 1.73, 95% CI = 1.47-2.04, P = 5.50 x 10-11) but 

not in lung adenocarcinoma (OR = 1.00, 95% CI = 0.91-1.10, P =0.935) (the first four 

rows of Table 1). The causal relationships estimated by BMI&Smoking SNP were 

consistent with the all SNPs set, with a slightly stronger effect (the 5-8 rows of Table 1). 

The BMI-Only SNP IVs were significant for small cell lung cancer (OR = 1.60, 95% CI = 

1.24-2.06, P = 2.70 x 10-4); the associations between BMI and other lung cancer 

subtypes were weak or nonexistent (the last four rows of Table 1). As smoking 

behaviors are confounders of BMI and lung cancer, the BMI-Only SNPs, which have 

excluded genetic variants that have significant association with smoking phenotypes, 

should be instruments that are more valid for BMI in univariable MR analysis. The 

univariable MR using BMI-Only SNP estimates the total effect of BMI on lung cancer.17 

Among the four smoking phenotypes (Supporting Information Table S4 and Figure 

S3), smoking status was positively associated with lung cancer and histological 

subtypes, which is consistent with known associations of smoking with lung cancer risk. 

Age of smoking initiation was inversely associated with lung squamous cell carcinoma 

and small cell lung cancer, which indicated that the earlier an individual started regular 

smoking, the greater his/her risk of lung squamous cell carcinoma and small cell lung 

cancer. There was an expected strong evidence of causal effects of cigarettes per day 

(per 10 cigarettes increase) with lung cancer and histological subtypes (Overall: OR = 

2.89, 95% CI = 2.33-3.58, P = 3.59 x 10-22; Adenocarcinoma: OR = 2.57, 95% CI = 

2.06-3.20, P = 6.20 x 10-17; Squamous cell: OR = 3.27, 95% CI = 2.60-4.10, P = 1.66 x 

10-24; Small cell: OR = 3.32, 95% CI = 2.52-4.37, P = 1.80 x 10-17). No significant causal 

effects of the genetic instrument modeling smoking cessation on lung cancer was 

observed. The sensitivity analyses using median weighted IVs was similar for all 

exposures (ORs were comparable to those estimated by the IVW method), except for 



smoking cessation. Results for MR Egger regression were also qualitatively similar to 

results estimated by the IVW method, except smoking cessation for which protective 

effects were found (Supporting Information Table S4 and Figure S3). These results 

suggest heterogeneity in instrumental effects for the smoking cessation variable but not 

for other variables.  

The MR analyses for evaluating the effect of BMI on smoking phenotypes yielded 

consistent results across three SNP sets (Supporting Information Table S5 and Figure 

S4). Increased BMI has positive effects on smoking status (OR = 1.24, 95% CI = 1.19-

1.28, P = 6.60 x 10-36), smoking cessation (OR = 1.14, 95% CI = 1.11-1.18, P = 7.20 x 

10-15), and cigarettes per day (OR = 1.39, 95% CI = 1.34-1.44, P = 7.54 x 10-64), while 

inverse effect on age of smoking initiation (OR = 0.91, 95% CI = 0.90-0.93, P = 3.68 x 

10-26). There was limited evidence (Supporting Information Table S5 and Figure S5) for 

effects of smoking behaviors on BMI. In addition, no significant horizontal pleiotropic 

effects were detected in MR Egger (for the intercept of MR Egger, all P value more than 

0.1). The low IGX
2 statistics (less than 80%) for all smoking phenotypes suggest bias 

due to measurement errors in MR Egger (the last four rows of Supporting Information 

Table S5). 

 

Multivariable MR analyses 

We estimated mutually the effects of smoking and BMI on lung cancer using 

multivariable MR and observed a directly inverse effect of BMI on lung adenocarcinoma 

(OR = 0.86, 95% CI = 0.77-0.96, P = 0.008) and a weak risk effect on small cell lung 

cancer (OR = 1.28, 95% CI = 1.06-1.55, P = 0.011) (Table 2 and Figure 2). After 

adjustment of BMI and other smoking phenotypes, smoking status still had a direct 

effect on overall lung cancer, lung adenocarcinoma and lung squamous cell carcinoma, 

but not on small cell lung cancer. There were positive direct effects of smoking 

cessation on overall lung cancer, squamous and small cell lung cancer, but no direct 

effect on lung adenocarcinoma. Cigarettes per day has direct effects on overall lung 

cancer, squamous and small cell lung cancer. No significant direct effect was detected 

for age of smoking initiation on lung cancer risk, while jointly modeling BMI and other 

smoking phenotypes. 

We also investigated the direct effects between BMI and smoking behaviors using 

multivariable MR (Supporting Information Table S6 and Table S7). Strong evidence for 

direct effects of BMI on smoking status and cigarettes per day were observed, as well 

as inverse effect on age of smoking initiation. There was also some evidence for direct 



effects of smoking behaviors on BMI, such as smoking status, smoking cessation and 

cigarettes per day. 

 

Sensitivity analysis 

Since genome-wide significant level for each exposure was determined according to the 

corresponding study of its genetic instruments19, 21, the thresholds used for BMI (1 x 10-

8) and smoking phenotypes (5 x 10-8) were different. To provide a sensitivity analysis, 

we selected IVs based on instruments satisfying either 5 x 10-8 or 1 x 10-8 and 

performed additional MR analyses. As shown in Supporting Information Table S8-S10, 

the causal effects of BMI and smoking behaviors on lung cancer were robust using 

different thresholds. 

In univariable MR analyses, the IGX
2 statistics of MR Egger for BMI and smoking 

phenotypes on lung cancer (Supporting Information Table S3 and Table S4) were less 

than 90%, except that of cigarettes per day on lung cancer and its subtypes (range from 

96.2% to 96.5%). The lower values of IGX
2 indicates violation of the “NOME” assumption 

in the causal estimates due to variations in the genetic associations. In addition, the 

Cochran’s Q test in the IVW model and MR Egger model (Supporting Information Table 

S11) suggested that there was strong evidence of heterogeneity in most of the 

instrumental variables. However, we did not observe significant directional pleiotropy 

using MR Egger, as the P value for the intercept tests were not significant (Supporting 

Information Table S3 and Table S4), which suggests balanced pleiotropy13 in the 

genetic instruments of univariable MR analyses. Balanced pleiotropy means that the 

pleiotropic effects of genetic instruments are balanced around the overall effect. The 

symmetry in the funnel plots also supported balanced pleiotropy (Supporting Information 

Figure S6-S7). However, outliers in the scatter plot suggested presence of 

heterogeneity. (Supporting Information Figure S8-S9). The outliers in the analysis of 

univariable MR for smoking cessation on lung cancer risk were rs518425 (intronic of 

CHRNA5) and rs56113850 (intronic of CYP2A6). The effects of these two large-effect 

SNPs appear to be opposite for BMI phenotypes, which explains the symmetry. After 

removing these two SNPs, no heterogeneity for smoking cessation remained and the 

causal relationship between smoking cessation and lung cancer was significant 

(Supporting Information Table S12 and Figure S10). In addition, the estimates of MR 

IVW, MR Weighted Median, MR Weighted Mode, and MR Egger show nearly consistent 

effects except for smoking cessation, which has strong evidence of heterogeneity 

(Supporting Information Figure S2-S5). 



The estimates were robust between multivariable MR IVW and multivariable MR 

Egger analyses, which suggested reliable evaluation of causal effects for BMI and 

smoking phenotypes on lung cancer risk (Table 2, Figure 2 and Supporting Information 

Figure S11). In addition, there was no significant evidence for a non-zero intercept of 

multivariable MR Egger regression, which also supports the reliability of the results for 

multivariable MR analyses. 

 

MR analyses for lung cancer among ever-/never-smokers 

To investigate the role of smoking phenotypes in the causal relationship between BMI 

and lung cancer, we further performed MR analyses for BMI and smoking phenotypes 

on ever- versus never-smokers for lung cancer. A positive effect of high BMI on 

occurrence of lung cancer among ever-smokers was observed using BMI-All SNPs or 

BMI&Smoking SNPs. An inverse effect of BMI on risk for lung cancer among never-

smokers was identified using BMI-Only SNPs (Supporting Information Table S13). After 

adjustment of smoking phenotypes using multivariable MR, the estimated casual effects 

of BMI on ever- or never-smokers lung cancer was further attenuated (Supporting 

Information Table S14). A weakly but not significant protective effect of BMI on lung 

cancer risk among never smokers was observed, but further much larger studies are 

needed to evaluate these associations. 

 

Discussion 

In this study, we observed that adjusted for smoking, BMI decreased risk of lung 

adenocarcinoma and increased risk of small cell lung cancer. BMI increased risk of lung 

squamous cell carcinoma but this effect was mediated by smoking. This study also 

highlights the effectiveness and necessity of multivariable MR in MR analyses, 

especially when large amounts of genetic variants are used as instrumental variables. 

Some previous observational studies5, 6, 34-37 have demonstrated that BMI was 

associated with decreasing risk of lung cancer, even after adjustment for smoking and 

other confounders5, but separating out residual confounding with smoking is difficult in 

observational analyses. The inverse association for lung adenocarcinoma and positive 

association for small cell carcinoma were also observed in a prospective cohort study6. 

There was no heterogeneity between males and females, but the association was 

stronger in ever-smokers than in never-smokers6, 34, 35. In our findings, there was 

evidence of a causal effect for overall lung cancer among ever-smokers if using the 

SNPs associated with both BMI and smoking behavior, while reverse effect for overall 

lung cancer among never-smokers if using the SNPs only associated with BMI, 



suggests there might be some interactions between smoking phenotypes and BMI in 

the process of impacting lung carcinogenesis. 

Carreras-Torres et al. found that increased BMI, as defined by instruments for obesity 

from Mendelian Randomization, was associated with increased risks for lung squamous 

cell and small cell lung cancers but not for lung adenocarcinomas.38 These were 

consistent with our univariable MR analyses using SNPs only associated with BMI, 

which indicated a total effect for BMI on lung cancer.17 Moreover, our multivariable MR 

analyses also identified direct effects for BMI with the risk of lung adenocarcinomas and 

small cell lung cancers. Other Mendelian randomization studies for BMI and lung cancer 

also identified evidence of an increased risk for overall lung cancer39, lung squamous 

cell carcinoma39, 40, and small cell lung cancer40, as well as evidence of a decreased 

risk for lung adenocarcinoma41. However, these analyses have not jointly considered 

modeling smoking with BMI, and we have seen that there are complex relationships 

among these factors, such that both need to be jointly modeled. 

Smoking behavior is a confounder when evaluating the association between BMI and 

lung cancer. Previous MR study confirmed the role of obesity in smoking behaviors.9 By 

using multivariable MR, we removed bias caused by smoking phenotypes compared to 

using univariable MR. In the bidirectional analysis, we found that there was a much 

stronger path from BMI to smoking phenotypes rather than from smoking phenotypes to 

BMI, which indicates the role of smoking as a potential mediator between BMI and lung 

cancer risk. On the other hand, the effects of smoking (such as smoking cessation and 

cigarettes per day) on BMI were also observed. These results implied complicated 

effects of BMI and smoking behaviors on lung cancer risk. Further analyses such as 

network Mendelian randomization, which uses genetic instruments to investigate 

mediation in causal pathways, may provide insights into the causal relationships.42 

The possible mechanism between obesity and lung cancer has been investigated in 

previous studies.43 Adipokines, which are secreted by adipose tissue, have properties 

affecting carcinogenesis, immunomodulation, appetite and energy homeostasis 

regulation, and variations in levels have been associated with tumor susceptibility and 

pathogenesis44, 45. In particular, leptin seems to mediate and maintain chronic 

inflammation after exposure to inhaled antigens (e.g., smoke particles) and induce lung 

carcinogenesis46. In addition, after adding recombinant human leptin, cell proliferation 

was observed in SQ-5 human clonal squamous lung cancer derived cell lines47. 

Adiponectin, unlike leptin, correlates inversely with body weight and is considered a 

protective hormone that exerts anti-inflammatory effects. Petridou et al.48 demonstrated 

the expression of adiponectin receptors exclusively in lung cancer tissues, which 



supports the hypothesis that adiponectin mediates lung cancer development. 

Nevertheless, the role of obesity in lung carcinogenesis remains unclear and 

inconclusive. As obesity may influence different histological subtypes of lung cancer, 

further research is warranted to elucidate the role of obesity in lung cancer. 

Although two sample Mendelian Randomization is a powerful approach to make 

causal inference between exposures and outcome using summary statistics, we should 

be prudent with our findings because of several limitations. First, sample overlap can 

result in inflation of test results,49 but we expect little effect since there are no known 

overlaps in samples. In addition, the sample size for histological subtypes of lung 

cancer were limited, which will could lead to false negative errors (lung 

adenocarcinoma: 11,273 cases and 55,483 controls; lung squamous cell carcinoma: 

7,426 cases and 55,627 controls; small cell lung cancer: 2,664 cases and 21,444 

controls; ever-smokers lung cancer: 23,223 cases and 16,964 controls; never-smokers 

lung cancer: 2,355 cases and 7,504 controls23). Moreover, according to previous 

studies50, 51, in the situation of both exposure and outcome are binary, Wald-type 

estimators could introduce bias for causal odds ratio. The causal estimations between 

binary smoking phenotypes (such as smoking status and smoking cessation) and lung 

cancer should be evaluated carefully. Nevertheless, we believe that the impact is small 

since the estimation will be close to the true value if the sample size is large,15 and we 

also had a large number of instrumental variables. Furthermore, the BMI changes with 

age and the MR analysis was designed to estimate the lifetime effects of exposure52, 

but the genetic instruments used here were associated with BMI at a specific age 

interval, so it may impact interpretability and validity of the results. 

Taken together, we demonstrate that high BMI has direct inverse association with 

risk of lung adenocarcinoma and positive causal direct effects with small cell lung 

cancer. The total effects of BMI on lung squamous cell carcinoma and small cell lung 

cancer may be mediated by smoking phenotypes. These findings reveal heterogeneity 

of causal effects of BMI on histological subtypes of lung cancer. We expect that further 

investigations are needed to demystify the complex causal relationships between BMI, 

smoking and lung cancer. Our findings also suggest that future studies could explore 

the relevance of change BMI for evaluation risk of lung cancer. 
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Figure Legend 

Figure 1. Illustration of the total effect and direct effect of BMI on lung cancer. The direct 

effect of BMI on lung cancer is the effect BMI has on lung cancer not via any other 

exposure variables, which is equal to βXZ. The total effect of BMI on lung cancer is the 

effect of BMI on lung cancer directly plus the effect of BMI on lung cancer via smoking, 

which is equal to βXZ + αXYβYZ. 

 

Figure 2. Odds ratios (ORs) and 95% confidence intervals (CIs) for the effect of BMI 

and smoking phenotypes on lung cancer and histological subtypes estimated using 

multivariable Mendelian randomization (MR) inverse-variance weighted (IVW) 

approach. Overall: overall lung cancer; Adeno: lung adenocarcinoma; Squam: lung 

squamous cell carcinoma; Small: small cell lung cancer. Colors indicate five exposures. 

BMI, body mass index; SmkInit, smoking status; AgeSmk, age of smoking initiation; 

SmkCes, smoking cessation; CigDay, cigarettes per day. For example, there were 776 

BMI-associated SNPs been used in multivariable MR jointly with other smoking-

associated SNPs to investigate their causal effects on overall lung cancer. No 

significant effect of BMI on overall lung cancer was observed (OR = 0.95, 95% CI = 

0.87-1.03, P = 0.224). 


