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Abstract

Post-translational modifications such as ubiquitination are important for orchestrating the

cellular transformations that occur as the Leishmania parasite differentiates between its

main morphological forms, the promastigote and amastigote. 2 E1 ubiquitin-activating (E1),

13 E2 ubiquitin-conjugating (E2), 79 E3 ubiquitin ligase (E3) and 20 deubiquitinating cyste-

ine peptidase (DUB) genes can be identified in the Leishmania mexicana genome but, cur-

rently, little is known about the role of E1, E2 and E3 enzymes in this parasite. Bar-seq

analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using

CRISPR-Cas9 revealed numerous loss-of-fitness phenotypes in promastigote to amasti-

gote differentiation and mammalian infection. The E2s UBC1/CDC34, UBC2 and UEV1 and

the HECT E3 ligase HECT2 are required for the successful transformation from promasti-

gote to amastigote and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for nor-

mal proliferation during mouse infection. Of all ubiquitination enzyme null mutants examined

in the screen, Δubc2 and Δuev1 exhibited the most extreme loss-of-fitness during differenti-

ation. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7,

UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal

structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/

UBE2V2 respectively, reveal a heterodimer with a highly conserved structure and interface.

Furthermore, recombinant L.mexicana UBA1a can load ubiquitin onto UBC2, allowing

UBC2-UEV1 to form K63-linked di-ubiquitin chains in vitro. Notably, UBC2 can cooperate in

vitro with human E3s RNF8 and BIRC2 to form non-K63-linked polyubiquitin chains, show-

ing that UBC2 can facilitate ubiquitination independent of UEV1, but association of UBC2

with UEV1 inhibits this ability. Our study demonstrates the dual essentiality of UBC2 and

UEV1 in the differentiation and intracellular survival of L.mexicana and shows that the inter-

action between these two proteins is crucial for regulation of their ubiquitination activity and

function.
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Author summary

The post-translational modification of proteins is key for allowing Leishmania parasites

to transition between the different life cycle stages that exist in its insect vector and mam-

malian host. In particular, components of the ubiquitin system are important for the

transformation of Leishmania from its insect (promastigote) to mammalian (amastigote)

stage and normal infection in mice. However, little is known about the role of the

enzymes that generate ubiquitin modifications in Leishmania. Here we characterise 28

enzymes of the ubiquitination pathway and show that many are required for life cycle

progression or mouse infection by this parasite. Two proteins, UBC2 and UEV1, were

selected for further study based on their importance in the promastigote to amastigote

transition. We demonstrate that UBC2 and UEV1 form a heterodimer capable of carrying

out ubiquitination and that the structural basis for this activity is conserved between

Leishmania, Saccharomyces cerevisiae and humans. We also show that the interaction of

UBC2 with UEV1 alters the nature of the ubiquitination activity performed by UBC2.

Overall, we demonstrate the important role that ubiquitination enzymes play in the life

cycle and infection process of Leishmania and explore the biochemistry underlying UBC2

and UEV1 function.

Introduction

Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania. This

disease, which has a tropical and sub-tropical distribution, is transmitted by the bite of a sand-

fly and causes around 70,000 deaths annually [1]. During their complex, digenetic life cycle,

Leishmania differentiate between two main morphological forms: the motile, extracellular pro-

mastigote form in the sand fly vector and the non-motile, intracellular amastigote form in the

mammalian host. Of the numerous promastigote forms that exist in the sandfly, procyclic pro-

mastigotes are the most actively dividing and metacyclic promastigotes are the transmissible

form [2]. In order for Leishmania cells to transition between the disparate environments of the

sandfly mouthparts and mammalian phagolysosomes, substantial changes in gene expression,

particularly at the post-transcriptional level, are required [3, 4]. The post-translational modifi-

cations phosphorylation and ubiquitination, for example, are thought to contribute signifi-

cantly to the differentiation process [5–8].

Ubiquitination regulates numerous cellular processes including proteasomal degradation,

endocytic trafficking and DNA repair [9]. Addition of the 8.5 kDa protein ubiquitin (Ub) to

proteins is carried out by the sequential actions of E1 ubiquitin-activating (E1), E2 ubiquitin-

conjugating (E2) and E3 ubiquitin ligase (E3) enzymes. Typically, an E1 activates ubiquitin in

an ATP-dependent manner by adenylating its C-terminus, allowing a thioester bond to form

between the E1 active site and ubiquitin. Subsequently, ubiquitin is transferred to the active

site of an E2 via trans-thioesterification and then onto the substrate with the help of an E3

ligase. Most commonly, ubiquitination occurs on a lysine residue, although modification of

cysteine, serine, threonine and the N-termini of proteins are also possible [10]. E3 ligases can

be grouped into two categories based on their mechanism of action. Cys-dependent E3s such

as the HECT (Homologous to the E6-AP Carboxyl Terminus) and RBR (Ring-Between-Ring)

E3s contain a cysteine residue that forms a thioester bond with ubiquitin prior to transfer to

the substrate. Conversely, Cys-independent E3s such as the RING (really interesting new

gene) and U-box E3s facilitate the direct transfer of ubiquitin between E2 and substrate by
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providing a scaffold that orients the ubiquitin-charged E2 relative to the substrate [11]. Ubi-

quitin-like modifiers (Ubls) such as SUMO and Nedd8 have a similar, but distinct, E1-E2-E3

conjugation pathway to that of ubiquitin [12]. The removal of ubiquitin modifications is car-

ried out by deubiquitinating enzymes (DUBs) [9].

A huge diversity of ubiquitin modifications exists, due in part to the ability of ubiquitin

itself to be ubiquitinated on any of the epsilon amino groups of its 7 lysine side chains or on

the alpha amino group of its N-terminus. This allows for the formation of linear or branched

polyubiquitin chains. Acetylation, phosphorylation and the modification of ubiquitin with

other Ubls (including SUMO and Nedd8) are also possible [13]. The huge array of potential

modifications permits a range of signalling outcomes. For example, K48-linked chains, the

most common ubiquitin chain type, target proteins for proteasomal degradation. In contrast,

K63-linked chains typically provide a non-degradative signal, for example in promoting the

recruitment of proteins to sites of DNA damage [9].

To date, two ubiquitin-activating enzymes have been described in Leishmania major [14],

and at least 20 cysteine peptidase DUBs exist in Leishmania mexicana, many of which are

essential for the promastigote to amastigote transition [8]. The importance of the ubiquitina-

tion system in these species is further exemplified by the finding that the Leishmania protea-

some is essential for parasite survival, since many forms of ubiquitin modification target

proteins for proteasomal degradation [15, 16]. The L.major Atg8 and Atg12 Ubls have been

shown to play a role in parasite autophagy [17, 18] and, although they have yet to be properly

described in Leishmania, SUMO- and Nedd8-conjugation systems exist in the closely-related

kinetoplastid Trypanosoma brucei [19–24]. The Ubls Ufm1 and Urm1 also exist in Leishmania

[25–27]. However, little is currently known about the role that ubiquitin E1, E2 and E3

enzymes play in Leishmania biology. In this study we characterise the E1, E2 and E3 enzymes

of L.mexicana by analysing the fitness of an E1, E2 and HECT/RBR E3 null mutant library

throughout the Leishmania life cycle. We show that, amongst others, the E2 ubiquitin-conju-

gating enzyme UBC2 and the ubiquitin E2 variant UEV1 are essential for the promastigote to

amastigote transition and subsequently characterise these proteins in biochemical and struc-

tural detail.

Results

Ubiquitination gene families in L.mexicana

Initial analysis of the L.mexicana genome using Interpro and PFAM domain searches identi-

fied 4 E1 ubiquitin-activating (UBA), 15 E2 ubiquitin-conjugating (UBC) and 81 E3 ligase

genes (S1 Table). The putative E3s included 14 HECT, 1 RBR, 57 RING, 4 RING-CH-type and

5 U-box E3s. Upon more detailed analysis, however, LmxM.08.0220 and LmxM.02.0390 were

found to be orthologues of T. bruceiUba2 and Ubc9, which have been identified as an E1 cata-

lytic subunit and E2 enzyme for the Ubl SUMO respectively and were named UBA2 and

UBC9 based on this orthology [22]. Similarly, LmxM.01.0710 (UBA3) was found to share

more similarity with HsUBA3 (68% query cover, 35.8% identity, E value: 8e-64), a Nedd8-acti-

vating enzyme catalytic subunit, than the ubiquitin E1 HsUBA1 (46% query cover, 31.7% iden-

tity, E value: 3e-25) and LmxM.24.1710 (UBC12) appears to be an orthologue of T. brucei

Ubc12, an E2 Nedd8-conjugating enzyme [24]. For two of the HECT domain-containing

genes,HECT13 andHECT14, only partial HECT domains of 69 and 60 amino acids were iden-

tified respectively, suggesting that they do not function as E3s. Following the removal of Ubl

E1 and E2s and possible pseudo-HECTs from the list of identified ubiquitination genes, 2 ubi-

quitin E1s, 13 ubiquitin E2s and 79 E3 ligase genes were proposed to be present in the L.mexi-

cana genome. Of these, UBC1, a ubiquitin E2, is related to T. brucei CDC34 (99% query cover,
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55.2% identity, E value: 2e-105), required for cytokinesis and infection progression of blood-

stream form parasites in mice [28]. UBC4, also a ubiquitin E2, is related to T. brucei PEX4

(100% query cover, 58.6% identity, E value: 5e-72), implicated in the ubiquitination of TbPEX5,

a cytosolic receptor involved in peroxisome biogenesis [29].

Of the putative ubiquitination genes identified, the predicted molecular weights of

encoded proteins range from between 115–127 kDa for E1s, 16–49 kDa for E2s, 147–733

kDa for HECT E3 ligases and 9–288 kDa for RING, RING-CH-type and U-box E3 ligases.

Only one RBR-type E3 ligase, with a predicted molecular weight of 58 kDa, was identified.

An alignment of UBA1a and UBA1b with human ubiquitin E1s (S1A Fig) revealed conser-

vation of the catalytic cysteine residue (C596 in UBA1a and C651 in UBA1b, equivalent to

C632 in HsUBA1). Similarly, an alignment of L.mexicana and human E2s showed conser-

vation of the conserved catalytic cysteine in all L.mexicana E2s except UEV1 (S1B Fig), sug-

gesting the latter is a non-catalytic ubiquitin E2 variant [30]. Furthermore, the HPN (His-

Pro-Asn) motif, which is conserved in human E2s and which contains an asparagine residue

that can be important for catalysis [31–33], was found to be partially or completely missing

in UBC3, UBC6, UBC11, UBC14 and UEV1. A HECT domain alignment for L.mexicana

HECT E3 ligases and 4 human HECT E3 ligases showed that HECTs 1–12 contained the

conserved catalytic cysteine residue. Consistent with the identification of a partial HECT

domain in HECT13 and HECT14, a putative catalytic cysteine was absent in these sequences

(S1C Fig).

A bar-seq screen reveals the importance of ubiquitination genes in the L.
mexicana life cycle

In order to investigate the role of ubiquitination, SUMOylation and Neddylation genes in the

life cycle of L.mexicana, the 4 E1, 15 E2 and HECT and RBR subgroups of E3 genes (12 and 1

gene respectively) from our bioinformatics analysis were targeted for deletion in procyclic pro-

mastigotes using CRISPR-Cas9 [34]. The repair cassettes used for integration into the targeted

gene locus contained unique, 12 nucleotide barcodes to allow for the identification of individ-

ual null mutant lines in a pooled library and drug resistance markers. Details of the primers

and plasmids used are provided in S2 Table. Null mutant lines were validated using PCRs to

detect removal of the gene of interest and integration of the blasticidin repair cassette (S2A Fig

and S2B Fig) and, where a null mutant was not immediately generated, three rounds of trans-

fection were performed to reduce the likelihood of not obtaining a null mutant line due to

technical failure. A similar strategy was used for the generation of a Δhect12mutant but will be

described elsewhere. In this way, null mutants were generated for all genes except UBA1a,

UBC3, UBC7, UBC12 and UBC13, suggesting that 1 out of 2 ubiquitin E1s and 4 out of 13 ubi-

quitin E2s may be essential in promastigotes. Although drug resistant clones were obtained for

UBA1a, UBC3, UBC7 and UBC12, they still contained the gene of interest (S2C Fig). This

lends further support to the proposition that UBA1a, UBC3, UBC7 and UBC12 are essential in

promastigotes, since it suggests that gene duplication events have occurred to allow the para-

site to retain the gene. Notably, a null mutant was successfully generated for the Nedd8 E1

UBA3 despite UBC12 (Nedd8 E2) appearing to be essential. This suggests that the essential

role of UBC12 may be independent of UBA3. None of the SUMOylation, HECT E3 or RBR E3

genes were essential in promastigotes, as evidenced by the successful generation of null

mutants for these genes.

Next, barcode analysis by sequencing (bar-seq), which involves the parallel phenotyping of

a null mutant pool using next-generation sequencing, was used to analyse the null mutants

[35]. Briefly, 58 promastigote-stage null mutants including the 3 E1, 10 E2 (excluding Δubc5)
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and 13 HECT/RBR E3 null mutants alongside 16 DUB, 13 other peptidase and 4 protein kinase

null mutants were pooled in equal proportions and in 6 replicate samples. Pooled promastigote

(PRO) cultures were grown for 7 days and then induced to form axenic amastigotes (AXA) or

used to purify metacyclic stage promastigotes (META). Purified metacyclic cells were used to

infect macrophages (inMAC) in culture or mice using footpad injection (FP). At the time

points indicated in Fig 1A, DNA was extracted to allow for amplification of the barcoded

regions by PCR and quantitative analysis by next generation sequencing; the raw data are

Fig 1. Life cycle phenotyping of ubiquitination gene null mutants. Fifty-eight null mutant lines were pooled (n = 6) as procyclic promastigotes and grown to
stationary phase. Cells were then induced to differentiate into axenic amastigotes in vitro or metacyclic promastigotes purified and used to infect macrophages
or mice.A Experimental workflow showing the time points at which DNAwas extracted for barcode amplification and next generation sequencing. The heat
maps for promastigote to B axenic amastigote, Cmacrophage infection orDmouse infection experiments show the average proportional representation of
each null mutant at each experimental time point, calculated by dividing the number of reads for null mutant-specific barcodes by the total number of reads for
expected barcodes. Samples included represent promastigote time-point zero (PRO 0 h), early-log phase (PRO 24 h), mid-log phase (PRO 48 h), late-log phase
(PRO 72 h), stationary phase (PRO 168 h), early axenic amastigote differentiation (AXA 24 h), post-axenic amastigote differentiation (AXA 120 h), purified
metacyclic promastigotes (META), early macrophage infection (inMAC 12 h), late macrophage infection (inMAC 72 h), 3 week footpad mouse infection (FP 3)
and 6 week footpad mouse infection (FP 6).

https://doi.org/10.1371/journal.ppat.1008784.g001
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available in S4 Table in Damianou et al., 2020 [8]. The heat maps in Fig 1B–1D show the propor-

tional representation of each null mutant line at each experimental time point, with a gradient of

white to red representing proportions ranging between zero and 0.04 (or above) respectively. Pro-

portional representation was calculated by dividing the number of reads for an individual barcode

by the total number of reads for all expected barcodes and averaging over the 6 replicates. Loss-of-

fitness phenotypes were inferred from decreases in proportional representation from one time

point to the next. For Δuba2, only 2.6 x 106, instead of 4 x 106 cells, were added to the pools due to
the poor prior growth of this cell line. Furthermore, the associated barcode was not detected in all

of the PRO 0 h time points, perhaps due to the lower representation of Δuba2 in the pool, prompt-

ing the decision to exclude this cell line from the analysis.

Between the PRO 0 h and PRO 168 h samples, there was no complete loss of any null

mutant line from the populations, although several significant loss-of-fitness phenotypes

(decreases in proportional representation within the population) were observed between adja-

cent timepoints (<0.05, paired t-test, Holm-Šı́dák method, S4 Table, Damianou et al., 2020

[8]). For example, reduced fitness was seen at two or more promastigote time points for

Δubc9, Δhect2 and Δhect12. No loss-of-fitness phenotypes were observed between the PRO 168

h and META samples or between the PRO 168 h and AXA 24 h samples.

Within both the AXA 24 h-AXA 120 h and META-inMAC 12 h intervals, loss-of-fitness

was observed for 10 null mutants: Δuba1b, Δubc2, Δubc6, Δubc8, Δubc9, Δuev1, Δhect2, Δhect4,
Δhect7 and Δrbr1, demonstrating good correlation between these two experiments. Of these,

strong defects (>3-fold decrease in fitness between both intervals) were observed for Δubc1/
cdc34, Δubc2, Δuev1 and Δhect2. In addition, Δubc4/pex4, Δubc11, Δubc14, Δhect5, Δhect6,
Δhect11 and Δhect12 showed loss-of-fitness between the AXA 24 h and AXA 120 h samples

and Δhect10 showed a reduction in fitness between the META and inMAC 12 h samples. Fur-

ther loss-of-fitness for Δubc8 and Δrbr1 was observed between inMAC 12 h and inMAC 72 h.

All null mutant lines that showed loss-of-fitness defects in the axenic amastigote and macro-

phage samples also had compromised fitness in the mouse, although many of the phenotypes

observed were more severe. Specifically, Δuba1b, Δubc1/cdc34, Δubc2, Δubc9, Δubc14, Δuev1,
Δhect2, Δhect7 and Δhect11 had at least 20-fold reductions in fitness between the META and

FP 3 samples. Additionally, Δuba3 and Δhect1 showed small decreases in fitness during this

interval. Notably, Δubc1/cdc34, Δubc2, Δuev1 and Δhect2 showed the most dramatic and con-

sistent loss-of-fitness phenotypes, including>5-fold,>25-fold and>200-fold decreases in fit-

ness across the axenic amastigote, macrophage infection and mouse infection experiments

respectively (calculated between the PRO 168 h/META sample and the experimental end-

points). A pBLAST search revealed that HECT2 is related to human UBE3C (28% query cover,

35.3% identity, 1e-64 E value), a HECT E3 ligase that ubiquitinates proteasome substrates to

enhance proteasomal processivity [36]. Overall, Δubc2 and Δuev1 had the most severe pheno-

types with reductions in fitness of 50-fold in the axenic amastigote, 300-fold in the macrophage

and a complete loss-of-fitness (to zero) in the mouse. The strong defects observed for Δubc1/
cdc34, Δubc2, Δuev1 and Δhect2 in pooled axenic amastigote differentiation were also observed

individually using a cell viability assay (S2D Fig, S3 Table).

UBC2 and UEV1 are orthologues of human UBE2N and UBE2V1/UBE2V2

Since Δubc2 and Δuev1 showed the most severe loss-of-fitness phenotypes in the bar-seq

screen, we decided to investigate their function. The most probable orthologues of L.mexicana

UBC2 (LmxM.04.0680) and UEV1 (LmxM.13.1580) were identified in the Trypanosoma bru-

cei, Saccharomyces cerevisiae and human genomes using protein BLAST searches and the two

groups of sequences aligned. Fig 2A shows that there is a high level of conservation between
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Fig 2. Alignments of LmUBC2 and LmUEV1 with selected orthologues. Sequence alignment and structural annotation were performed
using T-Coffee and ESPript 3.0 respectively for A LmUBC2 and B LmUEV1. Red boxes indicate amino acid identity, red characters show
similarity within the highlighted group and blue frames highlight similarity across groups. Positions of the UBC2 HPNmotif and catalytic
cysteine are shown by a black line and triangle respectively. Secondary structures derived from the crystallised L.mexicanaUBC2-UEV1
heterodimer (Fig 4) are represented above the sequence alignment with helices represented by spirals and beta sheets by arrows. Asterisks
denote important interface residues in the L.mexicana complex. Lm, Leishmania mexicana; Tb, Trypanosoma brucei; Sc, Saccharomyces
cerevisiae; Hs,Homo sapiens.

https://doi.org/10.1371/journal.ppat.1008784.g002
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UBC2 and its predicted orthologues. Specifically, UBC2 shares 77%, 66% and 70% amino acid

identity with the equivalent T. brucei, S. cerevisiae and human proteins respectively. Such a

high level of shared identity suggests that UBC2 functions are likely to be well-conserved. In

contrast, UEV1 is less well conserved with its orthologues, sharing 70%, 54% and 47% amino

acid identity with the equivalent T. brucei, S. cerevisiae and human proteins respectively (Fig

2B). Consequently, there may be more functional divergence within this gene family. In

humans, UBE2N and UBE2V1/V2 form a heterodimeric complex specific for K63-linked ubi-

quitination and have been linked to inflammatory signalling [37] and DNA damage response

pathways [38].

UBC2 and UEV1 encode proteins of 148 and 138 amino acid residues respectively, corre-

sponding to predicted molecular weights of 17 kDa and 16 kDa. Based on the alignment in Fig

2A, the putative catalytic cysteine of UBC2 is C85, equivalent to C87 in S. cerevisiaeUBC13 and

C87 in human UBE2N [39]. UBC2 also contains an HPNmotif 10 amino acids N-terminal of

C85 that may be involved in catalysis [31–33]. All of the proteins in the UEV1 alignment (Fig

2B) lack catalytic cysteine residues and HPNmotifs, consistent with UEV1 being part of the

noncatalytic UEV family of E2s [30]. For the UEV1 alignment, isoform 3 (canonical sequence

in UniProtKB) of UBE2V1 was used as this is the most similar isoform to UEV1. However,

UBE2V1 is predicted to have numerous isoforms produced by alternative splicing. For example,

a 30 residue N-terminal extension of isoform 2 (UEV-1A) relative to UBE2V2 has previously

been shown to account for their differing functions [40]. Since UEV1 lacks such an N-terminal

extension, it could be predicted to be more similar in function to UBE2V2 than UBE2V1.

L.mexicanaUBC2 and UEV1 form a heterodimer

To permit biochemical characterisation of L.mexicanaUBC2 and UEV1, His-Im9-tagged [41]

UBC2 and UEV1 were expressed in Escherichia coli and purified following tag removal. In par-

allel, UBA1a, a putative ubiquitin E1 and the product of one of our proposed promastigote-

essential genes, was similarly expressed and purified. Two putative ubiquitin E1s exist in L.

mexicana, and, like T. bruceiUBA1a and UBA1b, are more closely related to human UBA1

than UBA6 [14]. Specifically, L.mexicanaUBA1a and UBA1b share 36% and 33% amino acid

identity with HsUBA1 respectively and 28% identity with each other. Based on its higher

shared identity with HsUBA1 and potential essentiality, it was reasoned that UBA1a would be

more likely to show a broad E2 specificity (comparable to that of HsUBA1) and therefore be

capable of loading ubiquitin onto UBC2 [42, 43]. All 3 proteins showed a good level of purity

as assessed by InstantBlue staining (Fig 3A). For UBC2 and UEV1 no additional proteins were

detected, whereas the UBA1a sample contained 2 extra proteins at around 74 and 100 kDa.

These appeared below UBA1a, suggesting the presence of co-purified protein or UBA1a degra-

dation products.

The orthologues of UBC2 and UEV1 in T. brucei, S. cerevisiae and humans have previously

been shown to form a heterodimeric complex [44–47]. To test whether this was also true in L.

mexicana, a size-exclusion chromatography multi-angle laser light scattering (SEC-MALLS)

approach was used. The chromatograms in Fig 3B show peaks in the refractive index repre-

senting the purified UBC2 and UEV1 samples at 25 and 26 min respectively. Measurement of

both the refractive index and multi-angle laser light scattering allowed an estimation of the

molecular weights of the recombinant proteins at 18.7 kDa and 18.2 kDa for UBC2 and UEV1

respectively (dashed lines above peaks in refractive index). These values are close to the pre-

dicted molecular weights of 17 kDa for UBC2 and 16 kDa for UEV1. That both of these pro-

teins eluted as a single peak is indicative of them existing in monomeric form while also

reflecting the high quality of the protein preparations. When UBC2 and UEV1 were mixed in
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an equimolar ratio, an elution peak was seen at 23 min, indicating the presence of a higher

molecular weight species (estimated at 34.2 kDa). Given that no peaks were seen representing

UBC2 and UEV1 monomers, it can be assumed that all protein material in this sample existed

in heterodimeric UBC2-UEV1 complexes. Therefore, L.mexicanaUBC2 and UEV1 readily

associate to form a heterodimeric UBC2-UEV1 complex.

Structure of the UBC2-UEV1 heterodimer

To investigate the conservation and interactions of UBC2 and UEV1 at the structural level, we

sought crystals of their complex. Crystals, which appeared after two days from polyethylene

glycol (PEG)-containing solutions, were sent for data collection at the Diamond Light Source,

with the best crystal yielding a dataset extending to 1.7 Å spacing. The structure was solved by

molecular replacement using the coordinates of the human UBE2N-UBE2V2 complex as the

search model (PDB ID: 1J7D) [48]. There are two UBC2-UEV1 heterodimers (PDB ID:

6ZM3) in the crystallographic asymmetric unit. These were found to have a similar structure

and subunit organisation following superposition of chains equivalent to UBC2, UEV1 or the

UBC2-UEV1 heterodimer by secondary structure matching (SSM) procedures, with RMSDs

of 0.32 Å, 0.74 Å and 1.13 Å for 146, 132 and 276 equivalent atoms respectively. Since residues

Gly20 to Asn24 are poorly defined in the electron density maps for one of the UEV1 chains,

the alternative UBC2-UEV1 heterodimer was the focus of our analysis.

Like its S. cerevisiae and human orthologues, UBC2 has a canonical E2 structure comprising

a 4-stranded antiparallel β-sheet flanked by four α-helices (Fig 4A). UEV1 exhibits a similar

topology, but its polypeptide chain is shorter and the prominent pair of α-helices at the C-ter-
minus of UBC2 (α3 and α4) are missing from UEV1. Relative to human UBE2V1 and

Fig 3. UBC2 and UEV1 form a stable heterodimer in vitro. A SDS-PAGE gel showing recombinant UBA1a, UBC2 and UEV1 stained with InstantBlue
stain. Proteins were expressed in E. coli and purified by nickel affinity and size-exclusion chromatography. 1 μg of each protein was loaded onto the gel. B
Elution profiles of UBC2, UEV1 and a 1:1 molar mix of UBC2-UEV1 presented as changes in refractive index over time. Curved lines show changes in
refractive index for UBC2-UEV1 (black), UBC2 (red) and UEV1 (blue). The expected mass (as estimated from light scattering data) in kDa is indicated by a
dashed line above the peak corresponding to each protein sample.

https://doi.org/10.1371/journal.ppat.1008784.g003
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UBE2V2, UEV1 has a shorter segment leading into the first α-helix (Fig 2B), a feature it shares
with S. cerevisiaeMms2. Superposing UBC2 with human UBE2N, UEV1 with human

UBE2V2 or the UBC2-UEV1 and UBE2N-UBE2V2 heterodimers (S3A Fig) gives RMSDs of

0.82, 1.15 and 1.13 Å for 147, 135 and 271 equivalent atoms respectively, demonstrating a high

level of structural conservation between these orthologues. The conserved active site residues,

His75, Pro76, Asn77 and Cys85, reside on an extended segment of the polypeptide that con-

nects strand β4 and helix α2 of UBC2, with the thiol group of Cys85 projecting out of the cata-

lytic cleft (Fig 4B). The high level of sequence conservation around these residues is reflected

in the close proximity of their superposed catalytic clefts.

Fig 4. Structure of the UBC2-UEV1 heterodimer. A Ribbon diagram showing the crystal structure of UBC2 (green) and UEV1 (blue) in complex. The location of
the N- and C-termini are highlighted along with the numbering of alpha helices (α) and beta strands (β). B Zoom-in of the conserved catalytic residues in UBC2.
The HPNmotif and proposed catalytic cysteine are shown as cylinders coloured by atom (red, oxygen; blue, nitrogen; yellow, sulfur). C-D Zoom-in of interface
between UBC2 and UEV1 with UBC2 or UEV1 as a surface fill model respectively. Amino acid residues are shown as cylinders coloured by atom (red, oxygen; blue,
nitrogen). Hydrogen bonds are denoted by dashed lines.

https://doi.org/10.1371/journal.ppat.1008784.g004
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The interface between UBC2 and UEV1 (Fig 4C and 4D, S3B Fig) involves the β2, β3 and
β4 strands and the loops following β1, β3 and β4 of UBC2 and the N-terminus, α1 helix and
loop following β1 of UEV1. The buried surface area of this interface is 1,466 Å2. The core of

the interface contains a number of hydrophobic residues (Tyr32, Phe55, Leu70 and Val81 of

UBC2 and Pro5, Phe8, Leu11, Leu14 and Phe39 of UEV1) that contribute strongly to the inter-

action. Hydrophobic residues are highly conserved at these positions (Fig 2), highlighting the

importance of the associated hydrophobic interactions for complex formation. These hydro-

phobic interactions are complemented by a number of polar intermolecular interactions,

mostly notably between the side chains of Glu53 of UBC2 and Asn7 of UEV1 and Arg68 of

UBC2 and the main chain carbonyl oxygen of Ile37 of UEV1. Both of these interactions are

conserved in the human complex although Met is present in place of Ile. Notably, a salt bridge

is formed between Arg83 of UBC2 and Glu18 of UEV1. Although these residues are conserved

in S. cerevisiae, human UBE2V1/2 has Gln in place of Glu. Asp38 and Glu39 residues in

human UBE2V2 provide hydrogen bonds for the interaction interface but are replaced by Thr

and Ala (at positions 34 and 35 respectively) in UEV1.

Ubiquitin transfer occurs between UBA1a and UBC2 in vitro

To assess whether UBA1a, UBC2 and UEV1 are an active E1, active E2 and inactive E2 variant

respectively, recombinant proteins were tested in thioester intermediate assays. Fig 5A shows

the results of incubating UBA1a, UBC2 and UEV1 in different combinations in the presence

of ubiquitin and ATP. In these assays, human ubiquitin, which has 2 amino acid substitutions

relative to L.mexicana ubiquitin (S4A Fig), was used. When UBA1a was present under non-

reducing conditions, the appearance of a UBA1a~Ub thioester intermediate (at around 125

kDa) was observed over time. Under reducing conditions, this intermediate was lost, confirm-

ing the presence of thioester-linked UBA1a~Ub. When UBA1a and UBC2 were combined

under non-reducing conditions, the appearance of an additional protein band at 26 kDa was

observed, suggesting the transfer of ubiquitin between UBA1a and UBC2 to form thioester-

linked UBC2~Ub. This protein complex was lost under reducing conditions, confirming its

identity as a UBC2~Ub thioester intermediate. In contrast, when UBA1a and UEV1 were com-

bined, no lower mobility species of UEV1 were observed, suggesting that UEV1 is unable

to receive ubiquitin from UBA1a. When UBA1a, UBC2 and UEV1 were combined, no

UBC2~Ub thioester intermediate was observed. It was reasoned that UEV1 could prevent

UBC2 from binding ubiquitin or, alternatively, that the presence of UEV1 facilitates the release

of ubiquitin from UBC2 or its transfer onto substrate(s) in solution. Conversely, the alternative

L.mexicana ubiquitin E1, UBA1b, was unable to transfer ubiquitin to UBC2, despite being

capable of forming thioester-linked UBA1b~Ub (S4B Fig). UBA1b was also unable to transfer

ubiquitin onto UEV1 (S4B Fig), showing that ubiquitin cannot be loaded onto UEV1 by either

of the two L.mexicana ubiquitin E1 enzymes. These results support the identities of UBA1a,

UBC2 and UEV1 as an active E1, active E2 and inactive E2 variant respectively.

UBC2 and UEV1 conjugate ubiquitin in vitro

Previous in vitro studies have demonstrated the ability of S. cerevisiaeUBC13 and MMS2 and

their human counterparts to promote the formation of ubiquitin chains in the absence of E3

enzyme [31, 40, 45, 46, 49]. To test whether the L.mexicana enzymes share this ability, differ-

ent combinations of UBC2 and UEV1 were incubated with UBA1a, ubiquitin and ATP and di-

ubiquitin formation monitored by immunoblotting for mono- and poly-ubiquitinated conju-

gates under reducing conditions. This approach was chosen in order to distinguish between

UBC2, UEV1 and di-ubiquitin, which all have similar molecular weights. Di-ubiquitin
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Fig 5. UBA1a and UBC2 cooperate in ubiquitin transfer in vitro. A Thioester assay demonstrating the ability of UBA1a and UBC2 to form thioester bonds
with ubiquitin. UBA1a, ubiquitin and ATP were incubated with UBC2 and UEV1 as indicated in ubiquitination assay buffer for up to 10 min at room
temperature. Samples were treated with either reducing or non-reducing sample buffer and visualised by SDS-PAGE with InstantBlue stain. BDi-ubiquitin
formation assay. UBA1a, ubiquitin and ATP were incubated with UBC2 and UEV1 as indicated in ubiquitination assay buffer for up to 90 min at 37˚C. Reactions
were then treated with reducing sample buffer and visualised by immunoblotting with either ubiquitin conjugate or K63-linked ubiquitin antibodies. CDi-
ubiquitin formation assay performed as for B but with wild-type ubiquitin substituted for K63R ubiquitin where shown.DUBC2 and UEV1 were pre-incubated
with UBE2N inhibitor NSC697923 as indicated for 15 min prior to setting up a di-ubiquitin formation assay as in B. For C andD, samples were treated with
reducing sample buffer prior to SDS-PAGE and immunoblotting with ubiquitin conjugate antibody. Data shown inA-D are representative. No 2/V1, no UBC2
or UEV1. E Schematic summarising the findings ofA-D. UBA1a activates ubiquitin in an ATP-dependent manner, allowing ubiquitin to bind to the active site of
UBA1a via a thioester linkage. Ubiquitin is then transferred to UBC2 (green) which, when present in complex with UEV1 (yellow), can generate free K63-linked
ubiquitin chains.

https://doi.org/10.1371/journal.ppat.1008784.g005
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formation was observed after 30 min in the presence of UBC2 and UEV1 and increased by 90

min (Fig 5B). In contrast, no di-ubiquitin formation was observed in the absence of either

UBC2 or UEV1, suggesting that both proteins are required for di-ubiquitin formation. An

additional protein that may represent tri-ubiquitin was observed above di-ubiquitin at the 90

minute time point, suggesting that higher order chains may be being assembled. Additionally,

since the reducing conditions would disrupt any UBC2-Ub thioester intermediates, the protein

at around 26 kDa in samples containing UBC2 may represent auto-ubiquitinated UBC2. Com-

parably, in vitro auto-ubiquitination of human UBE2N on K92, equivalent to K90 in UBC2,

has been observed [46]. Auto-ubiquitinated UBA1a also appears to be present at the top of the

blot.

Since S. cerevisiaeUBC13 and MMS2 and their human orthologues have been shown to

specifically form K63-linked ubiquitin chains [45, 46], the reactions described above were

additionally probed with a K63 linkage-specific antibody. The right-hand panel in Fig 5B

shows that K63-linked ubiquitin conjugates are formed by UBC2-UEV1. Furthermore, UBC2

and UEV1 were unable to conjugate K63R mutant ubiquitin, demonstrating the essential

requirement for K63 of ubiquitin in the formation of free ubiquitin chains by UBC2-UEV1

(Fig 5C). Pre-incubation of UBC2 with the covalent UBE2N inhibitor NSC697923 reduced di-

ubiquitin formation in a concentration-dependent manner, showing that K63-linked ubiquitin

chain formation is dependent upon UBC2 catalytic activity (Fig 5D). That NSC697923 was

likely to inhibit UBC2 was rationalised based on the fact that all 4 of the residues that were

mutated to make UBE2N resistant to NSC697923 are also found in UBC2 [50]. Complete inhi-

bition of di-ubiquitin formation was not achieved, perhaps due to an insufficiently long incu-

bation time for UBC2 with NSC697923. These experiments demonstrate that UBC2 and

UEV1 can form free K63-linked ubiquitin chains in vitro (Fig 5E).

The crystal structure of S. cerevisiaeMms2-Ubc13 covalently linked to a donor ubiquitin

molecule revealed the structural basis of K63 linkage specificity in ubiquitin chain formation.

In this structure, Mms2 directs the K63 residue of a putative acceptor ubiquitin into the Ubc13

active site, where it can attack Gly76 of the donor ubiquitin bound to the Ubc13 active site cys-

teine to form an isopeptide bond [51]. An overlay of this structure (PDB ID: 2GMI) with

chains A and B of our UBC2-UEV1 structure allowed the positions of the donor and acceptor

ubiquitins to be revealed in the context of the L.mexicana complex (S3C Fig). This produces a

plausible model of the quaternary complex without significant steric clashes and suggests that

the same strategy is used to confer Lys63-linkage specificity in L.mexicana and S. cerevisiae. In

support of this, two Mms2 residues shown to be required for acceptor ubiquitin binding in the

S. cerevisiaeMms2-Ubc13-Ub structure, Ser27 and Thr44, are conserved in L.mexicanaUEV1

(Ser28 and Thr45).

UBC2 can cooperate with human E3s to allow polyubiquitination in vitro

As the cognate E3s for UBC2 and UEV1 have not yet been identified, human E3s known to

catalyse ubiquitination in coordination with UBE2N were tested for their ability to similarly

cooperate with UBC2 and/or UEV1. The reasons for doing this were threefold. Firstly, to

investigate whether UBC2 could carry out the typical E2 role of facilitating ubiquitin transfer

to substrates via E3 enzymes. Secondly, in the hope of making inferences about L.mexicana

E3s that could be part of the UBC2 ubiquitination cascade and, lastly, to explore the conserva-

tion of E2-E3 interactions between L.mexicana and humans. For this purpose, two RING E3

ligases, BIRC2 and RNF8, were selected for testing on the basis that they are known to interact

with human UBE2N [52–54]. In humans, BIRC2 has wide-ranging roles including in regulat-

ing apoptosis and cell proliferation [52, 55] and RNF8 has well-characterised roles in DNA
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damage signalling [56–58]. HUWE1, a HECT E3 ligase that is not known or predicted to inter-

act with UBE2N, was also chosen for comparison [59]. All recombinant E3s used were GST-

tagged and, with the exception of HUWE1 which was N-terminally truncated, full-length.

Fig 6 shows the ubiquitination profiles observed for BIRC2, RNF8 or HUWE1 incubated

with different combinations of UBC2 and UEV1 in reactions containing UBA1a, ubiquitin

and ATP. When BIRC2 or RNF8 were incubated with UBC2 in the absence of UEV1, a promi-

nent pattern of polyubiquitination was seen (upper panel). Based on the K63-linked ubiquitin

and GST blots (middle and lower panels respectively), the polyubiquitination observed was

not K63-linked and occurred both as a result of E3 auto-ubiquitination and of free chain for-

mation and/or ubiquitination of other proteins (such as UBA1a, UBC2 or UEV1) in solution.

When BIRC2 or RNF8 were incubated with UEV1 in the absence of UBC2, polyubiquitination

did not occur. However, a single protein was present in the ubiquitin conjugate blot at around

Fig 6. Cooperation of UBC2 with human E3s in in vitro polyubiquitination. AUBA1a, ubiquitin and ATP were incubated with UBC2, UEV1 and human E3s
(BIRC2, RNF8 and HUWE1) as indicated in ubiquitination assay buffer for 1 h at 30˚C. Reactions were visualised by immunoblotting with either ubiquitin
conjugate, K63-linked ubiquitin or GST antibodies as shown. 2, UBC2; V1, UEV1; -, no UBC2 or UEV1; no E3, no BIRC2, RNF8 or HUWE1. B Schematic
summarising the findings of A. UBA1a activates ubiquitin in an ATP-dependent manner, allowing ubiquitin to bind to the active site of UBA1a via a thioester
linkage. Ubiquitin is then transferred to UBC2 which can, by interacting with the human E3s BIRC2 and RNF8, form non-K63-linked polyubiquitin chains. UEV1
inhibits this association, presumably via its interaction with UBC2.

https://doi.org/10.1371/journal.ppat.1008784.g006
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130 kDa, likely representing ubiquitinated UBA1a (as observed in Fig 5B–5D). Similarly, poly-

ubiquitination was not observed when BIRC2 or RNF8 were incubated with both UBC2 and

UEV1. In these samples, however, di-ubiquitin formation was notably increased, suggesting

that UEV1 is able to regulate UBC2 such that it switches its activity between facilitating polyu-

biquitination by E3s and forming K63-linked ubiquitin chains in complex with UEV1 (Fig

6B). In contrast, polyubiquitination was observed when either UBC2, UEV1 or UBC2 and

UEV1 were combined with HUWE1, suggesting that physical interaction between E2s and

HUWE1 may be required for HUWE1 activity. Alternatively, the truncated nature of the

recombinant HUWE1 protein, which lacks its UBA andWWE protein-protein interaction

domains, may have encouraged non-specific interaction with and ubiquitin transfer from

UBA1a. No ubiquitin conjugates were observed in the absence of both UBC2 and UEV1.

High functional conservation of human and Leishmania enzymes

In order to further interrogate the functional conservation between Leishmania and human

enzymes, the ability of UBC2 to extend ubiquitin chains on the human U-box E3 ligase CHIP

was investigated. In vitromonoubiquitination of CHIP by UBE2W can be followed by the

extension of ubiquitin chains by UBE2N-UBE2V1 and provides an example of a pair of coop-

erating E2s with distinct chain initiation and elongation functions [60–62]. To simplify the

experimental setup and interpretation of results, it was decided to select a single E1 enzyme to

facilitate ubiquitin transfer to both human UBE2W and L.mexicanaUBC2. In a thioester

assay, L.mexicanaUBA1a was shown to be equally competent at transferring ubiquitin to

UBE2W as human UBA1 (Fig 7A) and was therefore selected for use in subsequent experi-

ments. In addition to the reducible UBE2W-Ub thioester bands observed, an additional, non-

reducible band was observed following incubation of E1 and E2 enzymes. This is likely to be

N-terminally ubiquitinated UBE2W [63, 64].

When L.mexicanaUBC2 and UEV1 were incubated with human UBE2W and CHIP in the

presence of E1, ubiquitin and ATP, polyubiquitinated CHIP was observed (Fig 7B). When

UBE2W was absent from this reaction, no CHIP ubiquitination or free chain formation was

seen. Alternatively, when UBC2 and UEV1 were absent, only monoubiquitinated CHIP was

observed, suggesting that UBE2W is priming CHIP with a single ubiquitin modification that

can then be extended by UBC2 and UEV1 (Fig 7C). In this respect, UBC2 and UEV1 behave

in a similar manner to human UBE2N-UBE2V1 [60]. The absence of free chain formation in

the presence of UBC2, UEV1 and CHIP, however, is in contrast to what was reported for

human UBE2N-UBE2V1 and CHIP [60, 61]. In reactions where UBE2W was present but

CHIP was absent, a strong band at around 34 kDa was observed, likely corresponding to N-

terminally ubiquitinated UBE2W as in Fig 7A [63, 64].

Discussion

Trypanosomatids are amongst the most ancient of eukaryotes and possess some highly diver-

gent biochemistry, for example compartmentalisation of the glycolytic pathway or mRNA

trans-splicing [65, 66]. Despite this, our bioinformatic analysis of the L.mexicana genome

revealed numerous ubiquitin conjugation system components: 2 ubiquitin E1, 13 ubiquitin E2

and 79 E3 ligase genes, including 12 HECT E3s, 1 RBR E3, 5 U-box RING E3s, 57 RING and 4

RING-CH-type E3s. These numbers are similar to those of another single-celled eukaryote, S.

cerevisiae, which has 1 E1, 11 E2s and 60–100 E3s, of which 5 are HECT E3s, 2 are RBR E3s, 2

are U-box E3s, one is a RING CH-type E3 and the rest are RING E3s [67, 68]. In contrast,

humans have 2 E1s, 40 E2s and over 600 E3s, of which 28 are HECT E3s, around 15 are RBR

E3s, 9 are U-box E3s, 11 are RING CH-type E3s and the rest are RING E3s [68–72]. We also
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identified a putative SUMO E1 catalytic subunit (UBA2), a Nedd8 E1 catalytic subunit

(UBA3), a SUMO E2 (UBC9) and a Nedd8 E2 (UBC12), although E1, E2 and E3 genes for

Ubls were not extensively searched for. Despite this, previous characterisation of the T. brucei

orthologues of UBA2 and UBC9 by in vitro SUMOylation assays and UBA3 and UBC12 by

affinity purification of Nedd8 lend further weight to their proposed functions [22, 24]. Of the

putative ubiquitin E2s identified, 5 were missing the conserved asparagine residue thought to

be important for E2 catalysis [31–33]. UEV1, which also lacks the catalytic cysteine residue, is

part of the non-catalytic ubiquitin E2 variant protein family. For UBC3, UBC6, UBC11 and

UBC14, in contrast, the missing asparagine residue may indicate non-canonical methods of E2

catalysis.

Previous work has underscored the importance of the ubiquitination system in Leishmania

by demonstrating both the essentiality of the parasite proteasome and a key role for DUBs in

the life cycle of this parasite [8, 15, 16]. Our generation of a select ubiquitination gene null

mutant library revealed that 1 out of 2 ubiquitin E1s and 4 out of 13 ubiquitin E2s could not be

deleted and therefore may be essential in promastigotes. A smaller proportion (4 out of 20)

Fig 7. Ubiquitin chain extension activity of UBC2-UEV1. A Thioester assay showing ubiquitin transfer to UBE2W from both human UBA1 and L.mexicana
UBA1a. UBE2W, ubiquitin and ATP were incubated with human UBA1 or L.mexicanaUBA1a as indicated in ubiquitination assay buffer for up to 10 min at
room temperature. Samples were treated with either reducing or non-reducing sample buffer and visualised by SDS-PAGE with InstantBlue stain. BUBA1a,
ubiquitin and ATP were incubated with UBC2, UEV1, human UBE2W and human CHIP as indicated in ubiquitination assay buffer for 1 h at 30˚C. Reactions
were visualised by immunoblotting with either ubiquitin conjugate or CHIP antibodies as shown. C Schematic summarising A-B. UBA1a activates ubiquitin in
an ATP-dependent manner, allowing ubiquitin to bind to the active site of UBA1a via a thioester linkage. Ubiquitin is then transferred to HsUBE2Wwhich
monoubiquitinates HsCHIP. Alternatively, HsUBE2W can ubiquitinate its own N-terminus. Once primed with monoubiquitin, UBC2-UEV1 can extend
ubiquitin chains on HsCHIP. Lm, Leishmania mexicana; Hs,Homo sapiens. Where species is not indicated, proteins are from L.mexicana.

https://doi.org/10.1371/journal.ppat.1008784.g007
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cysteine peptidase DUBs were shown to be essential in promastigotes, perhaps due to a greater

degree of redundancy in DUB function [8]. UBC12, a putative Nedd8 E2, also appears to be

essential in promastigotes, suggesting it functions independently of the Nedd8 E1 UBA3,

which is non-essential in promastigotes. This could be due to the presence of an additional

Nedd8 E1 or a Neddylation-independent function of UBC12. In contrast, none of the HECT

or RBR E3 ligases were essential in promastigotes, likely attributable to the considerable func-

tional redundancy that characterises E3 ligases [73].

When interpreting our bar-seq data, we reasoned that since null mutants were more likely

to exhibit decreases in proportional representation as the experiments progressed, our analysis

should be limited to the identification of loss-of-fitness phenotypes. This is because decreases

in the relative abundance of a subset of null mutant lines in the population would lead to an

increase in the proportional representation of the remaining null mutant lines, potentially

mimicking gain-of-fitness phenotypes. Despite this limitation, the bar-seq approach allowed

us to identify numerous fitness phenotypes associated with the promastigote and amastigote

life cycle stages. In particular, loss-of-fitness was identified for more than one interval between

promastigote time points for Δubc9, hinting at a role for SUMOylation (UBC9), and Δhect2
and Δhect12, for HECT E3-mediated ubiquitination, in promastigote growth and/or survival.

These genes were not absolutely required for survival, however, given our ability to detect

Δubc9, Δhect2 and Δhect12 in the metacyclic promastigote samples. Also of interest was the

high degree of correlation between the data from the axenic amastigote, macrophage and

mouse infection experiments, supporting previous findings that only small transcriptomic dif-

ferences exist between axenic and intracellular amastigotes [3]. The strong phenotypes

observed for Δubc1/cdc34, Δubc2, Δuev1 and Δhect2 in the amastigote stages suggest an impor-

tant role for these genes in the successful transformation from promastigote to amastigote.

Since Δhect2 also showed loss-of-fitness in the promastigote stage, the effect of HECT2 dele-

tion on cell survival/proliferation may be a more general one. For example, if the function of

human UBE3C is shared with HECT2, then the build-up of harmful, incompletely-degraded

proteasome substrates during the differentiation process could explain the requirement for

HECT2 in amastigotes and the more subtle effect of HECT2 deletion on promastigotes [36].

Notably, the observed requirement for UBC1/CDC34 during L.mexicanamouse infection

mirrors the finding that TbCDC34 is required for infection of mice with bloodstream form T.

brucei [28]. Additionally, the human orthologues of both UBC2 and UEV1 (UBE2N and

UBE2V1 respectively) have been implicated in the differentiation of various human cell types,

perhaps pointing to a general role for these protein families in differentiation processes [30,

74–76]. Since both ubiquitination and deubiquitination enzymes have been found to be essen-

tial in the promastigote to amastigote transition, interplay between the activities of E2/E3s

(UBC1/CDC34, UBC2, UEV1 and HECT2) and DUBs (DUB4, DUB7 and DUB13) could be

crucial for maintaining an optimal abundance and/or state of modification of protein targets

that are required for differentiation. Δuba1b, Δubc14, Δhect7 and Δhect11 were lost at later
stages and Δubc9 showed cumulative loss throughout the experiments, suggesting that the

deleted genes are required for normal amastigote proliferation, including during mouse

infection.

Our finding that UBC2 and UEV1 are highly conserved at both the sequence and structural

level suggests that their function may be shared between distantly related species. For example,

that UEV1 is more similar in sequence to HsUBE2V2 and ScMMS2 than to HsUBE2V1 hints

at a possible function in DNA damage repair [40]. Our observation that UBC2 and UEV1

form a heterodimer was not unexpected and is consistent with the similar phenotypes

observed for Δubc2 and Δuev1 in promastigote to amastigote differentiation. We also found

that UBC2 is a monomer in vitro. This property is similar to HsUBE2N but contrasts with
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ScUbc13, which is a homodimer in vitro [45]. Given that dimerisation does not affect ubiquitin

transfer by another human E2, UBE2W, this difference may not be physiologically relevant

[77]. Our X-ray crystal structure of the UBC2-UEV1 heterodimer revealed high conservation

of the UBC2 active site and UBC2-UEV1 interface, highlighting the importance of stable

UBC2-UEV1 interaction in the function of this complex across diverse eukaryotes.

Subsequent biochemical characterisation of UBC2 and UEV1 revealed that UBA1a and

UBC2 are a functional ubiquitin E1-E2 pair. This demonstrates a level of specificity for E1-E2

interactions in L.mexicana, despite both UBA1a and UBA1b being more closely related to

HsUBA1 than HsUBA6. That UBA1a and UBA1b appear to have unique functions is interest-

ing since there is no obvious requirement for two ubiquitin E1s in other single-celled eukary-

otes. S. cerevisiae, for example, has only one ubiquitin E1. A differential requirement for

UBA1a and UBA1b is further supported by the likelihood that UBA1a, but not UBA1b, is an

essential gene in promastigotes.

The UBC2-UEV1 heterodimer, like its S. cerevisiae and human orthologues, is able to form

K63-linked ubiquitin chains in vitro, suggesting a role for non-degradative ubiquitin modifica-

tions in Leishmania differentiation [31, 40, 45, 46, 49]. Most of the chains observed in our in

vitro assays were di-ubiquitin, supporting our suggestion that UEV1 is more similar to human

UBE2V2, which forms di-ubiquitin in vitro, than UEV-1A (isoform 2 of UBE2V1), which

forms polyubiquitin chains [40]. Furthermore, our structural modelling of UBC2-UEV1 in

complex with donor and acceptor ubiquitins, together with the conservation of key UEV1 resi-

dues that are required for acceptor ubiquitin interaction, are consistent with a role for UEV1

in dictating K63-linked chain specificity by correctly orienting the acceptor ubiquitin [51]. In

contrast, the donor ubiquitin is thought to exhibit flexible positioning around the covalent

Cys85 linkage [51, 78]. The physiological role of ubiquitin chains generated by Leishmania

UBC2-UEV1 is currently unknown and an important area for further investigation. However,

previous research has shown that free ubiquitin chains are present in both S. cerevisiae and

human cells and that their levels (in S. cerevisiae) increase following heat shock, DNA damage

or oxidative stress [79]. Furthermore, unanchored K63-linked chains generated by the human

E3 ligases TRAF6 and TRIM32 have been shown to interact with and activate protein kinases

[80, 81] and unanchored K48-linked chains can inhibit the proteasome [82], demonstrating

that free ubiquitin chains can perform regulatory functions. Curiously, S. cerevisiaeHUL5, the

E3 ligase partly responsible for free chain formation upon stress induction [79], is related to L.

mexicanaHECT2 (45% query cover, 32.6% identity, E value: 5e-47). This raises the possibility

that HECT2 is involved in the response to environmental stresses that trigger the promastigote

to amastigote transition and may explain the requirement for HECT2 in amastigotes. Explor-

ing the potential interaction between UBC2-UEV1 or HECT2 and protein kinases involved in

stress responses is an interesting avenue for further study. Additionally, the identification of

UBC2 and UEV1 in an interactome of L.mexicanaDUB2, which is able to cleave K63-linked

diubiquitin in vitro, suggests a possible interplay between these proteins in the regulation of

K63-linked ubiquitin chains [8].

For our in vitro experiments, human BIRC2 and RNF8 provided useful tools for examining

the activity of UBC2 in the absence of available Leishmania E3s. Both BIRC2 and RNF8 were

able to form polyubiquitin chains (non-K63-linked) in a UBC2-dependent manner. Intrigu-

ingly, UEV1 effectively inhibited this reaction by switching UBC2 activity towards unanchored

K63-linked di-ubiquitin formation. This ability of UEV1 could allow UBC2 to flip between

direct (covalent attachment of ubiquitin to substrates) and indirect (unanchored ubiquitin

chain binding to regulated proteins) mechanisms of regulating other proteins as well as

between sets of protein targets, depending on the availability of UEV1. The proposed role for

UEV1 in specifying K63-linked chain formation is further supported by the observation that
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polyubiquitin chains produced in the presence of UBC2 and BIRC2 or RNF8 are not

K63-linked. In support of our finding that UBC2 acts alone with RNF8, human UBE2V1 and

UBE2V2 have been shown to be dispensable for the function of UBE2N and RNF8 in DNA

damage signalling [83]. Conversely, the formation of polyubiquitin chains on human CHIP

was seen in the presence of both UBC2 and UEV1. In this example, K63-linked ubiquitin

chains could be formed in a RING-dependent manner similar to that described for rat RNF4,

where, due to interactions between the RING domain and UBE2N/UBC2, the donor ubiquitin

is held in a ‘folded-back’ conformation poised for nucleophilic attack by K63 of the acceptor

ubiquitin bound to UBE2V2/UEV1 [78]. The ability of UBC2-UEV1 to extend ubiquitin

chains on CHIP illustrates the potential for UBC2-UEV1 to act in coordination with other E2s

in L.mexicana, although an E2 with such a role has yet to be identified.

Previous studies have investigated the importance of DUBs and the parasite proteasome at

various stages of the Leishmania life cycle [8, 15, 16]. Supplementing this, our study explores

the requirement for selected E1, E2 and E3 enzymes across the life cycle of Leishmania. Our

detailed investigation of UBC2 and UEV1, identified as essential in amastigotes, demonstrates

high levels of conservation at both the structural and functional level. Consequently, our find-

ing that the nature of UBC2 activity can be regulated by UEV1 has implications for ortholo-

gous proteins in other species.

Materials andmethods

Bioinformatic identification of ubiquitination genes

E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ligase genes were

identified in the L.mexicana genome by performing Interpro and PFAM domain searches in

TriTrypDB (https://tritrypdb.org/tritrypdb/). The following Interpro and PFAM identification

codes were used: IPR018075, PF10585, IPR019572, IPR028077, IPR000608, IPR000569,

PF00632, IPR002867, PF01485, IPR001841, IPR011016, IPR003613 and PF04564. UniProt

(https://www.uniprot.org/) was also used to search for genes annotated with the terms

“HECT” or “RBR”. Protein BLAST searches were used to determine the percentage query

cover, percentage identity and E value for two gene sequences.

Leishmania culture

L.mexicana (MNYC/BZ/62/M379) promastigotes were grown in HOMEM (Gibco) supple-

mented with 10% v/v heat-inactivated Fetal Bovine Serum (FBS) (Gibco) and 1% v/v Penicil-

lin/Streptomycin (Sigma-Aldrich) at 25˚C. Typically, cells were split around twice a week.

Selection drugs were added to the medium as appropriate: 10 μg mL-1 blasticidin (InvivoGen),

40 μg mL-1 puromycin (InvivoGen), 10–15 μg mL-1 G418 (InvivoGen), 50 μg mL-1 hygromy-

cin (InvivoGen) and 50 μg mL-1 nourseothricin (Jena Bioscience).

Null mutant library generation

Null mutants were generated using the CRISPR-Cas9-based approach as previously described

[8, 34]. Primer sequences to allow amplification of the single guide DNAs (sgDNAs) and repair

cassettes for gene deletion were designed by entering the relevant gene identifiers into an auto-

mated web tool (http://www.leishgedit.net/Home.html). Primers for amplification of the

repair cassettes contained primer binding sites for pTBlast_v1, pTPuro_v1 or pTNeo_v1 plas-

mids (sequences available from leishgedit.net) and 30 nt homology arms to allow recombina-

tion [84]. Additionally, a T7 polymerase promoter sequence, 10 nt linker and 12 nt unique

barcode were inserted into the 5’ end of the upstream forward primer in the following order:
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5’-TAATACGACTCACTATAAAACTGGAAGXXXXXXXXXXXX-3’, where X represents the

barcoded region.

PCR reactions for cassette amplification contained 30 ng of plasmid (pTBlast_v1,

pTPuro_v1 or pTNeo_v1), 0.2 mM dNTPs, 2 μM each of forward and reverse primer, 1U Q5

DNA Polymerase (NEB), 1x Q5 reaction buffer (NEB) and distilled water to make the volume

up to 40 μL. The reverse primer used for generating all guides was aaaagcaccgactcggtgccacttttt-

caagttgataacggactagccttattttaacttgctatttctagctctaaaac. The PCR was run with the following set-

tings: 94˚C for 5 min, 45 cycles of 94˚C for 30 s, 65˚C for 30 s and 72˚C for 2 min 15 s and

72˚C for 7 min. For the sgRNAs, PCR reactions were set up in a similar manner but with a

total volume of 20 μL. The PCR program used was 98˚C for 30 s, 35 cycles of 98˚C for 10 s,

60˚C for 30 s and 72˚C for 15 s and 72˚C for 10 min.

Mid-log phase L.mexicana Cas9 T7 procyclic promastigotes were transfected either with

whole PCR reactions (120 μL total volume) or 2.5 μg of DNA purified from PCR reactions using

the QIAquick PCR Purification Kit (Qiagen). 8 x 106 log phase cells were prepared by spinning

down (1,000 x g for 10 min), washing with 1 x PBS and resuspending in 1 x Cytomix (66.7 mM

Na2HPO4, 23.3 mMNaH2PO4, 5 mMKCl, 50 mMHEPES and 150 μMCaCl2, pH 7.3) or P3

solution from the P3 Primary Cell 4D-Nucleofector X Kit (Lonza). Next, cells were pulsed twice

using the Nucleofector 2B device (Lonza) and the X-001 program or using the Amaxa 4D-Nucleo-

fector (Lonza) and the FI-115 programme (for the Cytomix and P3 solutions respectively) and

then placed into 5 mL of HOMEMmedia with 20% FBS and 1% Penicillin/Streptomycin. As a

negative control, the parental cell line was transfected with water in place of DNA.

Following recovery of the cells at 25˚C, appropriate antibiotics were added (10 μg mL-1

blasticidin, 40 μg mL-1 puromycin, 15 μg mL-1 G418) to select for transfectants. Selection was

performed either on a population level (10 mL containing the total transfected population) or

along with cloning into 96-well plates at 1:6, 1:66 and 1:726 dilutions. Dilutions were carried

out in HOMEM supplemented with 20% v/v FBS and 1% v/v Penicillin/Streptomycin.

To extract genomic DNA for analysis, 500 μL-5 mL of mid-log phase promastigotes were

centrifuged (1,000 x g for 10 min), washed once in 1 x PBS and processed using the Qiagen

DNeasy Blood and Tissue Kit and the manufacturer’s protocol. For genotype analysis, PCR

reactions were set up with 1 μL of genomic DNA and either Q5 DNA Polymerase (NEB) or

LongAmp Taq (NEB) with the manufacturer’s protocols.

Bar-seq screen

The bar-seq screen was performed as described previously in Damianou et al., 2020 [8]; the

raw data are available in S4 Table. Statistical analyses were performed between adjacent experi-

mental time points using paired t-tests and the Holm-Šı́dák method in GraphPad Prism 8.

Cell viability assay

L.mexicana cultures were grown to stationary phase (>1 x 107 mL-1) and resuspended at 1 x

106 cells per mL in amastigote medium (Schneider’s Drosophila medium [Gibco], 20% FBS

[Gibco] and 15 μg mL-1 HEMIN [Sigma], adjusted to pH 5.5). 200 μL cell samples were pre-

pared in sextuplicate in 96-well plates and included the parental cell line (Cas9 T7) as a positive

control. Also included were media-only, negative control samples. At 0 h, 48 h and 120 h,

20 μL of 125 μgmL-1 resazurin (in 1 x PBS) was added to sample wells and the plate incubated

at 37˚C for 8 h. The fluorescence at 590 nm was then read using the POLARstar Omega Plate

Reader (BMG Labtech). Relative viability was calculated for each sample by averaging fluores-

cence readings across the 6 replicates, subtracting the average for the negative control and then

dividing by the value obtained for the Cas9 T7 positive control.
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Sequence alignments

S. cerevisiae sequences were obtained from UniProtKB [85], human sequences from Uni-

ProtKB or NCBI and L.mexicana and T. brucei sequences from TriTrypDB [86]. Sequence

alignments were performed using T-Coffee [87] and structural annotation using ESPript 3.0

[88].

Protein expression and purification

UBA1a (LmxM.23.0550), UBC2 (LmxM.04.0680) and UEV1 (LmxM.13.1580) genes were

codon-optimised for E. coli expression and synthesised by DC Biosciences. Genes were ampli-

fied by PCR and inserted into an expression vector (Protein Production Facility, University of

York) in frame with an N-terminal His tag and Im9 solubility tag [41] using In-Fusion cloning

(Takara). Primers used for gene amplification were 5’-TCCAGGGACCAGCAATGCTTTCT

GAGGAAGAGCAAAAAC-3’ and 5’-TGAGGAGAAGGCGCGTTAAAAGCGATAGCGGT

AGCGGATG-3’ for UBA1a, 5’-TCCAGGGACCAGCAATGTTGACCACTCGTATCATTAA

GG-3’ and TGAGGAGAAGGCGCGTCATGGTTTGGCGTACTTACGAG-3’ for UBC2 and

5’-TCCAGGGACCAGCAATGGTCGAGGTTCCGCGC-3’ and 5’-TGAGGAGAAGGCGCG

TCAGTAGGTACTACCCTCC-3’ for UEV1. Insert integration and sequence were confirmed

by DNA sequencing (Eurofins). Plasmids were then transformed into BL21-Gold (DE3) cells

(Agilent Technologies). Cells were grown overnight in 5 mL of LB medium with 25 μgmL-1

kanamycin and used to seed 500 mL cultures for growth at 37˚C. When an optical density of

around 0.5 at 600 nm was reached, cultures were equilibrated to 20˚C and 1 mM of isopropyl

1-thio-β-D-galactopyranoside was added to induce recombinant protein production. Cultures

were then grown for a further 24 h at 20˚C.

The standard purification procedure was as follows: bacterial pellets from 500 mL cultures

were resuspended in 25 mL buffer A (20 mMNaH2PO4�2H2O, 20 mMNa2HPO4�12H2O, 0.3

M NaCl, 30 mM imidazole and 5 mM β-mercaptoethanol, pH 7.4), DNase-treated and homog-

enised using a cell disruptor (Constant Systems Ltd). The lysate was centrifuged (35,000 x g, 10

min, 4˚C), filtered and loaded onto a HisTrap Fast Flow Crude column (GE Healthcare). After

column washes with buffer A, a gradient of buffer B (20 mMNaH2PO4�2H2O, 20 mMNa2H-

PO4�12H2O, 0.3 M NaCl, 0.5 M imidazole and 5 mM β-mercaptoethanol, pH 7.4) was applied

to elute bound protein. His-Im9 tag cleavage was then carried out using at least one tenth

HRV 3C protease (Protein Production Facility, University of York) to sample protein (mg).

This was followed by imidazole removal using either overnight dialysis at 4˚C in buffer C (20

mMNaH2PO4�2H2O, 20 mMNa2HPO4�12H2O, 0.3 M NaCl and 5 mM β-mercaptoethanol,

pH 7.4) or a desalt column. Removal of the His-Im9 tag leaves an additional 3 amino acids

(Gly, Pro, Ala) at the N-terminus. Following cleavage, the sample was reapplied to the HisTrap

column and application of buffer A and B used to separate the tag from the protein of interest.

Sample fractions were concentrated and size-exclusion chromatography (SEC) carried out

using HiLoad 16/600 Superdex 200 preparation grade (pg) or 75 pg columns (GE Healthcare)

for UBA1a and UBC2 or UEV1 respectively. Buffer used for SEC contained 50 mMHEPES

and 150 mMNaCl with either 2 mMDTT (UBC2 and UEV1) or 1 mM TCEP (UBA1a). Frac-

tions containing purified protein were identified by SDS-PAGE analysis, pooled, concentrated

and stored at -80˚C.

For the UBC2 and UEV1 samples used for SEC-MALLS, purification was carried out

as described above but with the following minor changes: buffers A-C did not contain

β-mercaptoethanol, UBC2 was not purified by SEC and the buffer used for SEC of UEV1 was

25 mM Tris-HCl, 150 mMNaCl, pH 8. Storage was in the final purification buffers plus 1 mM

DTT.

PLOS PATHOGENS E2 ubiquitin-conjugation complex of Leishmania

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008784 October 27, 2020 21 / 30

https://doi.org/10.1371/journal.ppat.1008784


Size-exclusion chromatography multi-angle laser light scattering
(SEC-MALLS)

Prior to loading, mixtures of UBC2 and UEV1 were prepared as required and incubated on ice

for 30 min. 120 μL of each sample was then loaded onto a Superdex 200 HR10/300 gel filtration

column (Sigma-Aldrich) and run in 25 mM Tris-HCl, 150 mMNaCl and 1 mMDTT, pH 8.

Light scattering and refractive index measurements were taken using a Dawn Heleos II and

Optilab rEx detector (Wyatt) respectively. Concentrations of samples loaded were between 1.2

and 2 mg mL-1.

Crystallisation and structure determination

For crystallisation experiments, UBC2 and UEV1 were mixed in a 1:1 molar ratio to a final

concentration of 6.6 mg mL-1 in buffer containing 50 mMHEPES, 150 mMNaCl and 2 mM

DTT and incubated on ice for 30 min. Crystallisation conditions were screened (PACT pre-

mier HT-96 screen, Molecular Diagnostics) in a 96-well sitting drop format. Drops consisting

of 150 nL of protein and 150 nL of reservoir solution were mixed and incubated above 100 μL
of reservoir solution. Crystals appeared after two days at 25˚C in drops prepared with a reser-

voir solution consisting of 0.1 M Bis-Tris propane, pH 7.5, 0.2 M sodium formate and 20%

PEG. A single crystal was captured in a fine nylon loop, cryo-cooled in liquid nitrogen, and

sent for data collection at the Diamond Light Source (Beamline I03). The diffraction data,

extending to a nominal resolution of 1.7 Å, were processed using the 3dii pipeline in xia2 [89].

The crystals belonged to space group P21 with two UBC2-UEV1 heterodimers in the asymmet-

ric unit.

The structure was solved by molecular replacement in the programMOLREP [90] imple-

mented in the CCP4i2 interface [91]. The search model used was the coordinate set for the

human UBE2N-UBE2V2 complex (PDB ID: 1J7D). Model rebuilding and refinement were

carried out using iterations of the programs Buccaneer [92] Refmac5 [93, 94] and Coot [95] in

CCP4i2 [91]. The electron density maps were of good quality allowing the confident tracing of

the protein chains in the two heterodimers (AB and CD) with the exception of residues in the

α1-β1 loop of UEV1 chains (B and D) where the maps were of poorer quality such that resi-

dues Gly22 and Ser23 could not be built in Chain D. It is assumed that this region of the struc-

ture has higher mobility. Data collection and refinement statistics are given in S4 Table. The

coordinates and structure factors for the L.mexicanaUBC2-UEV1 complex are available in

the Protein Data Bank (PDB ID:6ZM3).

Structure analysis

Superposition of structures and RMSD determination were performed using “superpose struc-

tures” in CCP4mg [96]. UBC2-UEV1 interface analysis was performed using PISA (version

1.52) [97].

Thioester formation assay

Reactions contained 300 nM UBA1a, 2.5 μME2, 20 μM human ubiquitin (Boston Biochem)

and 5 mM ATP as indicated in 40 μL ubiquitination assay buffer (50 mMHEPES, pH 7.5, 100

mMNaCl, 10 mMMgCl2 and 2 mMDTT). Reactions were incubated for 0–10 min at room

temperature and then quenched with sample buffer with or without reducing agent. Samples

containing reducing agent were heated at 90˚C for 5 min. Samples were run on an SDS-PAGE

gel and stained with InstantBlue Coomassie Protein Stain (Expedeon). For the UBE2W thioe-

ster assay, bovine ubiquitin (Ubiquigent) was used in place of human ubiquitin. For the
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thioester assay with UBA1b (donated by Daniel Harris, University of Glasgow), the protocol

differed slightly in that 100 μM human ubiquitin and 10 mM ATP were used and the reactions

were incubated at 30˚C for 30 min.

Di-ubiquitin formation assay

Reactions contained 100 nM UBA1a, 2.5 μM of UBC2 and UEV1, 100 μM of human wild-type

(Boston Biochem) or K63R ubiquitin (2B Scientific) and 5 mM ATP as indicated in 40 μL of

ubiquitination assay buffer. Samples were incubated at 37˚C for between 0 and 90 min as indi-

cated. For the inhibitor assay, 0–50 μM of NSC697923 (Abcam) was pre-incubated with UBC2

and UEV1 in reaction buffer for 15 min at room temperature prior to addition of UBA1a and

ATP. The reaction was then incubated at 37˚C for 90 min. The final DMSO concentration in

these reactions was 0.5%. Following incubation, reducing sample buffer was added and the

samples heated at 90˚C for 5 min. Samples were separated by SDS-PAGE andWestern blotting

carried out using a mouse mono- and polyubiquitinated ubiquitin conjugate (Ubiquigent) or

mouse Ub-K63 (ThermoFisher) antibody with HRP-conjugated anti-mouse secondary anti-

body (GE Healthcare or Promega). In addition to the experimental samples, 100 ng of K63 di-

ubiquitin positive control (Ubiquigent) was loaded where indicated.

E3 cooperation assay

Reactions were prepared with 100 nM UBA1a, 2.5 μME2 (UBC2 or UEV1), 1 μM human E3

(BIRC2, RNF8 or HUWE1), 100 μM ubiquitin (Boston Biochem) and 5 mM ATP as indicated

in ubiquitination assay buffer in 40 μL total reaction volume. BIRC2, RNF8 and (N-terminally

truncated) HUWE1 were all GST-tagged and sourced from Ubiquigent. Samples were then

incubated at 30˚C for 1 h prior to SDS-PAGE andWestern blotting with a mouse mono- and

polyubiquitinated ubiquitin conjugate (Ubiquigent), mouse Ub-K63 (ThermoFisher) or rabbit

anti-GST (Abcam) antibody with HRP-conjugated anti-mouse (GE Healthcare) or HRP-con-

jugated anti-rabbit (GE Healthcare) secondary antibody as appropriate.

CHIP priming and extension assay

Reactions were prepared with 0.1 μMUBA1a, 2.5 μM 6His-tagged UBE2W (Ubiquigent),

1 μMCHIP (Ubiquigent), 0.1 mM human ubiquitin (Boston Biochem) and 2 mM ATP

(Sigma-Aldrich) in ubiquitination assay buffer in 50 μL total reaction volume. Samples were

incubated at 30˚C for 1 h prior to SDS-PAGE andWestern blotting with a mouse mono- and

polyubiquitinated conjugate (Ubiquigent) or rabbit CHIP antibody (Calbiochem) with HRP-

conjugated anti-mouse (GE Healthcare) or HRP-conjugated anti-rabbit (GE Healthcare) sec-

ondary antibody as appropriate.

Supporting information

S1 Table. Summary of L. mexicana ubiquitination genes.

(XLSX)

S2 Table. Summary of primers and plasmids.

(XLSX)

S3 Table. Individual viability assay of Δubc1, Δubc2, Δuev1 and Δhect2 during axenic
amastigote differentiation. Raw fluorescence (590 nm) readings and relative viabilities com-

pared to the Cas9 T7 cell line are included.

(XLSX)
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S4 Table. Data collection and refinement statistics for UBC2-UEV1 crystal structure.

(XLSX)

S1 Fig. Partial alignments of L. mexicana and H. sapiens protein sequences. Sequences

obtained from TriTryDB (L.mexicana) and NCBI or UniProt (H. sapiens) were aligned using

T-Coffee. Residues in the local vicinity of the putative active site cysteine of A ubiquitin

E1-activating enzymes, B E2-conjugating enzymes and C E3 ligase HECT domains are shown.

Red boxes indicate amino acid identity, red characters show similarity within the highlighted

group and blue frames highlight similarity across groups. Black bar indicates the position of

the conserved HPNmotif in E2 genes and the black triangles highlight the conserved catalytic

cysteine residues in all classes of protein. L.mexicana genes are indicated with the prefix Lm

andH. sapiens genes with the prefix Hs. Where no prefix is given, sequences belong to L.mexi-

cana.

(TIF)

S2 Fig. Confirmation of the null mutant library. A Schematic of PCRs performed to identify

null mutants from heterozygotes or mutants with additional gene copies. Primers were

designed to amplify regions within the gene of interest (GOI, red primers) and between the 5’-

UTR of the gene and the blasticidin repair cassette of the edited DNA (black primers). B PCRs

performed on genomic DNA from parental (P) and mutant (M) cells are shown for genes that

were deleted successfully. Due to the large size ofHECT3 (18.6 kbp), only the first 8 kbp of the

gene was targeted for editing. TheHECT3 gene PCR was designed to amplify within the tar-

geted region. C PCRs performed on genomic DNA from parental (P) and mutant (M) cells are

shown for genes that could not be deleted (no mutant clones were obtained for UBC13).D

Relative viability of Δubc1, Δubc2, Δuev1 and Δhect2 compared to the parental Cas9 T7 line

during promastigote to amastigote differentiation. Time elapsed since the initiation of differ-

entiation is marked on the x-axis. Data are an average of two independent experiments, each

with 6 biological replicates.

(TIF)

S3 Fig. Structural analysis of the UBC2-UEV1 heterodimer. A Superposition of chains A

and B for UBC2-UEV1 (dark green and dark blue, PDB ID: 6ZM3), HsUBE2N-UBE2V2

(darker green and darker blue, PDB ID: 1J7D) and ScUbc13-Mms2 (light green and light blue,

PDB ID: 1JAT). Locations of the N- and C-termini are shown. B Zoom-in of the interface

between UBC2 and UEV1 showing residues thought to contribute most significantly to com-

plex formation according to analysis in the program PISA [97]. Residues are labelled in black

for UBC2 and blue for UEV1. Residues are coloured by atom (red, oxygen; blue, nitrogen).

Hydrogen bonds are denoted by dashed lines. C Superposition of UBC2-UEV1 onto the struc-

ture of the UBE2N-UBE2V2-Ub complex (PDB ID: 2GMI) [51] showing UBC2 (green) and

UEV1 (blue) as space fill models and the positions of acceptor and donor ubiquitins (orange

ribbons) obtained from the UBE2N-UBE2V2-Ub structure. C85 is represented by black (car-

bon) and yellow (sulfur) spheres. K63 of ubiquitin is highlighted as cylinders coloured by atom

(blue, nitrogen).

(TIF)

S4 Fig. UBA1b cannot transfer ubiquitin to UBC2 in vitro. A Alignment of L.mexicana and

H. sapiens ubiquitin protein sequences. Red boxes indicate amino acid identity, red characters

show similarity within the highlighted group and blue frames highlight similarity across

groups. BUBA1b and ubiquitin were incubated with UBC2, UEV1 and ATP as indicated in

ubiquitination assay buffer for 30 min at 30˚C. Samples were treated with either reducing or
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non-reducing sample buffer and visualised by SDS-PAGE with InstantBlue stain.

(TIF)
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28. Rojas F, Koszela J, Búa J, Llorente B, Burchmore R, Auer M, et al. The ubiquitin-conjugating enzyme
CDC34 is essential for cytokinesis in contrast to putative subunits of a SCF complex in Trypanosoma

PLOS PATHOGENS E2 ubiquitin-conjugation complex of Leishmania

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008784 October 27, 2020 26 / 30

https://doi.org/10.1371/journal.ppat.1004347
https://doi.org/10.1371/journal.ppat.1004347
http://www.ncbi.nlm.nih.gov/pubmed/25232945
https://doi.org/10.1371/journal.ppat.1008455
https://doi.org/10.1371/journal.ppat.1008455
http://www.ncbi.nlm.nih.gov/pubmed/32544189
https://doi.org/10.1146/annurev-biochem-060310-170328
https://doi.org/10.1146/annurev-biochem-060310-170328
http://www.ncbi.nlm.nih.gov/pubmed/22524316
https://doi.org/10.1098/rsob.190147
http://www.ncbi.nlm.nih.gov/pubmed/31530095
https://doi.org/10.1146/annurev.biochem.78.101807.093809
http://www.ncbi.nlm.nih.gov/pubmed/19489725
https://doi.org/10.1042/bse0520051
http://www.ncbi.nlm.nih.gov/pubmed/22708563
https://doi.org/10.1038/cr.2016.39
https://doi.org/10.1038/cr.2016.39
http://www.ncbi.nlm.nih.gov/pubmed/27012465
https://doi.org/10.1038/s41598-019-52618-3
https://doi.org/10.1038/s41598-019-52618-3
http://www.ncbi.nlm.nih.gov/pubmed/31700050
https://doi.org/10.1038/nature19339
https://doi.org/10.1038/nature19339
http://www.ncbi.nlm.nih.gov/pubmed/27501246
https://doi.org/10.1073/pnas.1820175116
http://www.ncbi.nlm.nih.gov/pubmed/30962368
https://doi.org/10.4161/auto.5.2.7328
http://www.ncbi.nlm.nih.gov/pubmed/19066473
https://doi.org/10.1371/journal.ppat.1002695
https://doi.org/10.1371/journal.ppat.1002695
http://www.ncbi.nlm.nih.gov/pubmed/22615560
https://doi.org/10.1016/j.yexcr.2009.12.017
https://doi.org/10.1016/j.yexcr.2009.12.017
http://www.ncbi.nlm.nih.gov/pubmed/20045687
https://doi.org/10.7717/peerj.180
https://doi.org/10.7717/peerj.180
http://www.ncbi.nlm.nih.gov/pubmed/24133638
https://doi.org/10.1371/journal.ppat.1004545
http://www.ncbi.nlm.nih.gov/pubmed/25474309
https://doi.org/10.1038/srep10097
http://www.ncbi.nlm.nih.gov/pubmed/25959766
https://doi.org/10.1371/journal.pone.0193528
http://www.ncbi.nlm.nih.gov/pubmed/29474435
https://doi.org/10.1074/jbc.M116.766741
http://www.ncbi.nlm.nih.gov/pubmed/27956554
https://doi.org/10.1371/journal.pone.0016156
http://www.ncbi.nlm.nih.gov/pubmed/21264253
https://doi.org/10.1111/j.1365-2958.2012.08183.x
https://doi.org/10.1111/j.1365-2958.2012.08183.x
http://www.ncbi.nlm.nih.gov/pubmed/22897198
https://doi.org/10.1111/mmi.13253
http://www.ncbi.nlm.nih.gov/pubmed/26481108
https://doi.org/10.1371/journal.ppat.1008784


brucei. PLoS Negl Trop Dis. 2017; 11(6):e0005626. https://doi.org/10.1371/journal.pntd.0005626
PMID: 28609481
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