

This is a repository copy of *Inhibitory effect of eslicarbazepine acetate and S-licarbazepine on Nav1.5 channels*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/165462/

Version: Accepted Version

Article:

Leslie, Theresa, Bruckner, Lottie, Chawla, Sangeeta orcid.org/0000-0003-4077-736X et al. (1 more author) (Accepted: 2020) Inhibitory effect of eslicarbazepine acetate and S-licarbazepine on Nav1.5 channels. Frontiers in Pharmacology. ISSN: 1663-9812 (In Press)

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1 Inhibitory effect of eslicarbazepine acetate and S-licarbazepine on

2 Na_v1.5 channels

- 3 Theresa K. Leslie¹, Lotte Brückner¹, Sangeeta Chawla^{1,2}, William J. Brackenbury^{1,2*}
- ¹Department of Biology, University of York, Heslington, York, YO10 5DD, UK
- 5 ²York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
- 6 * Correspondence: Dr William J. Brackenbury, Department of Biology and York Biomedical
- 7 Research Institute, University of York, Wentworth Way, Heslington, York YO10 5DD, UK. Email:
- 8 william.brackenbury@york.ac.uk. Tel: +44 1904 328284.
- 9 Keywords: Anticonvulsant, cancer, epilepsy, eslicarbazepine acetate, Na_v1.5, S-licarbazepine,
- 10 voltage-gated Na⁺ channel.

11 Abstract

- 12 Eslicarbazepine acetate (ESL) is a dibenzazepine anticonvulsant approved as adjunctive treatment for
- partial-onset epileptic seizures. Following first pass hydrolysis of ESL, S-licarbazepine (S-Lic)
- represents around 95 % of circulating active metabolites. S-Lic is the main enantiomer responsible
- for anticonvulsant activity and this is proposed to be through the blockade of voltage-gated Na⁺
- channels (VGSCs). ESL and S-Lic both have a voltage-dependent inhibitory effect on the Na⁺ current
- in N1E-115 neuroblastoma cells expressing neuronal VGSC subtypes including Na_v1.1, Na_v1.2,
- Na_v1.3, Na_v1.6 and Na_v1.7. ESL has not been associated with cardiotoxicity in healthy volunteers,
- 19 although a prolongation of the electrocardiographic PR interval has been observed, suggesting that
- 20 ESL may also inhibit cardiac Na_v1.5 isoform. However, this has not previously been studied. Here,
- 21 we investigated the electrophysiological effects of ESL and S-Lic on Na_v1.5 using whole-cell patch
- clamp recording. We interrogated two model systems: (1) MDA-MB-231 metastatic breast
- carcinoma cells, which endogenously express the 'neonatal' Na_v1.5 splice variant, and (2) HEK-293
- cells stably over-expressing the 'adult' Na_v1.5 splice variant. We show that both ESL and S-Lic
- 25 inhibit transient and persistent Na⁺ current, hyperpolarise the voltage-dependence of fast inactivation,
- and slow the recovery from channel inactivation. These findings highlight, for the first time, the
- potent inhibitory effects of ESL and S-Lic on the Na_v1.5 isoform, suggesting a possible explanation
- for the prolonged PR interval observed in patients on ESL treatment. Given that numerous cancer
- cells have also been shown to express Na_v1.5, and that VGSCs potentiate invasion and metastasis,
- 30 this study also paves the way for future investigations into ESL and S-Lic as potential invasion
- 31 inhibitors.

32

1 Introduction

- 33 Eslicarbazepine acetate (ESL) is a member of the dibenzazepine anticonvulsant family of compounds
- 34 which also includes oxcarbazepine and carbamazepine (1). ESL has been approved by the European
- 35 Medicines Agency and the United States Federal Drug Administration as an adjunctive treatment for
- partial-onset epileptic seizures (2). ESL is administered orally and rapidly undergoes first pass
- 37 hydrolysis to two stereoisomeric metabolites, R-licarbazepine and S-licarbazepine (S-Lic; also
- 38 known as eslicarbazepine; Figure 1A, B) (3-5). S-Lic represents around 95 % of circulating active
- metabolites following first pass hydrolysis of ESL and is the enantiomer responsible for

- anticonvulsant activity (6, 7). S-Lic also has improved blood brain barrier penetration compared to R-
- 41 licarbazepine (8). Although S-Lic has been shown to inhibit T type Ca²⁺ channels (9), its main
- 42 activity is likely through blockade of voltage-gated Na⁺ channels (VGSCs) (10). ESL offers several
- 43 clinical advantages over other older VGSC-inhibiting antiepileptic drugs, e.g. carbamazepine,
- phenytoin; it has a favourable safety profile (10, 11), reduced induction of hepatic cytochrome P450
- enzymes (12), low potential for drug-drug interactions (13, 14), and takes less time to reach a steady
- state plasma concentration (15).
- VGSCs are composed of a pore-forming α subunit in association with one or more auxiliary β
- subunits, the latter modulating channel gating and kinetics in addition to functioning as cell adhesion
- 49 molecules (16). There are nine α subunits (Na_v1.1-Na_v1.9), and four β subunits (β 1-4) (17, 18). In
- postnatal and adult CNS neurons, the predominant α subunits are the tetrodotoxin-sensitive Na_v1.1,
- Na_v1.2 and Na_v1.6 isoforms (19) and it is therefore on these that the VGSC-inhibiting activity of ESL
- and S-Lic has been described. In the murine neuroblastoma N1E-115 cell line, which expresses
- Na_v1.1, Na_v1.2, Na_v1.3, Na_v1.6 and Na_v1.7, ESL and S-Lic both have a voltage-dependent inhibitory
- effect on the Na⁺ current (10, 20). In this cell model, S-Lic has no effect on the voltage-dependence
- of fast inactivation, but significantly hyperpolarises the voltage-dependence of slow inactivation (10).
- 56 S-Lic also has a lower affinity for VGSCs in the resting state than carbamazepine or oxcarbazepine,
- 57 thus potentially improving its therapeutic window over first- and second-generation dibenzazepine
- compounds (10). In acutely isolated murine hippocampal CA1 neurons, which express Na_v1.1,
- Na_v1.2 and Na_v1.6 (21-23), S-Lic significantly reduces the persistent Na⁺ current, a very slow-
- 60 inactivating component ~1 % the size of the peak transient Na⁺ current (24, 25). Moreover, in
- contrast to carbamazepine, this effect is maintained in the absence of β 1 (24, 26).
- 62 In healthy volunteers, ESL has not been associated with cardiotoxicity and the QT interval remains
- unchanged on treatment (27). However, a prolongation of the PR interval has been observed (27),
- suggesting that caution should be exercised in patients with cardiac conduction abnormalities (13).
- Prolongation of the PR interval suggests that ESL may also inhibit the cardiac Na_v1.5 isoform,
- although this has not previously been studied. Na_v1.5 is not only responsible for the initial
- depolarisation of the cardiac action potential (28), but is also expressed in breast and colon carcinoma
- cells, where the persistent Na⁺ current promotes invasion and metastasis (29-32). Inhibition of Na_v1.5
- 69 with phenytoin or ranolazine decreases tumour growth, invasion and metastasis (33-35). Thus, it is of
- interest to specifically understand the effect of ESL on the Na_v1.5 isoform.
- 71 In the present study we investigated the electrophysiological effects of ESL and S-Lic on Na_v1.5 [1]
- endogenously expressed in the MDA-MB-231 metastatic breast carcinoma cell line, and [2] stably
- over-expressed in HEK-293 cells. We show that both ESL and S-Lic inhibit transient and persistent
- Na⁺ current, hyperpolarise the voltage-dependence of fast inactivation, and slow the recovery from
- channel inactivation. These findings highlight, for the first time, the potent inhibitory effects of ESL
- and S-Lic on the Na_v1.5 isoform.

2 Materials and methods

78 2.1 Pharmacology

- 79 ESL (Tokyo Chemical Industry UK Ltd) was dissolved in DMSO to make a stock concentration of
- 80 67 mM. S-Lic (Tocris) was dissolved in DMSO to make a stock concentration of 300 mM. Both
- 81 drugs were diluted to working concentrations of 100-300 μM in extracellular recording solution. The
- 82 concentration of DMSO in the recording solution was 0.45 % for ESL and 0.1 % for S-Lic. Equal

- 83 concentrations of DMSO were used in the control solutions. DMSO (0.45 %) had no effect on the
- 84 Na⁺ current (Supplementary Figure 1).

Cell culture 85 2.2

- 86 MDA-MB-231 cells and HEK-293 cells stably expressing Na_v1.5 (a gift from L. Isom, University of
- Michigan) were grown in Dulbecco's modified eagle medium supplemented with 5 % FBS and 4 87
- 88 mM L-glutamine (36). Molecular identity of the MDA-MB-231 cells was confirmed by short tandem
- 89 repeat analysis (37). Cells were confirmed as mycoplasma-free using the DAPI method (38). Cells
- 90 were seeded onto glass coverslips 48 h before electrophysiological recording.

91 Electrophysiology

- 92 Plasma membrane Na⁺ currents were recorded using the whole-cell patch clamp technique, using
- 93 methods described previously (32, 35). Patch pipettes made of borosilicate glass were pulled using a
- 94 P-97 pipette puller (Sutter Instrument) and fire-polished to a resistance of 3-5 M Ω when filled with
- 95 intracellular recording solution. The extracellular recording solution for MDA-MB-231 cells
- 96 contained (in mM): 144 NaCl, 5.4 KCl, 1 MgCl₂, 2.5 CaCl₂, 5.6 D-glucose and 5 HEPES (adjusted to
- 97 pH 7.2 with NaOH). For the extracellular recording solution for HEK-293 cells expressing Na_v1.5,
- 98 the extracellular [Na⁺] was reduced to account for the much larger Na⁺ currents and contained (in
- 99 mM): 60 NaCl, 84 Choline Cl, 5.4 KCl, 1 MgCl₂, 2.5 CaCl₂, 5.6 D-glucose and 5 HEPES (adjusted
- 100 to pH 7.2 with NaOH). The intracellular recording solution contained (in mM): 5 NaCl, 145 CsCl, 2
- 101 MgCl₂, 1 CaCl₂, 10 HEPES, 11 EGTA, (adjusted to pH 7.4 with CsOH) (39). Voltage clamp
- 102 recordings were made at room temperature using a Multiclamp 700B or Axopatch 200B amplifier
- 103 (Molecular Devices) compensating for series resistance by 40–60%. Currents were digitized using a
- 104 Digidata interface (Molecular Devices), low pass filtered at 10 kHz, sampled at 50 kHz and analysed
- 105 using pCLAMP 10.7 software (Molecular Devices). Leak current was subtracted using a P/6 protocol
- 106 (40). Extracellular recording solution \pm drugs was applied to the recording bath at a rate of \sim 1.5
- 107 ml/min using a ValveLink 4-channel gravity perfusion controller (AutoMate Scientific). Each new
- 108 solution was allowed to equilibrate in the bath for ~4 min following switching prior to recording at
- 109 steady state.

110 2.4 Voltage clamp protocols

- 111 Cells were clamped at a holding potential of -120 mV or -80 mV for \geq 250 ms, dependent on
- 112 experiment (detailed in the Figure legends). Five main voltage clamp protocols were used, as
- 113 follows:
- 1. To assess the effect of drug perfusion and wash-out on peak current in real time, a simple one-114
- 115 step protocol was used where cells were held at -120 mV or -80 mV for 250 ms and then
- 116 depolarised to -10 mV for 50 ms.
- 117 2. To assess the voltage-dependence of activation, cells were held at -120 mV for 250 ms and then
- 118 depolarised to test potentials in 10 mV steps between -120 mV and +30 mV for 50 ms. The
- 119 voltage of activation was taken as the most negative voltage which induced a visible transient
- 120 inward current.
- 121 3. To assess the voltage-dependence of steady-state inactivation, cells were held at -120 mV for 250
- 122 ms followed by prepulses for 250 ms in 10 mV steps between -120 mV and +30 mV and a test
- 123 pulse to -10 mV for 50 ms.

- 4. To assess recovery from fast inactivation, cells were held at -120 mV for 250 ms, and then
- depolarised twice to 0 mV for 25 ms, returning to -120 mV for the following intervals between
- depolarisations (in ms): 1, 2, 3, 5, 7, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200, 250, 350, 500. In
- each case, the second current was normalised to the initial current and plotted against the interval
- time.

2.5 Curve fitting and data analysis

- To study the voltage-dependence of activation, current-voltage (I-V) relationships were converted to
- conductance using the following equation:
- 132 $G = I / (V_m V_{rev})$, where G is conductance, I is current, V_m is the membrane voltage and V_{rev}
- is the reversal potential for Na⁺ derived from the Nernst equation. Given the different recording
- solutions used, V_{rev} for Na⁺ was +85 mV for MDA-MB-231 cells and +63 mV for HEK-Na_v1.5 cells.
- The voltage-dependence of conductance and availability were normalised and fitted to a Boltzmann
- equation:
- 137 $G = G_{max} / (1 + exp ((V_{1/2} V_m) / k))$, where G_{max} is the maximum conductance, $V_{1/2}$ is the
- voltage at which the channels are half activated/inactivated, V_m is the membrane voltage and k is the
- slope factor.
- Recovery from inactivation data $(I_t / I_{t=0})$ were normalised, plotted against recovery time (Δt) and
- 141 fitted to a single exponential function:
- $\tau = A_1 + A_2 \exp(-t/t_0)$, where A_1 and A_2 are the coefficients of decay of the time constant
- 143 (τ), t is time and t₀ is a time constant describing the time dependence of τ .
- 144 The time course of inactivation was fitted to a double exponential function:
- I = $A_f \exp(-t/\tau_f) + A_s \exp(-t/\tau_s) + C$, where A_f and A_s are maximal amplitudes of the slow
- and fast components of the current, τ_f and τ_s are the fast and slow decay time constants and C is the
- 147 asymptote.

148 **2.6 Statistical analysis**

- Data are presented as mean and SEM unless stated otherwise. Statistical analysis was performed on
- the raw (non-normalised) data using GraphPad Prism 8.4.0. Pairwise statistical significance was
- determined with Student's paired t-tests. Multiple comparisons were made using ANOVA and Tukey
- post-hoc tests, unless stated otherwise. Results were considered significant at P < 0.05.
- 153 3 Results
- 154 3.1 Effect of eslicarbazepine acetate and S-licarbazepine on transient and persistent Na⁺
- current
- Several studies have clearly established the inhibition of neuronal VGSCs (Na_v1.1, Na_v1.2, Na_v1.3,
- Na_v1.6, Na_v1.7 and Na_v1.8) by ESL and its active metabolite S-Lic (10, 20, 24, 41). Given that ESL
- prolongs the PR interval (27), potentially via inhibiting the cardiac Na_v1.5 isoform, together with the
- interest in inhibiting Na_v1.5 in carcinoma cells to reduce invasion and metastasis (33, 34, 42-44), it is
- also relevant to evaluate the electrophysiological effects of ESL and S-Lic on this isoform. We

- therefore evaluated the effect of both compounds on Na_v1.5 current properties using whole-cell patch
- 162 clamp recording, employing a two-pronged approach: (1) recording Na_v1.5 currents endogenously
- expressed in the MDA-MB-231 breast cancer cell line (29, 30, 45), and (2) recording from Na_v1.5
- stably over-expressed in HEK-293 cells (HEK-Na_v1.5) (46).
- Initially, we evaluated the effect of both compounds on the size of the peak Na⁺ current in MDA-
- MB-231 cells. Na⁺ currents were elicited by depolarising the membrane potential (V_m) to -10 mV
- 167 from a holding potential (V_h) of -120 mV or -80 mV. Application of the prodrug ESL (300 μM)
- reversibly inhibited the transient Na⁺ current by 49.6 ± 3.2 % when the V_h was -120 mV (P < 0.001;
- 169 n = 13; ANOVA + Tukey test; Figure 2A, D). When V_h was set to -80 mV, ESL (300 μ M) reversibly
- inhibited the transient Na⁺ current by $79.5 \pm 4.5 \%$ (P < 0.001; n = 12; ANOVA + Tukey test; Figure
- 171 2C, E). We next assessed the effect of ESL in HEK-Na_v1.5 cells. Application of ESL (300 μM)
- inhibited Na_v1.5 current by 74.7 ± 4.3 % when V_h was -120 mV (P < 0.001; n = 12; Figure 2F, I) and
- by 90.5 ± 2.8 % when V_h was -80 mV (P < 0.001; n = 14; Figure 2H, J). However, the inhibition was
- only partially reversible (P < 0.001; n = 14; Figure 2F, H-J). Application of ESL at a lower
- 175 concentration (100 μM) elicited a similar result (Supplementary Figure 2A-J & Supplementary Table
- 176 1). Together, these data suggest that ESL preferentially inhibited Na_v1.5 in the open or inactivated
- state, since the current inhibition was greater at more depolarised V_h.
- We next tested the effect of the active metabolite S-Lic. S-Lic (300 μM) inhibited the transient Na⁺
- current in MDA-MB-231 cells by 44.4 ± 6.1 % when the V_h was -120 mV (P < 0.001; n = 9;
- 180 ANOVA + Tukey test; Figure 3A, D). When V_h was set to -80 mV, S-Lic (300 µM) inhibited the
- transient Na⁺ current by $73.6 \pm 4.1 \%$ (P < 0.001; n = 10; ANOVA + Tukey test; Figure 3C, E).
- However, the inhibition caused by S-Lic (300 μ M) was only partially reversible (P < 0.05; n = 10;
- ANOVA + Tukey test; Figure 3A, C-E). In HEK-Na_v1.5 cells, S-Lic (300 μM) inhibited Na_v1.5
- 184 current by 46.4 ± 3.9 % when V_h was -120 mV (P < 0.001; n = 13; ANOVA + Tukey test; Figure 3F,
- 185 I) and by 74.0 ± 4.2 % when V_h was -80 mV (P < 0.001; n = 12; ANOVA + Tukey test; Figure 3H,
- J). Furthermore, the inhibition in HEK-Na_v1.5 cells was not reversible over the duration of the
- 187 experiment. Application of S-Lic at a lower concentration (100 μM) elicited a broadly similar result
- 188 (Supplementary Figure 3A-J & Supplementary Table 1). Together, these data show that channel
- inhibition by S-Lic was also more effective at more depolarised V_h. However, unlike ESL, channel
- blockade by S-Lic persisted after washout, suggesting higher target binding affinity for the active
- metabolite and/or greater trapping of the active metabolite in the cytoplasm.
- We also assessed the effect of both compounds on the persistent Na⁺ current measured 20-25 ms after
- depolarisation to -10 mV from -120 mV. In MDA-MB-231 cells, ESL (300 μM) inhibited the
- persistent Na⁺ current by 77 ± 34 % although the reduction was not statistically significant (P = 0.13;
- 195 n = 12; paired t test; Figure 2B, Table 1). In HEK-Na_v1.5 cells, ESL (300 μM) inhibited persistent
- current by $76 \pm 10 \%$ (P < 0.01; n = 12; paired t test; Figure 2G, Table 1). S-Lic (300 μ M) inhibited
- the persistent Na⁺ current in MDA-MB-231 cells by $66 \pm 16 \%$ (P < 0.05; n = 9; paired t test; Figure
- 3B, Table 2). In HEK-Na_v1.5 cells, S-Lic (300 μM) inhibited persistent current by 35 ± 16 % (P <
- 199 0.05; n = 11; Figure 3G, Table 2). Application of both compounds at a lower concentration (100 μ M)
- 200 elicited a similar result (Supplementary Table 1). In summary, both ESL and S-Lic also inhibited the
- persistent Na⁺ current.
- 202 3.2 Effect of eslicarbazepine acetate and S-licarbazepine on voltage dependence of activation and inactivation

- We next investigated the effect of ESL (300 μM) and S-Lic (300 μM) on the I-V relationship in
- 205 MDA-MB-231 and HEK-Na_v1.5 cells. A V_h of -120 mV was used for subsequent analyses to ensure
- that the elicited currents were sufficiently large for analysis of kinetics and voltage dependence,
- 207 particularly for MDA-MB-231 cells, which display smaller peak Na⁺ currents (Tables 1, 2). Neither
- ESL nor S-Lic had any effect on the threshold voltage for activation (Figure 4A-D; Tables 1, 2). ESL
- also had no effect on the voltage at current peak in either cell line (Figure 4A-D; Tables 1, 2).
- 210 Although S-Lic had no effect on voltage at current peak in MDA-MB-231 cells, it was significantly
- 211 hyperpolarised in HEK-Na_v1.5 cells from -18.0 \pm 4.2 mV to -30.0 \pm 5.6 mV (P < 0.001; n = 9; paired
- 212 t test; Figure 4A-D; Tables 1, 2).
- ESL had no significant effect on the half-activation voltage (V½) or slope factor (k) for activation in
- MDA-MB-231 cells (Figure 5A; Table 1). The activation k in HEK-Na_v1.5 cells was also unchanged
- but the activation V½ was significantly hyperpolarised by ESL from -39.4 \pm 1.3 to -44.2 \pm 1.8 mV (P
- < 0.05; n = 10; paired t test; Figure 5B; Table 1). S-Lic also had no significant effect on the activation
- V½ or k in MDA-MB-231 cells (Figure 5C; Table 2). However, the V½ of activation in HEK-Na_v1.5
- cells was significantly hyperpolarised from -32.8 ± 3.1 mV to -40.5 ± 3.4 mV (P < 0.01; n = 9; paired
- 219 t test; Figure 5D; Table 2) and k changed from 5.9 ± 0.9 mV to 4.5 ± 1.1 mV (P < 0.05; n = 9; paired
- 220 t test; Figure 5D; Table 2).
- 221 As regards steady-state inactivation, in MDA-MB-231 cells, ESL significantly hyperpolarised the
- inactivation $V\frac{1}{2}$ from -80.6 ± 0.7 mV to -86.7 ± 1.2 mV (P < 0.001; n = 13; paired t test) without
- affecting inactivation k (Figure 5A; Table 1). ESL also hyperpolarised the inactivation V½ in HEK-
- Na_v1.5 cells from -78.2 \pm 2.5 mV to -88.3 \pm 2.7 mV (P < 0.001; n = 10; paired t test), and changed
- 225 the inactivation k from -6.9 ± 0.4 mV to -9.8 ± 0.7 mV (P < 0.001; n = 10; paired t test; Figure 5B;
- Table 1). S-Lic also significantly hyperpolarised the inactivation V½ in MDA-MB-231 cells from -
- 71.8 \pm 2.5 mV to -76.8 \pm 2.2 mV (P < 0.05; n = 7; paired t test) without affecting inactivation k
- 228 (Figure 5C; Table 2). However, the inactivation V½ in HEK-Na_v1.5 cells was not significantly
- altered by S-Lic, although the inactivation k significantly changed from -6.5 \pm 0.4 mV to -8.1 \pm 0.5
- 230 mV (P < 0.05; n = 9; paired t test; Figure 5D; Table 2). In summary, both ESL and S-Lic affected
- various aspects of the voltage dependence characteristics of Na_v1.5 in MDA-MB-231 and HEK-
- Na_v1.5 cells, predominantly hyperpolarising the voltage dependence of inactivation.

233 3.3 Effect of eslicarbazepine acetate and S-licarbazepine on activation and inactivation kinetics

- We next studied the effect of both compounds on kinetics of activation and inactivation. In MDA-
- 236 MB-231 cells, ESL (300 µM) significantly accelerated the time to peak current (T_p), upon
- 237 depolarisation from -120 mV to -10 mV, from 2.1 ± 0.2 ms to 1.9 ± 0.2 ms (P < 0.01; n = 13; paired t
- 238 test; Table 1). However, in HEK-Na_v1.5 cells, ESL significantly slowed T_p from 1.4 \pm 0.2 ms to 1.5 \pm
- 239 0.2 ms (P < 0.001; n = 14; paired t test; Table 1). S-Lic (300 μ M) had no significant effect on T_p in
- MDA-MB-231 cells but significantly slowed T_p in HEK-Na_v1.5 cells from 1.8 ± 0.5 ms to 2.3 ± 0.6
- 241 ms (P < 0.01; n = 13; paired t test; Table 2).
- To study effects on inactivation kinetics, the current decay following depolarisation from -120 mV to
- 243 -10 mV was fitted to a double exponential function to derive fast and slow time constants of
- inactivation (τ_f and τ_s). Neither ESL nor S-Lic had any significant effect on τ_f or τ_s in MDA-MB-231
- cells (Tables 1, 2). However, in HEK-Na_v1.5 cells, ESL significantly slowed τ_f from 0.9 \pm 0.1 ms to
- $1.2 \pm 0.1 \text{ ms}$ (P < 0.001; n = 12; paired t test; Table 1) and slowed τ_s from $6.6 \pm 0.8 \text{ ms}$ to 20.8 ± 8.5
- 247 ms, although this was not statistically significant. S-Lic significantly slowed τ_f from 1.0 \pm 0.04 ms to

- 248 1.3 \pm 0.06 ms (P < 0.001; n = 11; paired t test; Table 2) and τ_s from 6.3 \pm 0.5 ms to 7.3 \pm 0.5 ms (P <
- 249 0.05; n = 11; paired t test; Table 2). In summary, both ESL and S-Lic elicited various effects on
- kinetics in MDA-MB-231 and HEK-Na_v1.5 cells, predominantly slowing activation and inactivation.

251 3.4 Effect of eslicarbazepine acetate and S-licarbazepine on recovery from fast inactivation

- To investigate the effect of ESL and S-Lic on channel recovery from fast inactivation, we subjected
- 253 cells to two depolarisations from V_h of -120 mV to 0 mV, changing the interval between these in
- 254 which the channels were held at -120 mV to facilitate recovery. Significance was determined by
- 255 fitting a single exponential curve to the normalised current/time relationship and calculating the time
- constant (τ_r). In MDA-MB-231 cells, ESL (300 μ M) significantly slowed τ_r from 6.0 \pm 0.5 ms to 8.7
- ± 0.7 ms (P < 0.05; n = 10; paired t test; Figure 6A, Table 1). Similarly, in HEK-Na_v1.5 cells, ESL
- significantly slowed τ_r from 4.5 \pm 0.4 ms to 7.1 \pm 0.6 ms (P < 0.001; n = 10; paired t test; Figure 6B,
- Table 1). S-Lic (300 μ M) also significantly slowed τ_r in MDA-MB-231 cells from 6.8 \pm 0.4 ms to
- $13.5 \pm 1.0 \text{ ms}$ (P < 0.01; n = 7; paired t test; Figure 6C, Table 2). Finally, S-Lic also significantly
- slowed τ_r in HEK-Na_v1.5 cells from 5.7 ± 0.7 ms to 8.0 ± 1.2 ms (P < 0.01; n = 10; paired t test;
- 262 Figure 6D, Table 2). In summary, both ESL and S-Lic slowed recovery from fast inactivation of
- 263 Na_v1.5.

264

4 Discussion

- In this study, we have shown that ESL and its active metabolite S-Lic inhibit the transient and
- 266 persistent components of Na⁺ current carried by Na_v1.5. We show broadly similar effects in MDA-
- MB-231 cells, which express endogenous Na_v1.5 (29, 30, 45), and in HEK-293 cells over-expressing
- Na_v1.5. Notably, both compounds were more effective when V_h was set to -80 mV than at -120 mV,
- suggestive of depolarised state-dependent binding. In addition, the inhibitory effect of ESL was
- 270 reversible whereas inhibition by S-Lic was less so. As regards voltage-dependence, both ESL and S-
- 271 Lic shifted activation and steady-state inactivation curves, to varying extents in the two cell lines, in
- the direction of more negative voltages. ESL and S-Lic had various effects on activation and
- inactivation kinetics, generally slowing the rate of inactivation. Finally, recovery from fast
- inactivation of Na_v1.5 was significantly slowed by both ESL and S-Lic.
- To our knowledge, this is the first time that the effects of ESL and S-Lic have specifically been tested
- on the Na_v1.5 isoform. A strength of this study is that both the prodrug (ESL) and the active
- 277 metabolite (S-Lic) were tested using two independent cell lines, one endogenously expressing
- Na_v1.5, the other stably over-expressing Na_v1.5. MDA-MB-231 cells also express Na_v1.7, although
- 279 this isoform is estimated to be responsible for only ~9 % of the total VGSC current (30, 45). MDA-
- 280 MB-231 cells also express endogenous β1, β2 and β4 subunits (47-49). MDA-MB-231 cells
- predominantly express the developmentally regulated 'neonatal' Na_v1.5 splice variant, which differs
- 282 from the 'adult' variant over-expressed in the HEK-Na_v1.5 cells by seven amino acids located in the
- extracellular linker between transmembrane segments 3 and 4 of domain 1 (30, 42, 45). Notably,
- 284 however, there were no consistent differences in effect of either ESL or S-Lic between the MDA-
- MB-231 and HEK-Na_v1.5 cells, suggesting that the neonatal vs. adult splicing event, and/or
- 286 expression of endogenous β subunits, does not impact on sensitivity of Na_v1.5 to these compounds.
- This finding contrasts another report showing different sensitivity of the neonatal and adult Na_v1.5
- splice variants to the amide local anaesthetics lidocaine and levobupivacaine (44). Our findings
- suggest that the inhibitory effect of S-Lic on Na_v1.5 is less reversible than that of ESL. This may be
- 290 explained by the differing chemical structures of the two molecules possibly enabling S-Lic to bind
- 291 the target with higher affinity than ESL. Most VGSC-targeting anticonvulsants, including phenytoin,

- lamotrigine and carbamazepine, block the pore by binding via aromatic-aromatic interaction to a
- 293 tyrosine and phenylalanine located in the S6 helix of domain 4 (50). However, S-Lic has been
- 294 proposed to bind to a different site given that it was found to block the pore predominantly during
- slow inactivation (10). Alternatively, the hydroxyl group present on S-Lic (but not ESL) may become
- deprotonated, potentially trapping it in the cytoplasm.
- 297 The findings presented here broadly agree with *in vitro* concentrations used elsewhere to study
- 298 effects of ESL and S-Lic on Na⁺ currents. For example, using a V_h of -80 mV, 300 μM ESL was
- shown to inhibit peak Na⁺ current by 50 % in N1E-115 neuroblastoma cells expressing Na_v1.1,
- Na_v1.2, Na_v1.3, Na_v1.6 and Na_v1.7 (20). S-Lic (250 μ M) also blocks peak Na⁺ current by ~50 % in
- the same cell line (10). In addition, S-Lic (300 μ M) reduces persistent Na⁺ current by ~25 % in
- acutely isolated murine hippocampal CA1 neurons expressing Na_v1.1, Na_v1.2 and Na_v1.6 (21-24).
- 303 Similar to the present study, ESL was shown to hyperpolarise the voltage-dependence of steady-state
- inactivation in N1E-115 cells (20). On the other hand, similar to our finding in HEK-Na_v1.5 cells, S-
- Lic has no effect on steady-state inactivation in N1E-115 cells (10). Again, in agreement with our
- own findings for Na_v1.5, S-Lic slows recovery from inactivation in N1E-115 cells (10). These
- observations suggest that the sensitivity of Na_v1.5 to ESL and S-Lic is broadly similar to that
- 308 reported for neuronal VGSCs. In support of this, Na_v1.5 shares the same conserved residues proposed
- for Na_v1.2 to interact with ESL (Figure 7) (51).
- Notably, the concentrations used in this study are at or above those achieved in clinical use (e.g. ESL
- 311 1200 mg once daily gives a peak plasma concentration of ~100 μM) (10). However, it has been
- argued that the relatively high concentrations which have been previously tested *in vitro* are clinically
- relevant given that S-Lic has a high (50:1) lipid:water partition co-efficient and thus would be
- 314 expected to reside predominantly in the tissue membrane fraction in vivo (15). Our study suggests
- that a clinically relevant plasma concentration (100 µM) would inhibit peak and persistent Na_v1.5
- 316 currents. Future work investigating the dose-dependent effects of ESL and S-Lic would be useful to
- 317 aid clinical judgements.
- The data presented here raise several implications for clinicians. The observed inhibition of Na_v1.5 is
- worthy of note when considering cardiac function in patients receiving ESL (13). Although the QT
- interval remains unchanged for individuals on ESL treatment, prolongation of the PR interval has
- been observed (27). Further work is required to establish whether the basis for this PR prolongation
- 322 is indeed via Na_v1.5 inhibition. In addition, it would be of interest to investigate the efficacy of ESL
- and S-Lic in the context of heritable arrhythmogenic mutations in SCN5A, as well as the possible
- involvement of the β subunits (24, 26, 52, 53). The findings presented here are also relevant in the
- 325 context of Na_v1.5 expression in carcinoma cells (54). Given that cancer cells have a relatively
- depolarised V_m, it is likely that Na_v1.5 is mainly in the inactivated state with the persistent Na⁺
- current being functionally predominant (55, 56). Increasing evidence suggests that persistent Na⁺
- 328 current carried by Na_v1.5 in cancer cells contributes to invasion and several studies have shown that
- other VGSC inhibitors reduce metastasis in preclinical models (29-35, 57). Thus, use-dependent
- inhibition by ESL would ensure that channels in malignant cells are particularly targeted, raising the
- possibility that it could be used as an anti-metastatic agent (43). This study therefore paves the way
- for future investigations into ESL and S-Lic as potential invasion inhibitors.

5 Author Contributions

- TL, SC and WB contributed to the conception and design of the work. TL, LB and WB contributed
- to acquisition, analysis, and interpretation of data for the work. TL, SC and WB contributed to

- drafting the work and revising it critically for important intellectual content. All authors approved the
- final version of the manuscript.
- 338 6 Abbreviations
- ESL, eslicarbazepine acetate; HEK-Na_v1.5, HEK-293 cells stably expressing Na_v1.5; I-V, current-
- voltage; k, slope factor; PSS, physiological saline solution; S-Lic, S-licarbazepine, T_p: time to peak
- current; τ_f : fast time constant of inactivation; τ_s : slow time constant of inactivation; τ_r : time constant
- of recovery from inactivation; VGSC, voltage-gated Na⁺ channel; V_m, membrane potential; V_h,
- holding potential; V_{peak}: voltage at which current was maximal; V_{rev}, reversal potential; V_{thres}:
- 344 threshold voltage for activation; $V_{1/2}$, half-activation voltage.

345 7 Acknowledgements

- 346 This work was supported by Cancer Research UK (A25922) and Breast Cancer Now
- 347 (2015NovPhD572).

348 **8** Conflict of interest statement

- 349 The authors declare that the research was conducted in the absence of any commercial or financial
- relationships that could be construed as a potential conflict of interest.

351 9 Data availability statement

- 352 The datasets used and/or analysed during the current study are available from the corresponding
- author on reasonable request.

354 10 References

- 355 1. Almeida L, Soares-da-Silva P. Eslicarbazepine acetate (BIA 2-093). Neurotherapeutics.
- 356 2007;4(1):88-96.
- 357 2. Sperling MR, Abou-Khalil B, Harvey J, Rogin JB, Biraben A, Galimberti CA, et al.
- 358 Eslicarbazepine acetate as adjunctive therapy in patients with uncontrolled partial-onset seizures:
- Results of a phase III, double-blind, randomized, placebo-controlled trial. Epilepsia. 2015;56(2):244-
- 360 53.
- 361 3. Almeida L, Falcao A, Maia J, Mazur D, Gellert M, Soares-da-Silva P. Single-dose and
- 362 steady-state pharmacokinetics of eslicarbazepine acetate (BIA 2-093) in healthy elderly and young
- 363 subjects. J Clin Pharmacol. 2005;45(9):1062-6.
- 364 4. Almeida L, Minciu I, Nunes T, Butoianu N, Falção A, Magureanu S-A, et al.
- 365 Pharmacokinetics, Efficacy, and Tolerability of Eslicarbazepine Acetate in Children and Adolescents
- With Epilepsy. The Journal of Clinical Pharmacology. 2008;48(8):966-77.
- 5. Perucca E, Elger C, Halász P, Falcão A, Almeida L, Soares-da-Silva P. Pharmacokinetics of
- 368 eslicarbazepine acetate at steady-state in adults with partial-onset seizures. Epilepsy Res.
- 369 2011;96(1):132-9.
- 370 6. Potschka H, Soerensen J, Pekcec A, Loureiro A, Soares-da-Silva P. Effect of eslicarbazepine
- acetate in the corneal kindling progression and the amygdala kindling model of temporal lobe
- 372 epilepsy. Epilepsy Res. 2014;108(2):212-22.

- 373 7. Sierra-Paredes G, Loureiro AI, Wright LC, Sierra-Marcuño G, Soares-da-Silva P. Effects of
- 374 eslicarbazepine acetate on acute and chronic latrunculin A-induced seizures and extracellular amino
- acid levels in the mouse hippocampus. BMC Neurosci. 2014;15(1):134.
- 376 8. Alves G, Figueiredo I, Falcao A, Castel-Branco M, Caramona M, Soares-Da-Silva P.
- 377 Stereoselective disposition of S- and R-licarbazepine in mice. Chirality. 2008;20(6):796-804.
- 378 9. Brady K, Hebeisen S, Konrad D, Soares-da-Silva P. The effects of eslicarbazepine, R-
- 379 licarbazepine, oxcarbazepine and carbamazepine on ion transmission Cav3.2 channels. Epilepsia.
- 380 2011;52:260.
- 381 10. Hebeisen S, Pires N, Loureiro AI, Bonifacio MJ, Palma N, Whyment A, et al. Eslicarbazepine
- and the enhancement of slow inactivation of voltage-gated sodium channels: a comparison with
- 383 carbamazepine, oxcarbazepine and lacosamide. Neuropharmacology. 2015;89:122-35.
- Brown ME, El-Mallakh RS. Role of eslicarbazepine in the treatment of epilepsy in adult
- patients with partial-onset seizures. Ther Clin Risk Manag. 2010;6:103-9.
- 386 12. Galiana GL, Gauthier AC, Mattson RH. Eslicarbazepine Acetate: A New Improvement on a
- Classic Drug Family for the Treatment of Partial-Onset Seizures. Drugs R D. 2017;17(3):329-39.
- 388 13. Zaccara G, Giovannelli F, Cincotta M, Carelli A, Verrotti A. Clinical utility of
- eslicarbazepine: current evidence. Drug Des Devel Ther. 2015;9:781-9.
- 390 14. Falcao A, Fuseau E, Nunes T, Almeida L, Soares-da-Silva P. Pharmacokinetics, drug
- interactions and exposure-response relationship of eslicarbazepine acetate in adult patients with
- partial-onset seizures: population pharmacokinetic and pharmacokinetic/pharmacodynamic analyses.
- 393 CNS Drugs. 2012;26(1):79-91.
- 394 15. Bialer M, Soares-da-Silva P. Pharmacokinetics and drug interactions of eslicarbazepine
- 395 acetate. Epilepsia. 2012;53(6):935-46.
- 396 16. Catterall WA. Structure and function of voltage-gated sodium channels at atomic resolution.
- 397 Exp Physiol. 2014;99(1):35-51.
- 398 17. Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, et al. Nomenclature
- of voltage-gated sodium channels. Neuron. 2000;28:365-8.
- 400 18. Brackenbury WJ, Isom LL. Na Channel beta Subunits: Overachievers of the Ion Channel
- 401 Family. Front Pharmacol. 2011;2:53.
- 402 19. Van Wart A, Matthews G. Impaired firing and cell-specific compensation in neurons lacking
- 403 nav1.6 sodium channels. J Neurosci. 2006;26(27):7172-80.
- 404 20. Bonifacio MJ, Sheridan RD, Parada A, Cunha RA, Patmore L, Soares-da-Silva P. Interaction
- of the novel anticonvulsant, BIA 2-093, with voltage-gated sodium channels: comparison with
- 406 carbamazepine. Epilepsia. 2001;42(5):600-8.
- 407 21. Royeck M, Horstmann MT, Remy S, Reitze M, Yaari Y, Beck H. Role of axonal NaV1.6
- 408 sodium channels in action potential initiation of CA1 pyramidal neurons. J Neurophysiol.
- 409 2008;100(4):2361-80.
- 410 22. Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, et al. Reduced
- sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in
- 412 infancy. Nat Neurosci. 2006;9(9):1142-9.
- 413 23. Westenbroek RE, Merrick DK, Catterall WA. Differential subcellular localization of the RI
- and RII Na+ channel subtypes in central neurons. Neuron. 1989;3(6):695-704.

- 415 24. Doeser A, Soares-da-Silva P, Beck H, Uebachs M. The effects of eslicarbazepine on
- persistent Na(+) current and the role of the Na(+) channel beta subunits. Epilepsy Res.
- 417 2014;108(2):202-11.
- 418 25. Saint DA. The cardiac persistent sodium current: an appealing therapeutic target? Br J
- 419 Pharmacol. 2008;153(6):1133-42.
- 420 26. Uebachs M, Opitz T, Royeck M, Dickhof G, Horstmann MT, Isom LL, et al. Efficacy loss of
- 421 the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical
- effects on persistent sodium currents. J Neurosci. 2010;30(25):8489-501.
- 423 27. Vaz-Da-Silva M, Nunes T, Almeida L, Gutierrez MJ, Litwin JS, Soares-Da-Silva P.
- 424 Evaluation of Eslicarbazepine acetate on cardiac repolarization in a thorough QT/QTc study. J Clin
- 425 Pharmacol. 2012;52(2):222-33.
- 426 28. George AL, Jr. Inherited disorders of voltage-gated sodium channels. J Clin Invest.
- 427 2005;115(8):1990-9.
- 428 29. Roger S, Besson P, Le Guennec JY. Involvement of a novel fast inward sodium current in the
- invasion capacity of a breast cancer cell line. Biochim Biophys Acta. 2003;1616(2):107-11.
- 430 30. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, et al. Voltage-gated
- sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res.
- 432 2005;11(15):5381-9.
- 433 31. House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, Luu T, et al. Voltage-gated Na+
- channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer
- 435 invasion. Cancer Res. 2010;70(17):6957-67.
- 436 32. Nelson M, Yang M, Millican-Slater R, Brackenbury WJ. Nav1.5 regulates breast tumor
- growth and metastatic dissemination in vivo. Oncotarget. 2015;6(32):32914-29.
- 438 33. Nelson M, Yang M, Dowle AA, Thomas JR, Brackenbury WJ. The sodium channel-blocking
- antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Mol Cancer.
- 440 2015;14(1):13.
- 441 34. Driffort V, Gillet L, Bon E, Marionneau-Lambot S, Oullier T, Joulin V, et al. Ranolazine
- inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization. Mol Cancer.
- 443 2014;13(1):264.
- 444 35. Yang M, Kozminski DJ, Wold LA, Modak R, Calhoun JD, Isom LL, et al. Therapeutic
- potential for phenytoin: targeting Na(v)1.5 sodium channels to reduce migration and invasion in
- metastatic breast cancer. Breast Cancer Res Treat. 2012;134(2):603-15.
- 36. Simon A, Yang M, Marrison JL, James AD, Hunt MJ, O'Toole PJ, et al. Metastatic breast
- cancer cells induce altered microglial morphology and electrical excitability in vivo. J
- 449 Neuroinflammation. 2020;17(1):87.
- 450 37. Masters JR, Thomson JA, Daly-Burns B, Reid YA, Dirks WG, Packer P, et al. Short tandem
- 451 repeat profiling provides an international reference standard for human cell lines. Proc Natl Acad Sci
- 452 U S A. 2001;98(14):8012-7.
- 453 38. Uphoff CC, Gignac SM, Drexler HG. Mycoplasma contamination in human leukemia cell
- lines. I. Comparison of various detection methods. J Immunol Methods. 1992;149(1):43-53.
- 455 39. Brackenbury WJ, Djamgoz MB. Activity-dependent regulation of voltage-gated Na⁺ channel
- expression in Mat-LyLu rat prostate cancer cell line. J Physiol. 2006;573(Pt 2):343-56.

- 457 40. Armstrong CM, Bezanilla F. Inactivation of the sodium channel. II. Gating current
- 458 experiments. J Gen Physiol. 1977;70(5):567-90.
- 459 41. Soares-da-Silva P, Pires N, Bonifácio MJ, Loureiro AI, Palma N, Wright LC. Eslicarbazepine
- acetate for the treatment of focal epilepsy: an update on its proposed mechanisms of action.
- 461 Pharmacol Res Perspect. 2015;3(2).
- 462 42. Djamgoz MBA, Fraser SP, Brackenbury WJ. In Vivo Evidence for Voltage-Gated Sodium
- Channel Expression in Carcinomas and Potentiation of Metastasis. Cancers (Basel). 2019;11(11).
- 464 43. Martin F, Ufodiama C, Watt I, Bland M, Brackenbury WJ. Therapeutic value of voltage-gated
- sodium channel inhibitors in breast, colorectal and prostate cancer: a systematic review. Front
- 466 Pharmacol. 2015;6:273.
- 467 44. Elajnaf T, Baptista-Hon DT, Hales TG. Potent Inactivation-Dependent Inhibition of Adult
- and Neonatal NaV1.5 Channels by Lidocaine and Levobupivacaine. Anesth Analg. 2018;127(3):650-
- 469 60.
- 470 45. Brackenbury WJ, Chioni AM, Diss JK, Djamgoz MB. The neonatal splice variant of Nav1.5
- potentiates in vitro metastatic behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer
- 472 Res Treat. 2007;101(2):149-60.
- 473 46. Patino GA, Brackenbury WJ, Bao YY, Lopez-Santiago LF, O'Malley HA, Chen CL, et al.
- Voltage-Gated Na+ Channel beta 1B: A Secreted Cell Adhesion Molecule Involved in Human
- 475 Epilepsy. J Neurosci. 2011;31(41):14577-91.
- 476 47. Nelson M, Millican-Slater R, Forrest LC, Brackenbury WJ. The sodium channel beta1
- subunit mediates outgrowth of neurite-like processes on breast cancer cells and promotes tumour
- 478 growth and metastasis. Int J Cancer. 2014;135(10):2338-51.
- 479 48. Chioni AM, Brackenbury WJ, Calhoun JD, Isom LL, Djamgoz MB. A novel adhesion
- 480 molecule in human breast cancer cells: voltage-gated Na+ channel beta1 subunit. Int J Biochem Cell
- 481 Biol. 2009;41(5):1216-27.
- 482 49. Bon E, Driffort V, Gradek F, Martinez-Caceres C, Anchelin M, Pelegrin P, et al. SCN4B acts
- as a metastasis-suppressor gene preventing hyperactivation of cell migration in breast cancer. Nature
- 484 communications. 2016;7:13648.
- 485 50. Lipkind GM, Fozzard HA. Molecular model of anticonvulsant drug binding to the voltage-
- 486 gated sodium channel inner pore. Mol Pharmacol. 2010;78(4):631-8.
- 51. Shaikh S, Rizvi SM, Hameed N, Biswas D, Khan M, Shakil S, et al. Aptiom (eslicarbazepine
- acetate) as a dual inhibitor of beta-secretase and voltage-gated sodium channel: advancement in
- 489 Alzheimer's disease-epilepsy linkage via an enzoinformatics study. CNS Neurol Disord Drug
- 490 Targets. 2014;13(7):1258-62.
- 491 52. Brackenbury WJ, Isom LL. Voltage-gated Na+ channels: potential for beta subunits as
- therapeutic targets. Expert Opin Ther Targets. 2008;12(9):1191-203.
- 493 53. Rivaud MR, Delmar M, Remme CA. Heritable arrhythmia syndromes associated with
- 494 abnormal cardiac sodium channel function: ionic and non-ionic mechanisms. Cardiovasc Res. 2020.
- 495 54. Fraser SP, Ozerlat-Gunduz I, Brackenbury WJ, Fitzgerald EM, Campbell TM, Coombes RC,
- 496 et al. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors
- and auto-regulation. Philos Trans R Soc Lond B Biol Sci. 2014;369(1638):20130105.

- 498 55. Yang M, Brackenbury WJ. Membrane potential and cancer progression. Front Physiol.
- 499 2013;4:185.
- 500 56. Yang M, James AD, Suman R, Kasprowicz R, Nelson M, O'Toole PJ, et al. Voltage-
- dependent activation of Rac1 by Nav 1.5 channels promotes cell migration. J Cell Physiol.
- 502 2020;235(4):3950-72.
- 503 57. Besson P, Driffort V, Bon E, Gradek F, Chevalier S, Roger S. How do voltage-gated sodium
- channels enhance migration and invasiveness in cancer cells? Biochim Biophys Acta. 2015;1848(10
- 505 Pt B):2493-501.

507

10.1 Figure legends

- Figure 1. Chemical structures of eslicarbazepine acetate and S-licarbazepine. (A) eslicarbazepine
- 509 acetate; (9S)-2-carbamoyl-2-azatricyclo[9.4.0.0^{3,8}]pentadeca-1(15),3,5,7,11,13-hexaen-9-yl acetate.
- 510 (B) S-licarbazepine; (10R)-10-hydroxy-2-azatricyclo[9.4.0.0^{3,8}]pentadeca-1(11),3,5,7,12,14-hexaene-
- 2-carboxamide. Structures were drawn using Chemspider software.
- Figure 2. Effect of eslicarbazepine acetate on Na_v1.5 currents. (A) Representative Na⁺ currents in an
- MDA-MB-231 cell elicited by a depolarisation from -120 mV to -10 mV in physiological saline
- solution (PSS; black), eslicarbazepine acetate (ESL; 300 µM; red) and after washout (grey). Dotted
- vertical lines define the time period magnified in (B). (B) Representative persistent Na⁺ currents in an
- MDA-MB-231 cell elicited by a depolarisation from -120 mV to -10 mV. (C) Representative Na⁺
- 517 currents in an MDA-MB-231 cell elicited by a depolarisation from -80 mV to -10 mV. (D)
- Normalised Na⁺ currents in MDA-MB-231 cells elicited by a depolarisation from -120 mV to -10
- mV. (E) Normalised Na⁺ currents in MDA-MB-231 cells elicited by a depolarisation from -80 mV to
- -10 mV. (F) Representative Na⁺ currents in a HEK-Na_v1.5 cell elicited by a depolarisation from -120
- mV to -10 mV in PSS (black), ESL (300 μM; red) and after washout (grey). Dotted vertical lines
- define the time period magnified in (G). (G) Representative persistent Na⁺ currents in a HEK-Na_v1.5
- 523 cell elicited by a depolarisation from -120 mV to -10 mV. (H) Representative Na⁺ currents in a HEK-
- Na_v1.5 cell elicited by a depolarisation from -80 mV to -10 mV. (I) Normalised Na⁺ currents in HEK-
- Na_v1.5 cells elicited by a depolarisation from -120 mV to -10 mV. (J) Normalised Na⁺ currents in
- 526 HEK-Na_v1.5 cells elicited by a depolarisation from -80 mV to -10 mV. Results are mean + SEM. *P
- 527 ≤ 0.05 ; **P ≤ 0.01 ; ***P ≤ 0.001 ; one-way ANOVA with Tukey tests (n = 12-14). NS, not
- 528 significant.
- Figure 3. Effect of S-licarbazepine on Na_v1.5 currents. (A) Representative Na⁺ currents in an MDA-
- MB-231 cell elicited by a depolarisation from -120 mV to -10 mV in physiological saline solution
- 531 (PSS; black), S-licarbazepine (S-Lic; 300 μM; red) and after washout (grey). Dotted vertical lines
- define the time period magnified in (B). (B) Representative persistent Na⁺ currents in an MDA-MB-
- 231 cell elicited by a depolarisation from -120 mV to -10 mV. (C) Representative Na⁺ currents in an
- MDA-MB-231 cell elicited by a depolarisation from -80 mV to -10 mV. (D) Normalised Na⁺
- 535 currents in MDA-MB-231 cells elicited by a depolarisation from -120 mV to -10 mV. (E)
- Normalised Na⁺ currents in MDA-MB-231 cells elicited by a depolarisation from -80 mV to -10 mV.
- 537 (F) Representative Na⁺ currents in a HEK-Na_v1.5 cell elicited by a depolarisation from -120 mV to -
- 538 10 mV in PSS (black), S-Lic (300 μM; red) and after washout (grey). Dotted vertical lines define the
- time period magnified in (G). (G) Representative persistent Na⁺ currents in a HEK-Na_v1.5 cell
- elicited by a depolarisation from -120 mV to -10 mV. (H) Representative Na⁺ currents in a HEK-
- Na_v1.5 cell elicited by a depolarisation from -80 mV to -10 mV. (I) Normalised Na⁺ currents in HEK-

- Na_v1.5 cells elicited by a depolarisation from -120 mV to -10 mV. (J) Normalised Na⁺ currents in
- 543 HEK-Na_v1.5 cells elicited by a depolarisation from -80 mV to -10 mV. Results are mean + SEM. *P
- ≤ 0.05 ; ***P ≤ 0.001 ; one-way ANOVA with Tukey tests (n = 9-13). NS, not significant.
- Figure 4. Effect of eslicarbazepine acetate and S-licarbazepine on the current-voltage relationship.
- 546 (A) Current-voltage (I-V) plots of Na⁺ currents in MDA-MB-231 cells in physiological saline
- solution (PSS; black circles) and in eslicarbazepine acetate (ESL; 300 μM; red squares). (B) (I-V)
- 548 plots of Na⁺ currents in HEK-Na_v1.5 cells in PSS (black circles) and ESL (300 μM; red squares). (C)
- 549 I-V plots of Na⁺ currents in MDA-MB-231 cells in PSS (black circles) and S-licarbazepine (S-Lic;
- 300 μM; red squares). (D) I-V plots of Na⁺ currents in HEK-Na_v1.5 cells in PSS (black circles) and
- 551 S-Lic (300 μM; red squares). Currents were elicited using 10 mV depolarising steps from -80 to +30
- mV for 30 ms, from a holding potential of -120 mV. Results are mean \pm SEM (n = 7-13).
- Figure 5. Effect of eslicarbazepine acetate and S-licarbazepine on activation and steady-state
- inactivation. (A) Activation and steady-state inactivation in MDA-MB-231 cells in physiological
- saline solution (PSS; black circles) and in eslicarbazepine acetate (ESL; 300 μM; red squares). (B)
- Activation and steady-state inactivation in HEK-Na_v1.5 cells in PSS (black circles) and ESL (300
- 557 μM; red squares). (C) Activation and steady-state inactivation in MDA-MB-231 cells in PSS (black
- 558 circles) and S-licarbazepine (S-Lic; 300 μM; red squares). (D) Activation and steady-state
- inactivation in HEK-Na_v1.5 cells in PSS (black circles) and S-Lic (300 μM; red squares). For
- activation, normalised conductance (G/G_{max}) was calculated from the current data and plotted as a
- function of voltage. For steady-state inactivation, normalised current (I/I_{max}), elicited by 50 ms test
- pulses at -10 mV following 250 ms conditioning voltage pulses between -120 mV and +30 mV.
- applied from a holding potential of -120 mV, was plotted as a function of the prepulse voltage.
- Results are mean \pm SEM (n = 7-13). Activation and inactivation curves are fitted with Boltzmann
- 565 functions.
- Figure 6. Effect of eslicarbazepine acetate and S-licarbazepine on recovery from inactivation. (A)
- Recovery from inactivation in MDA-MB-231 cells in physiological saline solution (PSS; black
- circles) and in eslicarbazepine acetate (ESL; 300 µM; red squares). (B) Recovery from inactivation in
- HEK-Na_v1.5 cells in PSS (black circles) and ESL (300 μM; red squares). (C) Recovery from
- inactivation in MDA-MB-231 cells in PSS (black circles) and S-licarbazepine (S-Lic; 300 µM; red
- 571 squares). (D) Recovery from inactivation in HEK-Na_v1.5 cells in PSS (black circles) and S-Lic (300
- 572 μ M; red squares). The fraction recovered (I_t/I_c) was determined by a 25 ms pulse to 0 mV (I_c),
- followed by a recovery pulse to -120 mV for 1-500 ms, and a subsequent 25 ms test pulse to 0 mV
- 574 (I_t), applied from a holding potential of -120 mV, and plotted as a function of the recovery interval.
- 575 Data are fitted with single exponential functions which are statistically different between control and
- drug treatments in all cases. Results are mean \pm SEM (n = 7-10).
- Figure 7. Clustal alignment of amino acid sequences of Na_v1.1-Na_v1.9 (SCN1A-SCN11A). ESL was
- 578 proposed previously (51) to interact with the highlighted amino acids in Na_v1.2. An alignment of
- 579 Na_v1.2 (UniProtKB Q99250 (SCN2A HUMAN)) with Na_v1.1 (UniProtKB P35498
- 580 (SCN1A HUMAN)), Na_v1.3 (UniProtKB Q9NY46 (SCN3A HUMAN)), Na_v1.4 (UniProtKB -
- 581 P35499 (SCN4A HUMAN)), Na_v1.5 (UniProtKB Q14524 (SCN5A HUMAN)) Na_v1.6
- 582 (UniProtKB Q9UQD0 (SCN8A HUMAN)), Na_v1.7 (UniProtKB Q15858 (SCN9A HUMAN)),
- Na_v1.8 (UniProtKB Q9Y5Y9 (SCN10A HUMAN)), and Na_v1.9 (UniProtKB Q9UI33
- 584 (SCN11A HUMAN)) shows that the interacting amino acids highlighted in yellow are conserved
- between Na_v1.2 and Na_v1.5, along with most other isoforms. Asterisks indicate conserved residues.
- Colon indicates conservation between groups of strongly similar properties scoring > 0.5 in the

Eslicarbazepine effects on Na_v1.5

Gonnet PAM 250 matrix. Period indicates conservation between groups of weakly similar properties - scoring \leq 0.5 in the Gonnet PAM 250 matrix.

Table 1. Effect of eslicarbazepine acetate (300 μM) on Na⁺ current characteristics in MDA-MB-231 and HEK-Na_v1.5 cells.¹

591

592 593

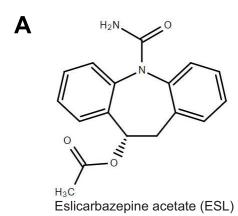
596

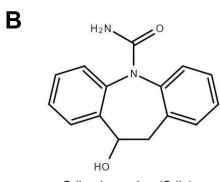
A. MDA-MB-231 cells				
Parameter	Control	ESL	P value	N
V_{thres} (mV)	-45.7 ± 1.7	-45.0 ± 1.4	0.58	13
V _{peak} (mV)	3.1 ± 2.1	-3.9 ± 2.7	0.056	13
Activation V½ (mV)	-19.3 ± 1.4	-22.0 ± 1.5	0.095	12
Activation k (mV)	10.6 ± 0.7	9.3 ± 0.8	0.076	12
Inactivation V½ (mV)	-80.6 ± 0.7	-86.7 ± 1.2	< 0.001	13
Inactivation k (mV)	-4.8 ± 0.4	-7.4 ± 1.7	0.139	13
Peak current density at -10 mV (pA/pF)	-14.8 ± 3.9	-8.0 ± 2.5	< 0.001	13
Persistent current density at -10 mV (pA/pF)	-0.15 ± 0.05	-0.02 ± 0.07	0.13	12
T _p at -10 mV (ms)	2.1 ± 0.2	1.9 ± 0.2	< 0.01	13
τ_f at -10 mV (ms)	1.3 ± 0.1	1.3 ± 0.2	0.954	13
τ_s at -10 mV) (ms)	10.0 ± 2.3	6.9 ± 2.0	0.289	13
$\tau_{\rm r} ({ m ms})$	6.0 ± 0.5	8.7 ± 0.7	< 0.05	10
B. HEK-Na _v 1.5 cells				
Parameter	Control	ESL	P value	N
V _{thres} (mV)	-55.0 ± 1.7	-54.0 ± 2.2	0.758	10
V _{peak} (mV)	-26.0 ± 2.2	-24.0 ± 4.3	0.591	10
Activation V½ (mV)	-39.4 ± 1.3	-44.2 ± 1.8	< 0.05	10
Activation k (mV)	5.3 ± 1.3	3.8 ± 0.7	0.361	10
Inactivation V½ (mV)	-78.2 ± 2.5	-88.3 ± 2.7	< 0.001	10
Inactivation k (mV)	-6.9 ± 0.4	-9.8 ± 0.7	< 0.001	10
Peak current density at -10 mV (pA/pF)	-154.4 ± 24.0	-33.1 ± 4.7	< 0.001	12
Persistent current density at -10 mV (pA/pF)	-0.61 ± 0.15	-0.12 ± 0.05	< 0.01	12
T _p at -10 mV (ms)	1.4 ± 0.2	1.9 ± 0.2	< 0.001	14
τ_f at -10 mV (ms)	0.9 ± 0.1	1.2 ± 0.1	< 0.001	12
τ_s at -10 mV (ms)	6.6 ± 0.8	20.8 ± 8.5	0.128	12
$\tau_{\rm r}$ (ms)	4.5 ± 0.4	7.1 ± 0.6	< 0.001	10

¹ESL: eslicarbazepine acetate (300 μM); V_{thres}: threshold voltage for activation; V_{peak}: voltage at which current was maximal; V½: half (in)activation voltage; k: slope factor for (in)activation; T_p:

time to peak current; τ_f : fast time constant of inactivation; τ_s : slow time constant of inactivation; τ_r : 594 595

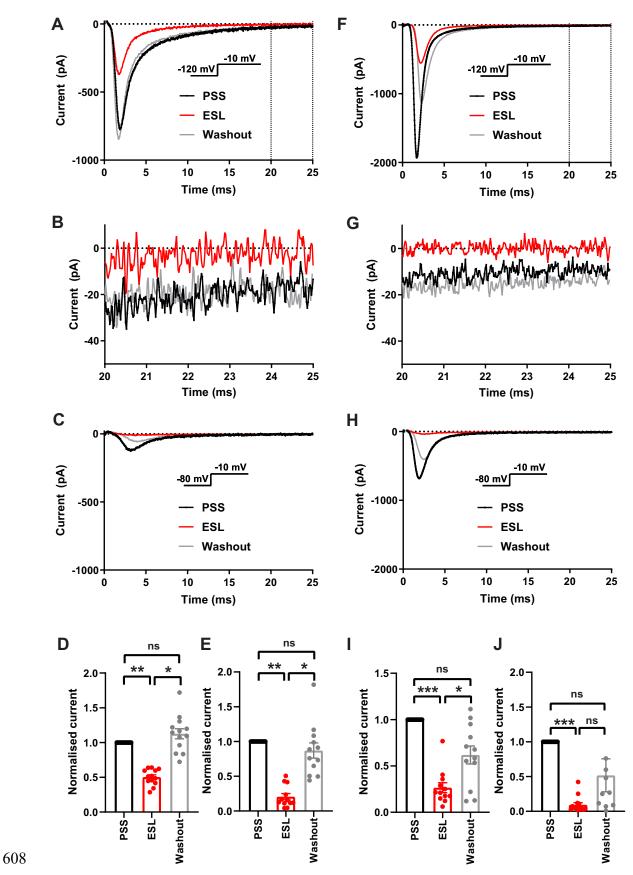
time constant of recovery from inactivation. The holding potential was -120 mV. Results are mean \pm

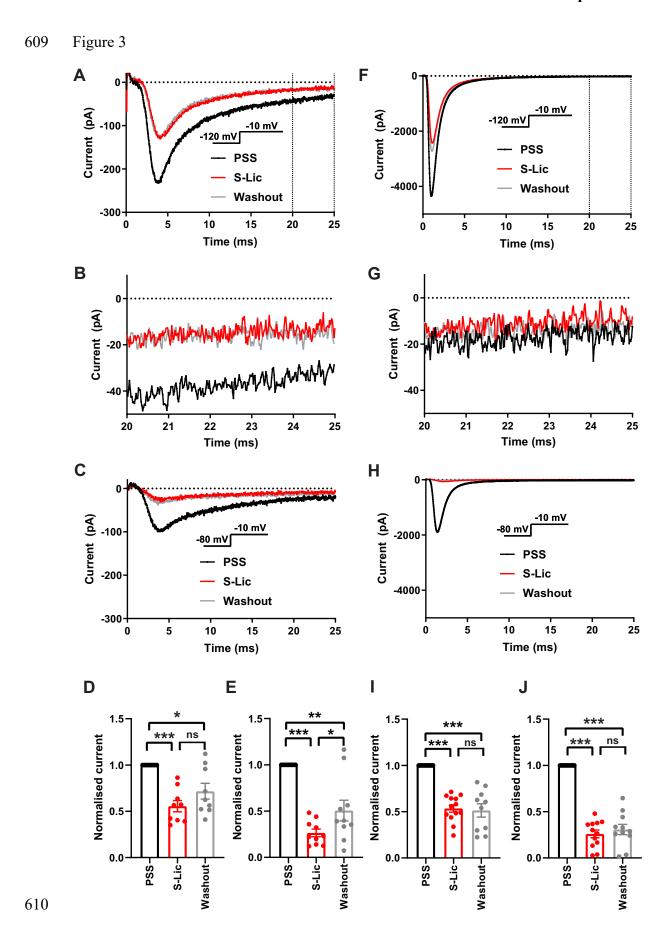

SEM. Statistical comparisons were made with paired t-tests.

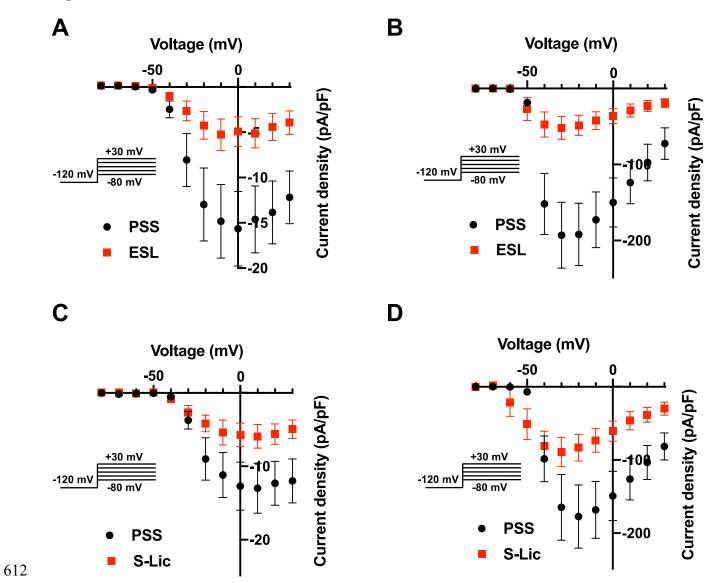

Table 2. Effect of S-licarbazepine (300 μM) on Na⁺ current characteristics in MDA-MB-231 and HEK-Na_v1.5 cells.¹

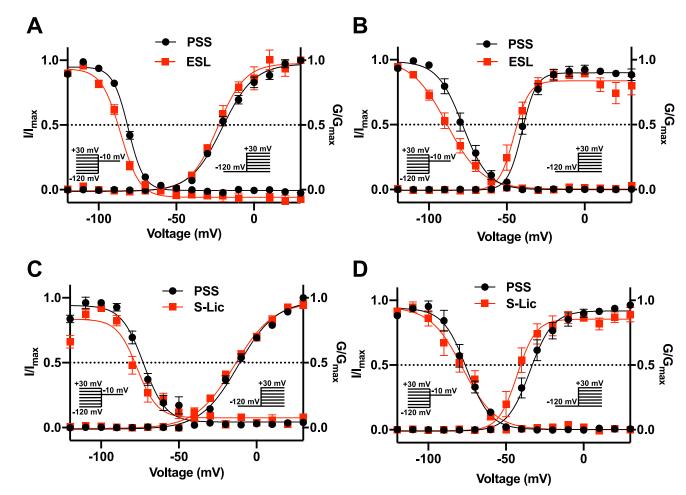
A. MDA-MB-231 cells				
Parameter	Control	S-Lic	P value	N
V _{thres} (mV)	-34.4 ± 2.0	-35.7 ± 2.0	0.603	7
V_{peak} (mV)	11.43 ± 4.4	10.0 ± 4.9	0.818	7
Activation V½ (mV)	-12.9 ± 1.3	-13.7 ± 1.4	0.371	7
Activation k (mV)	11.0 ± 0.5	11.9 ± 0.8	0.520	7
Inactivation V½ (mV)	-71.8 ± 2.5	-76.8 ± 2.2	< 0.05	7
Inactivation k (mV)	-6.8 ± 0.9	-6.0 ± 1.2	0.302	7
Peak current density at -10 mV (pA/pF)	-12.0 ± 3.1	-6.9 ± 2.5	< 0.001	9
Persistent current density at -10 mV (pA/pF)	-1.3 ± 0.4	-0.6 ± 0.2	< 0.05	9
T _p at -10 mV (ms)	4.5 ± 0.4	5.1 ± 0.7	0.103	9
$\tau_{\rm f}$ at -10 mV (ms)	3.8 ± 1.1	3.2 ± 0.4	0.553	7
$\tau_{\rm s}$ at -10 mV (ms)	25.7 ± 7.0	27.1 ± 12.0	0.920	7
$\tau_{\rm r}$ (ms)	6.8 ± 0.4	13.5 ± 1.0	< 0.01	7
B. HEK-Na _v 1.5 cells				
Parameter	Control	S-Lic	P value	N
V _{thres} (mV)	-50.0 ± 1.9	-51.3 ± 3.5	0.598	9
$V_{\text{peak}} (mV)$	-18.0 ± 4.2	-30.0 ± 5.6	< 0.001	9
Activation V½ (mV)	-32.8 ± 3.1	-40.5 ± 3.4	< 0.01	9
Activation k (mV)	5.9 ± 0.9	4.5 ± 1.1	< 0.05	9
Inactivation V½ (mV)	-75.9 ± 2.6	-79.3 ± 4.1	0.116	9
Inactivation k (mV)	-6.5 ± 0.4	-8.1 ± 0.5	< 0.05	9
Peak current density at -10 mV (pA/pF)	-140.9 ± 26.8	-77.2 ± 17.0	< 0.001	13
Persistent current density at -10 mV (pA/pF)	-0.9 ± 0.2	-0.5 ± 0.2	< 0.05	11
T _p at -10 mV (ms)	1.8 ± 0.5	2.3 ± 0.6	< 0.01	13
$\tau_{\rm f}$ at -10 mV (ms)	1.0 ± 0.04	1.3 ± 0.06	< 0.001	11
τ_s at -10 mV (ms)	6.3 ± 0.5	7.3 ± 0.5	< 0.05	11
$\tau_{\rm r}$ (ms)	5.7 ± 0.7	8.0 ± 1.2	< 0.01	10

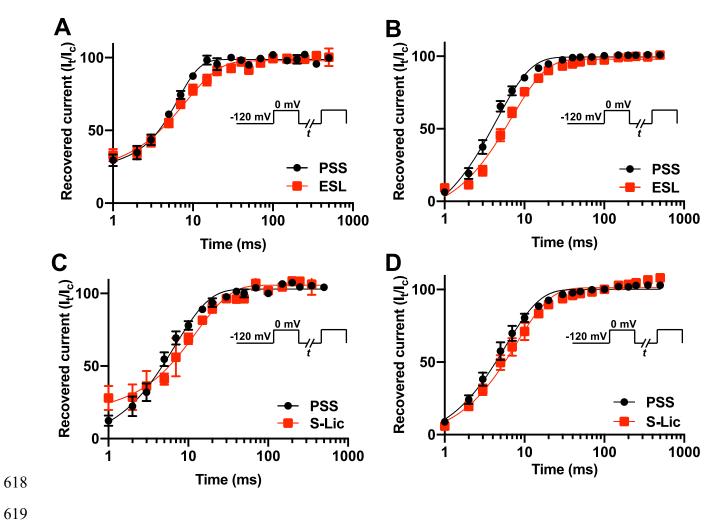
 $^1S\text{-Lic}$: S-licarbazepine (300 μM); V_{thres} : threshold voltage for activation; V_{peak} : voltage at which current was maximal; V½: half (in)activation voltage; k: slope factor for (in)activation; T_p : time to peak current; τ_f : fast time constant of inactivation; τ_s : slow time constant of inactivation; τ_r : time constant of recovery from inactivation. The holding potential was -120 mV. Results are mean \pm SEM. Statistical comparisons were made with paired t-tests.


Figure 1




S-licarbazepine (S-lic)





Eslicarbazepine effects on Na_v1.5

620 Figure 7 ILENFSVATEESAEPLSEDDFEMFYEVWEKFDPDATOFMEFEKLSOFAAALEPPLNLPOP SCN1A 1844 ILENFSVATEESAEPLSEDDFEMFYEVWEKFDPDATQFIEFAKLSDFADALDPPLLIAKP 1834 SCN2A ILENFSVATEESA<mark>EPL</mark>SEDD<mark>F</mark>EMFYEVWEKFDPDATQFIEFSKLSDFAAALDPPLLIAKP 1829 SCN3A ILENFNVATEESS<mark>EPL</mark>GEDD<mark>F</mark>EMFYETWEKFDPDATQFIAYSRLSDFVDTLQEPLRIAKP SCN4A 1656 SCN5A ILENFSVATEESTEPLSEDDFDMFYEIWEKFDPEATQFIEYSVLSDFADALSEPLRIAKP 1830 SCN8A ILENFSVATEESAD<mark>PL</mark>SEDD<mark>F</mark>ETFYEIWEKFDPDATOFIEYCKLADFADALEHPLRVPKP 1824 SCN9A ILENFSVATEESTEPLSEDDFEMFYEVWEKFDPDATOFIEFSKLSDFAAALDPPLLIAKP 1818 ILENFNVATEESTEPLSEDDFDMFYETWEKFDPEATQFITFSALSDFADTLSGPLRIPKP 1780 SCN10A ILENFNTATEESED<mark>PL</mark>GEDD<mark>F</mark>DIFYEVWEKFDPEATQFIKYSALSDFADALPEPLRVAKP 1662 SCN11A NKLOLIAMDLPMVSGDRIHCLDI<mark>LF</mark>AF<mark>TKRVL</mark>GESGEMDALRIOMEERFMASNPSKVSYO 1904 SCN1A NKVOLIAMDLPMVSGDRIHCLDI<mark>LF</mark>AF<mark>TKRVL</mark>GESGEMDALRIOMEERFMASNPSKVSYE SCN2A 1894 NKVQLIAMDLPMVSGDRIHCLDI<mark>LFAFTKRVL</mark>GESGEMDALRIQMEDRFMASNPSKVSYE 1889 SCN3A NKIKLITLDLPMVPGDKIHCLDI<mark>LFAL</mark>TKE<mark>VL</mark>GDSGEMDALKQTMEEKFMAANPSKVSYE SCN4A 1716 NOISLINMDLPMVSGDRIHCMDI<mark>LF</mark>AF<mark>TKRVL</mark>GESGEMDALKIOMEEKFMAANPSKISYE SCN5A 1890 NTIELIAMDLPMVSGDRIHCLDI<mark>LFAFTKRVL</mark>GDSGELDILRQQMEERFVASNPSKVSYE SCN8A 1884 NKVOLIAMDLPMVSGDRIHCLDI<mark>LF</mark>AF<mark>TKRVL</mark>GESGEMDSLRSOMEERFMSANPSKVSYE SCN9A SCN10A NRNILIOMDLPLVPGDKIHCLDI<mark>LFAFTKNVL</mark>GESGELDSLKANMEEKFMATNLSKSSYE 1840 NKYOFLVMDLPMVSEDRLHCMDI<mark>LF</mark>AF<mark>T</mark>AR<mark>VL</mark>GGSDGLDSMKAMMEEKFMEANPLKKLYE SCN11A 1722 621

Supplementary Table 1A. Effect of eslicarbazepine acetate (100 μM) on peak and persistent Na⁺ current in MDA-MB-231 and HEK-Na_v1.5 cells.

624	
625	

A. MDA-MB-231 cells				
Parameter	Control	ESL	P value	N
Peak current density at -10 mV, V _h -120 mV (pA/pF)	-22.1 ± 13.5	-11.6 ± 7.9	< 0.05	7
Peak current density at -10 mV, V _h -80 mV (pA/pF)	-7.1 ± 4.1	-2.1 ± 2.0	< 0.05	7
Persistent current density at -10 mV, V _h -120 mV (pA/pF)	-0.5 ± 0.3	-0.4 ± 0.2	0.277	7
B. HEK-Na _v 1.5 cells				
Parameter	Control	ESL	P value	N
Peak current density at -10 mV, V _h -120 mV (pA/pF)	-158.4 ± 85.7	-77.7 ± 51.3	<0.01	8
Peak current density at -10 mV, V _h -80 mV (pA/pF)	-59.0 ± 50.7	-12.2 ± 11.9	< 0.05	8
Persistent current density at -10 mV, V _h -120 mV (pA/pF)	-1.0 ± 0.3	-0.4 ± 0.1	<0.001	8

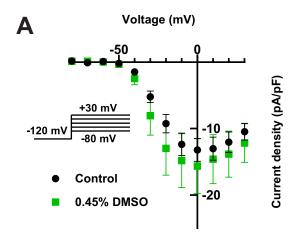
626 ¹ESL: eslicarbazepine acetate (100 μM). Results are mean ± SEM. Statistical comparisons were made with paired t-tests.

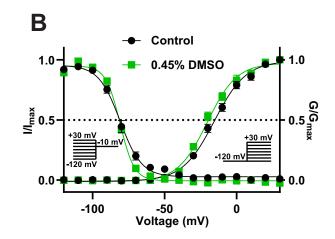
Supplementary Table 1B. Effect of S-licarbazepine (100 μ M) on peak and persistent Na⁺ current in MDA-MB-231 and HEK-Na_v1.5 cells.

A. MDA-MB-231 cells				
Parameter	Control	S-Lic	P value	N
Peak current density at -10 mV, V _h -120 mV (pA/pF)	-17.2 ± 8.7	-12.3 ± 7.4	0.084	8
Peak current density at -10 mV, V _h -80 mV (pA/pF)	-7.8 ± 4.7	-3.5 ± 2.6	< 0.05	8
Persistent current density at -10 mV, V _h -120 mV (pA/pF)	-0.6 ± 0.3	-0.4 ± 0.2	< 0.01	8
B. HEK-Na _v 1.5 cells				
Parameter	Control	S-Lic	P value	N
Peak current density at -10 mV, V _h -120 mV (pA/pF)	-108.5 ± 20.3	- 75.6 ± 30.9	< 0.05	8
Peak current density at -10 mV, V _h -80 mV (pA/pF)	-30.2 ± 0.9	-11.8 ± 1.3	< 0.001	8
Persistent current density at -10 mV, V _h -120 mV (pA/pF)	-0.5 ± 0.1	-0.3 ± 0.1	< 0.05	7

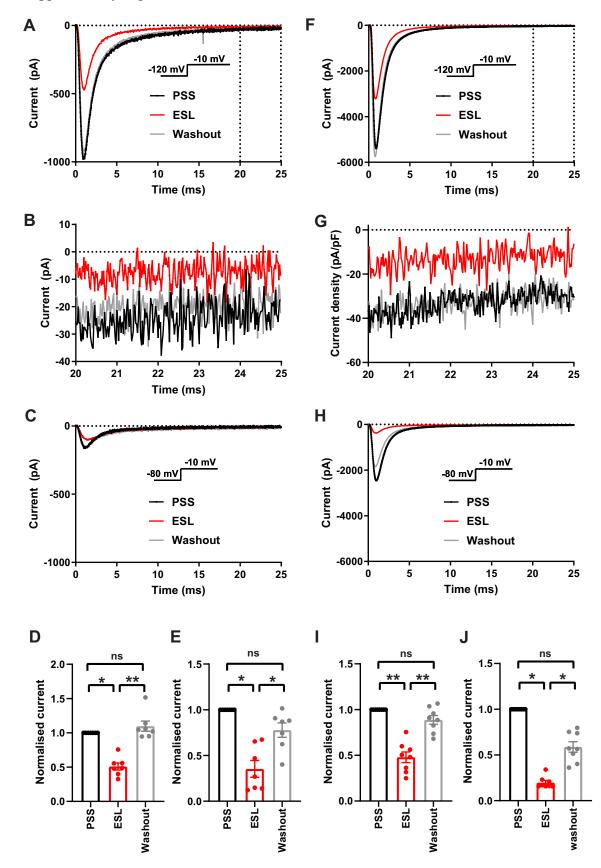
 $^{1}\text{S-Lic: S-licarbazepine}$ (100 μM). Results are mean \pm SEM. Statistical comparisons were made with paired t-tests.

Supplementary Figure Legends

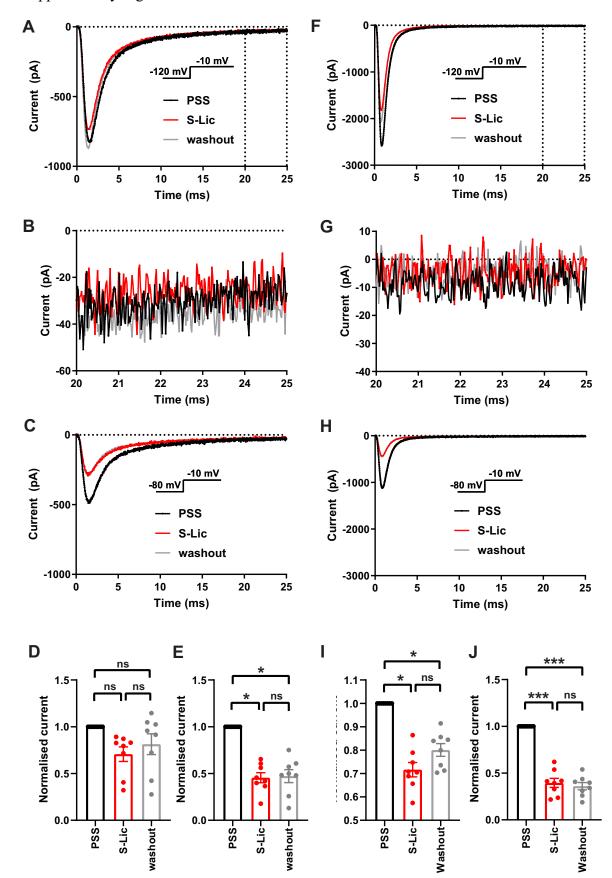

- 636 Supplementary Figure 1. Effect of 0.45% DMSO on VGSC current-voltage relationship and gating
- 637 in MDA-MB-231 cells. (A) Current-voltage (I-V) plots of Na⁺ currents in MDA-MB-231 cells in
- physiological saline solution (PSS; black circles) and in PSS with 0.45% DMSO (0.45% DMSO; 638
- 639 green squares). Currents were elicited using 10 mV depolarising steps from -80 to +30 mV for 30 ms,
- from a holding potential of -120 mV. Results are mean \pm SEM (n = 13-17). (B) Activation and 640
- 641 steady-state inactivation in physiological saline solution (PSS; black circles) and in PSS with 0.45%
- 642 DMSO (0.45% DMSO; green squares). For activation, normalised conductance (G/G_{max}) was
- calculated from the current data and plotted as a function of voltage. For steady-state inactivation. 643
- 644 normalised current (I/I_{max}), elicited by 50 ms test pulses at -10 mV following 250 ms conditioning
- 645 voltage pulses between -120 mV and +30 mV, applied from a holding potential of -120 mV, was
- 646 plotted as a function of the prepulse voltage. Results are mean \pm SEM (n = 10-13). Activation and
- 647 inactivation curves are fitted with Boltzmann functions.
- 648 Supplementary Figure 2. Effect of 100 μM eslicarbazepine acetate on Na_v1.5 currents. (A)
- 649 Representative Na⁺ currents in an MDA-MB-231 cell elicited by a depolarisation from -120 mV to -
- 650 10 mV in physiological saline solution (PSS; black), eslicarbazepine acetate (ESL; 100 μM; red) and
- 651 after washout (grey). Dotted vertical lines define the time period magnified in (B). (B) Representative
- 652 persistent Na⁺ currents in an MDA-MB-231 cell elicited by a depolarisation from -120 mV to -10
- 653 mV. (C) Representative Na⁺ currents in an MDA-MB-231 cell elicited by a depolarisation from -80
- 654 mV to -10 mV. (D) Normalised Na⁺ currents in MDA-MB-231 cells elicited by a depolarisation from
- 655 -120 mV to -10 mV. (E) Normalised Na⁺ currents in MDA-MB-231 cells elicited by a depolarisation
- 656 from -80 mV to -10 mV. (F) Representative Na⁺ currents in a HEK-Na_v1.5 cell elicited by a
- 657 depolarisation from -120 mV to -10 mV in PSS (black), ESL (100 μM; red) and after washout (grey).
- 658 Dotted vertical lines define the time period magnified in (G). (G) Representative persistent Na⁺
- 659 currents in a HEK-Na_v1.5 cell elicited by a depolarisation from -120 mV to -10 mV. (H)
- 660 Representative Na⁺ currents in a HEK-Na_v1.5 cell elicited by a depolarisation from -80 mV to -10
- 661 mV. (I) Normalised Na⁺ currents in HEK-Na_v1.5 cells elicited by a depolarisation from -120 mV to -
- 662 10 mV. (J) Normalised Na⁺ currents in HEK-Na_v1.5 cells elicited by a depolarisation from -80 mV to
- -10 mV. Results are mean + SEM. *P \leq 0.05; **P \leq 0.01; one-way ANOVA with Tukey tests (n = 7-663
- 664 8). NS, not significant.
- 665 Supplementary Figure 3. Effect of 100 µM S-licarbazepine on Na_v1.5 currents. (A) Representative
- 666 Na⁺ currents in an MDA-MB-231 cell elicited by a depolarisation from -120 mV to -10 mV in
- 667 physiological saline solution (PSS; black), S-licarbazepine (S-Lic; 100 µM; red) and after washout
- 668 (grey). Dotted vertical lines define the time period magnified in (B). (B) Representative persistent
- 669 Na⁺ currents in an MDA-MB-231 cell elicited by a depolarisation from -120 mV to -10 mV. (C)
- 670 Representative Na⁺ currents in an MDA-MB-231 cell elicited by a depolarisation from -80 mV to -10
- 671 mV. (D) Normalised Na⁺ currents in MDA-MB-231 cells elicited by a depolarisation from -120 mV
- 672 to -10 mV. (E) Normalised Na⁺ currents in MDA-MB-231 cells elicited by a depolarisation from -80
- 673 mV to -10 mV. (F) Representative Na⁺ currents in a HEK-Na_v1.5 cell elicited by a depolarisation
- 674 from -120 mV to -10 mV in PSS (black), S-Lic (100 µM; red) and after washout (grey). Dotted
- 675 vertical lines define the time period magnified in (G). (G) Representative persistent Na⁺ currents in a
- 676 HEK-Na_v1.5 cell elicited by a depolarisation from -120 mV to -10 mV. (H) Representative Na⁺
- 677 currents in a HEK-Na_v1.5 cell elicited by a depolarisation from -80 mV to -10 mV. (I) Normalised
- 678 Na⁺ currents in HEK-Na_v1.5 cells elicited by a depolarisation from -120 mV to -10 mV. (J)
- 679 Normalised Na⁺ currents in HEK-Na_v1.5 cells elicited by a depolarisation from -80 mV to -10 mV.


Eslicarbazepine effects on Na_v1.5

- Results are mean + SEM. * $P \le 0.05$; *** $P \le 0.001$; one-way ANOVA with Tukey tests (n = 7-8). NS,
- not significant.


683 Supplementary Figure 1

684



686 Supplementary Figure 2

688 Supplementary Figure 3

