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Abstract 

Understanding the mechanisms underlying plants’ adaptation to their environment will require 
knowledge of the genes and alleles underlying elemental composition. Modern genetics is 
capable of quickly, and cheaply indicating which regions of DNA are associated with particular 
phenotypes in question, but most genes remain poorly annotated, hindering the identification of 
candidate genes. To help identify candidate genes underlying elemental accumulations, we 
have created the known ionome gene (KIG) list: a curated collection of genes experimentally 
shown to change uptake, accumulation, and distribution of elements. We have also created an 
automated computational pipeline to generate lists of KIG orthologs in other plant species using 
the PhytoMine database. The current version of KIG consists of 176 known genes covering 5 
species, 23 elements and their 1588 orthologs in 10 species. Analysis of the known genes 
demonstrated that most were identified in the model plant Arabidopsis thaliana, and that 
transporter coding genes and genes altering the accumulation of iron and zinc are 
overrepresented in the current list.  
 
Introduction 

Understanding the complex relationships that determine plant adaptation will require detailed 
knowledge of the action of individual genes, the environment and their interactions. One of the 
fundamental processes that plants must accomplish is to manage the uptake, distribution and 
storage of elements from the environment. Many different physiological, chemical, biochemical 
and cell biology processes are involved in moving elements, implicating thousands of genes in 
every plant species. Modern genetic techniques have made it easy and inexpensive to identify 
hundreds to thousands of loci for traits, such as, the elemental composition (or ionome) of plant 
tissues. However, moving from loci to genes is still difficult as the number of possible candidates 
is often extremely large and the ability of researchers to identify a candidate gene from its 
functional annotations is limited by our current knowledge and inherent biases about what is 
worth studying (Stoeger et al. 2018; I. Baxter 2020).  
 
The most obvious candidates for genes affecting the ionome in a species are orthologs of genes 
that have been shown to affect elemental accumulation in another species. Indeed, there are 
multiple examples of orthologs affecting elemental accumulation in distantly related species, 

https://paperpile.com/c/pp9iAH/Q3cf+ONAC


such as Arabidopsis thaliana and rice (Oryza sativa), including Na+ transporters from the HKT 
family (Z.-H. Ren et al. 2005; I. Baxter et al. 2010); the heavy metal transporters AtHMA3 and 
OsHMA3 (Chao et al. 2012; Jiali Yan et al. 2016); E3 ubiquitin ligase BRUTUS and OsHRZs 
that regulate degradation of iron uptake factors (Selote et al. 2015; Hindt et al. 2017; T. 
Kobayashi et al. 2013) and the K+ channel AKT1 (Lagarde et al. 1996; Ahmad, Mian, and 
Maathuis 2016). To our knowledge, no comprehensive list of genes known to affect elemental 
accumulation in plants exists. To ameliorate this deficiency, we sought to create a curated list of 
genes based on peer reviewed literature along with a pipeline to identify orthologs of the genes 
in any plant species and a method for continuously updating the list. Here we present version 
1.0 of the known ionome gene (KIG) list.   
 
 
Materials and Methods 

The list includes all functionally characterized genes from the literature that are linked to 
changes in the ionome. Criteria for inclusion in the primary KIG list were as follows:  
1) The function or levels of the gene are unambiguously altered (i.e. a confirmed knockout, 
knockdown or over expressor). For double mutants, both genes are listed.  
2) The levels of at least one element are significantly altered in a plant tissue. 
3) Publication in the form of a peer reviewed manuscript.  
Note that our definition excludes genes that are linked to metal tolerance or sensitivity but do 
not alter the ionome, or genes where the levels of the transcript are correlated with elemental 
accumulation. In order to identify the KIG genes, we created a Google survey that was 
distributed to members of the Ionomicshub research coordination network (NSF DBI-0953433), 
as well as advertising on Twitter and in oral presentations by the authors. We asked submitters 
to provide the species, gene name (or names where alleles of two genes were required for a 
phenotype), gene ID(s), tissue(s), element(s) altered and a DOI link for the primary literature 
support. Subsequently, authors FKR and LW did an extensive literature search.  
 
Creating the inferred orthologs list 

The known ionome gene list contains known genes from the primary list and their orthologous 
genes inferred by InParanoid (v4.1) pairwise species comparisons (Remm, Storm, and 
Sonnhammer 2001). The InParanoid files were downloaded from Phytozome for each 
organism-to-organism combination of species in the primary list, plus Glycine max, Sorghum 

bicolor, Setaria italica, Setaria viridis and Populus trichocarpa. Orthologs of the primary genes 
were labeled as “inferred” genes. If a primary gene was also found as an ortholog to a primary 
gene in another species, the status was changed to “Primary/Inferred” in both species. It is 
important to note that only primary genes can infer genes; inferred genes cannot infer other 
genes. The pipeline for transforming the primary list into the known ionomics gene list can be 
found at https://github.com/baxterlab/KIG. 
 
 

 

Gene Enrichment analysis 
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Overrepresentation analysis (released 07-11-2019) was performed on the primary and inferred 
genes in A. thaliana using the GO Consortium’s web-based GO Enrichment Analysis tool 
powered by the PANTHER (v14) classification system tool (Ashburner et al. 2000; The Gene 
Ontology Consortium 2017; Mi et al. 2017). We restricted overrepresentation analysis to A. 

thaliana because of its dominance in the KIG list and our lack of confidence in the functional 
annotation of the other species in the list. An analysis performed by Wimalanathan et al. (2018) 
found that maize gene annotations in databases like Gramene and Phytozome lacked GO 
annotations outside of automatically assigned, electronic annotations (IEA). IEA annotations are 
not curated and have the least amount of support out of all the evidence codes (Harris et al. 
2004). A. thaliana annotations come from a variety of evidence types, showing a higher degree 
of curation compared to maize (Wimalanathan et al. 2018). The whole-genome Arabidopsis 

thaliana gene list from the PANTHER database was used as the reference list. 
We tested both the PANTHER GO-slim and the GO complete datasets for biological 

processes, molecular function and cellular component. GO-Slim datasets contain a selected 
subset of terms that give a broad summary of the gene list, whereas the complete dataset 
contains all the terms returned for a more detailed analysis. The enriched terms (fold 
enrichment > 1 and with a false discovery rate <0.05) from the complete dataset were sorted 
into five specific categories relating to the ionome based annotation terms: 

1. Ion homeostasis - terms include homeostasis, stress, detoxification, regulation of an ion 
2. Ion transport - terms specifically state transport, export, import or localization of ion(s). 

Does not include hydrogen ion transport 
3. Metal ion chelation - terms relating to phytochelatins, other chemical reactions or 

pathways of metal chelator synthesis 
4. Response to ions - vaguely states a response to ions, but does not have any parent 

annotation terms that offer any more clarification (ie. stress response). Broadly this is 
referring to any change to the state or activity of cell secretion, expression, movement, 
or enzyme production (Carbon et al. 2009) 

5. Other transport - annotation stating the transfer of anything that is not an ion (glucose, 
peptides, etc.) 

Genes may belong to more than one category, but if they belong to a parent and child term in 
the same category, they are only counted once. 
 
Results 

The current primary list (v1.0) consists of 176 genes from A. thaliana, O. sativa, 
Medicago truncatula, Triticum aestivum and Zea mays with the majority coming from A. thaliana 

and O. sativa (Table 1)(Figure 1).  
 
Table 1. Primary known ionome genes. 

 

Species GeneID GeneName Elements Tissue Citation(s) 

A.thaliana AT1G01340 CNGC10 K,Ca,Mg Roots,shoots (K. M. Guo et al. 2010) 

A.thaliana AT1G01580 FRO2 Fe Root (Robinson et al. 1999) 

A.thaliana AT1G07600 MT1A Cd,Zn,As Shoots (Zimeri et al. 2005) 
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A.thaliana AT1G08490 CPNIFS Se,S Roots,shoots (Van Hoewyk et al. 2005) 

A.thaliana AT1G12640 LPCAT1 P Leaf (Kisko et al. 2018) 

A.thaliana AT1G14040 PHO1;H3 P Shoots (Khan et al. 2014) 

A.thaliana AT1G14870 PCR2 Zn Shoots (Song et al. 2010) 

A.thaliana AT1G18910 BTSL2 Fe,Mn,Zn Leaf (Hindt et al. 2017) 

A.thaliana AT1G20110 FYVE1 Fe,Zn,Co,Mn Root (Barberon et al. 2014) 

A.thaliana AT1G30270 CIPK23 K Shoots (Jiang Xu et al. 2006) 

A.thaliana AT1G30400 ABCC1 Cd Shoots (Park et al. 2012) 

A.thaliana AT1G30450 CCC Ca,K,Na,S seeds (McDowell et al. 2013) 

A.thaliana AT1G31885 NIP3;1 As Shoots (W. Xu et al. 2015) 

A.thaliana AT1G32450 
AtNRT1.5 / 

AtNPF7.3 K, NO3- 
Shoots, 

Roots (H. Li et al. 2017) 

A.thaliana AT1G36370 AtMSA1 S, Se Shoots (Huang, Chao, et al. 2016) 

A.thaliana AT1G56160 myb72 Fe,Cd,Zn,Co,Mo Leaf (Palmer et al. 2013) 

A.thaliana AT1G56430 NAS4 Fe,Cd,Co,Mo Leaf (Palmer et al. 2013) 

A.thaliana AT1G59870 PEN3 Cd Shoots, roots (D.-Y. Kim et al. 2007) 

A.thaliana AT1G60960 AtIRT3 Fe Roots (Lin et al. 2009) 

A.thaliana AT1G62180 AtAPR2 S, Se Shoots 
(Loudet et al. 2007; Chao, 
Baraniecka, et al. 2014) 

A.thaliana AT1G63440 AtHMA5 Cu Shoots (Andrés-Colás et al. 2006) 

A.thaliana AT1G66240 AtAX1 Cu Shoots (L.-J. Shin, Lo, and Yeh 2012) 

A.thaliana AT1G68320 MYB62 P Roots,shoots (Devaiah et al. 2009) 

A.thaliana AT1G71200 AtCITF1 Cu 
Shoots, 

Anthers (Jiapei Yan et al. 2017) 

A.thaliana AT1G74770 BTSL1 Fe,Mn,Zn Leaf (Hindt et al. 2017) 

A.thaliana AT1G76430 PHT1;9 P,As Roots,shoots (E. Remy et al. 2012) 

A.thaliana AT1G80760 NIP6;1 B 
Leaves,shoot

s (M. Tanaka et al. 2008) 

A.thaliana AT1G80830 AtNRAMP1 Mn Shoots,roots (Cailliatte et al. 2010) 

A.thaliana AT2G01770 VIT1 Fe Seed (S. A. Kim et al. 2006) 

A.thaliana AT2G01980 SOS1/NHX7 Na Shoots (Shi et al. 2003) 

A.thaliana AT2G13540 ABH1 S seeds (McDowell et al. 2013) 

A.thaliana AT2G16770 AtbZIP23 Zn Shoots, roots (Assunção et al. 2010) 

A.thaliana AT2G19110 AtHMA4 Zn Shoots,seeds 
(Hussain et al. 2004; Olsen et 
al. 2016) 

A.thaliana AT2G21045 AtHAC1 As Shoots (Chao, Chen, et al. 2014) 

A.thaliana AT2G23150 AtNRAMP3 Fe,Mn,Zn Shoots (Lanquar et al. 2010) 

https://paperpile.com/c/pp9iAH/1BLX
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A.thaliana AT2G23240 AtMT4b Cu,Zn Seeds (Y. Ren et al. 2012) 

A.thaliana AT2G25680 MOT1 Mo Leaf (I. Baxter et al. 2008) 

A.thaliana AT2G28160 FRU Fe Shoots (Yuan et al. 2008) 

A.thaliana AT2G28670 ESB1 
Ca,Mn,Zn,Na,S,K,As, 

Se,Mo Leaf (I. Baxter et al. 2009) 

A.thaliana AT2G32830 PHT1;5 P Roots (Nagarajan et al. 2011) 

A.thaliana AT2G33770 PHO2 P Roots,shoots (T.-Y. Liu et al. 2012) 

A.thaliana AT2G37430 ZAT11 Ni Shoots (X.-M. Liu et al. 2014) 

A.thaliana AT2G38460 FPN1 Co Leaf (Morrissey et al. 2009) 

A.thaliana AT2G38940 PHT1;4 P Roots,shoots (H. Shin et al. 2004) 

A.thaliana AT2G39450 AtMTP11 Mn Shoots,roots (Peiter et al. 2007) 

A.thaliana AT2G42000 AtMT4a Cu,Zn Seeds (Y. Ren et al. 2012) 

A.thaliana AT2G46430 CNGC3 K Leaf (Gobert et al. 2006) 

A.thaliana AT2G46800 AtMTP1 Zn Shoots 
(Desbrosses-Fonrouge et al. 
2005) 

A.thaliana AT2G47160 BOR1 B Shoots 

(Miwa, Takano, and Fujiwara 
2006) 

A.thaliana AT3G01310 VIH2 P Shoots (Zhu et al. 2019) 

A.thaliana AT3G06060 TSC10a 
Na,K,Rb,Mg,Ca,Fe, 

Mo Leaf (Chao et al. 2011) 

A.thaliana AT3G06100 NIP7 As NA 
(Lindsay and Maathuis 2016; 
Isayenkov and Maathuis 2008) 

A.thaliana AT3G08040 FRD3/MAN1 Mn Leaf (Delhaize 1996) 

A.thaliana AT3G12750 AtZIP1 Mn Roots (Milner et al. 2013) 

A.thaliana AT3G12820 myb10 Fe,Cd,Zn,Co,Mo Leaf (Palmer et al. 2013) 

A.thaliana AT3G13320 CAX2 Mn,Fe,K,P Seed (Connorton et al. 2012) 

A.thaliana AT3G13405 mir169a N Root (M. Zhao et al. 2011) 

A.thaliana AT3G14280  S seeds (McDowell et al. 2013) 

A.thaliana AT3G15380 AtCTL1 Na, Fe, Zn, Mn, Mo 
Shoots, 

Roots (Gao et al. 2017) 

A.thaliana AT3G18290 BTS Fe,Zn,Mn Leaf (Hindt et al. 2017) 

A.thaliana AT3G22890 AtATPS1 S Shoos (Koprivova et al. 2013) 

A.thaliana AT3G23210 bHLH34 Fe Root, shoot (X. Li et al. 2016) 

A.thaliana AT3G23430 PHO1 P Shoots (Khan et al. 2014) 

A.thaliana AT3G43790 ZIFL2 Cs Leaf (Estelle Remy et al. 2015) 

A.thaliana AT3G47640 PYE Fe,Zn,Mn,Co Root (Long et al. 2010) 

A.thaliana AT3G47950 AHA4 Na Root (Vitart et al. 2001) 

A.thaliana AT3G51860 CAX3 P,K Seed (Connorton et al. 2012) 
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A.thaliana AT3G51895 SULTR3;1 S Leaf (Cao et al. 2013) 

A.thaliana AT3G56970 bHLH38 Fe Shoots (Yuan et al. 2008) 

A.thaliana AT3G56980 bHLH39 Fe Shoots (Yuan et al. 2008) 

A.thaliana AT3G58060 AtMTP8 Mn Shoots,seeds (Eroglu et al. 2016, 2017) 

A.thaliana AT3G58810 AtMTP3 Zn Shoots 
(Arrivault, Senger, and Krämer 
2006) 

A.thaliana AT3G58970 MGT6 Mg Roots,shoots (Mao et al. 2014) 

A.thaliana AT3G62270 BOR2 B Shoots (Miwa et al. 2013) 

A.thaliana AT4G02780 GA1 Fe Root (Wild et al. 2016) 

A.thaliana AT4G10310 AtHKT1;1 Na Leaf (I. Baxter et al. 2010) 

A.thaliana AT4G10380 NIP5;1 B Roots,shoots (Takano et al. 2006) 

A.thaliana 
AT4G13420 HAK5 Rb,Cs Roots 

(Rubio et al. 2008; Qi et al. 
2008) 

A.thaliana AT4G14410 bHLH104 Fe Root, shoot (X. Li et al. 2016) 

A.thaliana AT4G16370 OPT3 Fe,Cd Leaf (Zhai et al. 2014) 

A.thaliana AT4G19690 IRT1 Fe,Mn,Co,Cd,Zn Root (Eide et al. 1996) 

A.thaliana AT4G23100 GSH1 Cd,As Shoots (J. Guo et al. 2008) 

A.thaliana AT4G24120 YSL1 Fe,Zn,Cu NA (Waters et al. 2006) 

A.thaliana AT4G28610 AtPHR1 P Shoots 
(Nilsson, Müller, and Nielsen 
2007) 

A.thaliana 
AT4G30110 AtHMA2 Zn Shoots,seeds 

(Hussain et al. 2004; Olsen et 
al. 2016) 

A.thaliana 
AT4G30120 AtHMA3 Cd,Zn Leaf 

(Chao et al. 2012; Pita-Barbosa 
et al. 2019) 

A.thaliana AT4G33000 CBL10 K Shoots (X.-L. Ren et al. 2013) 

A.thaliana AT4G35040 AtbZIP19 Zn Shoots, roots (Assunção et al. 2010) 

A.thaliana 
AT4G37270 HMA1 Zn Shoots (Y.-Y. Kim et al. 2009) 

A.thaliana AT5G02600 NaKR1 Na,K,Rb Leaf (Tian et al. 2010) 

A.thaliana 
AT5G03455 ACR2 As,P Roots,shoots (Dhankher et al. 2006) 

A.thaliana 
AT5G03570 FPN2 Co,Ni Leaf 

(Morrissey et al. 2009; Schaaf et 
al. 2006) 

A.thaliana AT5G09690 MGT7 Mg Shoots (Kamiya et al. 2012) 

A.thaliana AT5G13740 ZIF1 Zn,Fe Shoots (Haydon et al. 2012) 

A.thaliana AT5G15070 VIH1 P Shoots (Zhu et al. 2019) 

A.thaliana AT5G15410 CNGC2/DND1 Ca,Mg seeds (McDowell et al. 2013) 

A.thaliana 
AT5G17290 APG5 Fe, Mn, Zn 

Leaf, shoots, 

seeds (Pottier et al. 2019) 

A.thaliana AT5G18830 AtSPL7 Cu Shoots, roots (Bernal et al. 2012) 
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A.thaliana 
AT5G20650 COPT5 Cu 

Shoots, roots, 

seeds (Klaumann et al. 2011) 

A.thaliana AT5G35410 SOS2 Na seeds (McDowell et al. 2013) 

A.thaliana 
AT5G42130 AtMfl1 Fe 

Leaves, 

shoots (Tarantino et al. 2011) 

A.thaliana 
AT5G43350 PHT1;1 P,As Shoots 

(H. Shin et al. 2004; Catarecha 
et al. 2007) 

A.thaliana 
AT5G44070 PCS1 Zn,Cd,As Leaf 

(Kühnlenz et al. 2016; J. Guo et 
al. 2008) 

A.thaliana AT5G53130 CNGC1 Pb Leaf (Sunkar et al. 2000) 

A.thaliana AT5G53550 YSL3 Fe,Zn,Cu NA (Waters et al. 2006) 

A.thaliana AT5G54680 ILR3 Cd,Co,Fe,Mn,Zn Leaf (Rampey et al. 2006) 

A.thaliana AT5G54810 AtTSB1 Cd Roots,shoots (Sanjaya et al. 2008) 

A.thaliana 
AT5G57620 AtMYB36 

Li, B, Na, Mg, K, Ca, 

Mn, Fe, Co, Ni, Cu, 

Zn, Rb, Sr, Mo, Cd Shoots (Kamiya et al. 2015) 

A.thaliana AT5G59030 COPT1 Cu Seed,Leaf (Sancenón et al. 2004) 

A.thaliana AT5G64930 CPR5 K Leaf (Borghi, Rus, and Salt 2011) 

A.thaliana AT5G67330 AtNRAMP3 Fe,Mn,Zn Shoots (Lanquar et al. 2010) 

M.truncatula Medtr1g010270 MtMOT1.2 Mo Nodules (Gil-Díez et al. 2018) 

M.truncatula Medtr3g088460 MtNramp1 Fe Nodules (Tejada-Jiménez et al. 2015) 

M.truncatula Medtr3g464210 MtMOT1.3 Mo Nodules (Tejada-Jiménez et al. 2017) 

M.truncatula Medtr4g019870 MtCOPT1 Cu Nodules (Senovilla et al. 2018) 

M.truncatula Medtr4g064893 MtMTP2 Zn Nodules (León-Mediavilla et al. 2018) 

M.truncatula Medtr4g083570 MtZIP6 Zn Nodules (Abreu et al. 2017) 

O.sativa LOC_Os01g03914 OsMTP9 Mn Shoots (Ueno et al. 2015) 

O.sativa LOC_Os01g20160 OsHKT1;5 Na Leaf, shoots 
(N. I. Kobayashi et al. 2017) 

O.sativa LOC_Os01g45990 AKT1 K NA 
(Ahmad, Mian, and Maathuis 
2016) 

O.sativa LOC_Os01g64250 OsHORZ1 Fe Shoots,seeds (T. Kobayashi et al. 2013) 

O.sativa LOC_Os01g64890 OsMGT1 Mg,Na Roots, shoots (Z. C. Chen et al. 2017) 

O.sativa LOC_Os02g06290 OsHAC4 As Seed (Jiming Xu et al. 2017) 

O.sativa LOC_Os02g10290 OsHMA4 Cu 
Roots, 

shoots, seeds (Huang, Deng, et al. 2016) 

O.sativa LOC_Os02g13870 OsNIP1;1 As Shoots (Sun et al. 2018) 

O.sativa LOC_Os02g43370 OsYSL2 Fe,Mn Seeds (Ishimaru et al. 2010) 

O.sativa LOC_Os02g43410 OsYSL15 Fe 
Roots, 

shoots, seeds (Lee et al. 2009) 

O.sativa LOC_Os02g51110 LSI1 Se Roots,shoots (X. Q. Zhao et al. 2010) 

O.sativa LOC_Os02g53490 OsMTP8.2 Mn Shoots, roots (Takemoto et al. 2017) 

https://paperpile.com/c/pp9iAH/Sk1r
https://paperpile.com/c/pp9iAH/cOKT
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https://paperpile.com/c/pp9iAH/VCtl
https://paperpile.com/c/pp9iAH/In0P
https://paperpile.com/c/pp9iAH/4Orv
https://paperpile.com/c/pp9iAH/4Orv
https://paperpile.com/c/pp9iAH/GxvA
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https://paperpile.com/c/pp9iAH/tALx
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O.sativa 
LOC_Os02g56510 OsPHO1;2 P Shoots 

(Secco, Baumann, and Poirier 
2010) 

O.sativa LOC_Os03g05640 OsPT2 Se Roots, shoots (L. Zhang et al. 2014) 

O.sativa LOC_Os03g09140 OsRab6a Fe,Zn 
Seeds, shoot, 

roots (Yang and Zhang 2016) 

O.sativa LOC_Os03g12530 OsMTP8.1 Mn Shoots, roots (Z. Chen et al. 2013) 

O.sativa LOC_Os03g18550 OsMIT Fe Shoots (Bashir et al. 2011) 

O.sativa LOC_Os03g19420 OsNAS2 Fe Seeds (Lee et al. 2012) 

O.sativa LOC_Os03g21240 OsPHR2 P Shoots (Zhou et al. 2008) 

O.sativa LOC_Os04g32920 OsHAK1 Cs Shoots,seeds (Rai et al. 2017) 

O.sativa LOC_Os04g38940 OsVIT1 Fe,Zn Shoots,seeds (Yu Zhang et al. 2012) 

O.sativa LOC_Os04g45860 OsYSL9 Fe Shoots,seeds (Senoura et al. 2017) 

O.sativa LOC_Os04g45900 OsYSL16 Cu 
Roots,shoots, 

seeds (Zheng et al. 2012) 

O.sativa LOC_Os04g46940 OsHMA5 Cu Roots,shoots (Deng et al. 2013) 

O.sativa LOC_Os04g52310 OsZIP3 Zn Shoots (Sasaki et al. 2015) 

O.sativa LOC_Os04g52900 OsABCC1 As Seeds (Song et al. 2014) 

O.sativa LOC_Os04g56430 OsRMC Fe,Mn,Cu 
Root,shoot, 

seeds (Yang et al. 2013) 

O.sativa LOC_Os05g34290 OsPCS1* As Seeds (Hayashi et al. 2017) 

O.sativa LOC_Os05g39560 OsZIP5 Zn Leaf (Lee et al. 2010) 

O.sativa LOC_Os05g47780 OsHRZ2 Fe Shoots,seeds (T. Kobayashi et al. 2013) 

O.sativa LOC_Os05g48390 OsPHO2 P Leaf (C. Wang et al. 2009) 

O.sativa LOC_Os06g01260 OsPCS2* As, Cd Seeds (Uraguchi et al. 2017) 

O.sativa LOC_Os06g05160 SPDT P Seed (Yamaji et al. 2017) 

O.sativa LOC_Os06g48720 OsHMA2 Zn Shoots, roots (Takahashi et al. 2012) 

O.sativa LOC_Os06g48810 OsHKT2;1 Na Roots, shoots (Horie et al. 2007) 

O.sativa LOC_Os07g01810 TPKb K Leaf, root (Ahmad et al. 2016) 

O.sativa LOC_Os07g09000 OsPHF1 P Leaf, root (J. Chen et al. 2011) 

O.sativa LOC_Os07g12900 OsHMA3 Cd Shoots,seeds (N. Tanaka et al. 2016) 

O.sativa LOC_Os07g15370 NRAMP5 Fe,Mn,Cd Leaf (Sasaki et al. 2012) 

O.sativa LOC_Os08g01120 OsMOT1;1 Mo Shoots,Seed (Huang et al. 2019) 

O.sativa LOC_Os08g04390 OsPRI1 Fe Shoots, roots (H. Zhang et al. 2017) 

O.sativa LOC_Os08g05590 OsNIP3;2 As Roots (Y. Chen et al. 2017) 

O.sativa LOC_Os08g05600 OsNIP3;3 As Shoots (Sun et al. 2018) 

O.sativa LOC_Os08g10480 OsATX1 Cu 
Shoots, roots, 

seeds (Yuanyuan Zhang et al. 2018) 

O.sativa LOC_Os09g23300 OsVIT2 Fe,Zn Shoots,seeds (Yu Zhang et al. 2012) 

O.sativa LOC_Os12g03899 ZIFL12 Fe Shoots (Che et al. 2019) 

O.sativa LOC_Os12g18410 OsMIR Fe 
Shoots, 

Roots, seeds (Ishimaru et al. 2009) 

O.sativa LOC_Os12g32400 OsbHLH133 Fe 
Leaf,root, 

shoot (L. Wang et al. 2013) 

O.sativa LOC_Os12g37840 OsBOR1 B Shoots (Nakagawa et al. 2007) 

O.sativa Os01g0689300 OsHRZ1 Fe Shoots,seeds (T. Kobayashi et al. 2013) 

T.aestivum 2AL-TRIAE_CS42_ TaIPK1 Fe, Zn Seed (Aggarwal et al. 2018) 

https://paperpile.com/c/pp9iAH/Svpk
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2AL_TGACv1_095050_

AA0306410 

T.aestivum Traes_4AS_7220D33B3 Ta-PHR1 P Shoots (J. Wang et al. 2013) 

T.aestivum Traes_4BL_7091749BF TaABCC13 Ca Seed (Bhati et al. 2016) 

T.aestivum Traes_4DL_3F8034BFD HKT2;1 Na Roots (Laurie et al. 2002) 

Z.mays GRMZM2G047616 ZmHKT1 Na Leaf (M. Zhang et al. 2018) 

Z.mays GRMZM2G060952 YS1 Fe Root (Von Wiren et al. 1994) 

Z.mays GRMZM2G063306 YS3 Fe Leaf 
(Chan-Rodriguez and Walker 
2018) 

Z.mays GRMZM2G084779 ZmHAK5 K Roots, shoots (Qin, Wu, and Wang 2019) 

Z.mays GRMZM2G176209 TLS1 B 
Shoots, roots, 

anthers (Durbak et al. 2014) 

 
Figure 1. Number of genes for each species that are primary, inferred from other primary 

genes in other species, or both. 

 

Most primary genes have orthologs in other species. Less than 10% of primary genes in A. 

thaliana, 12% in O.sativa and one of the four primary genes in wheat (T. aestivum) lack 
orthologs (Table 2). G. max, P.trichocarpa, S. bicolor, S. italica, and S. viridis currently contain 
only inferred genes (Table 2, Figure 1).  
 

Table 2. Break down of primary/inferred genes in each species.  

https://paperpile.com/c/pp9iAH/9WeK
https://paperpile.com/c/pp9iAH/ULqc
https://paperpile.com/c/pp9iAH/Jn27
https://paperpile.com/c/pp9iAH/itO5
https://paperpile.com/c/pp9iAH/igN1
https://paperpile.com/c/pp9iAH/em8z
https://paperpile.com/c/pp9iAH/em8z
https://paperpile.com/c/pp9iAH/8ioN
https://paperpile.com/c/pp9iAH/nOEI


Species 
Total 

Genes 
Primary 

Genes 
Primary/Inferred 

Genes 
Inferred 

Genes 

Primary & Primary/ 

Inferred Genes 

without orthologs 

A.thaliana 136 65.44% 16.18% 18.38% 9.91% 

O.sativa 141 20.57% 14.89% 64.54% 12.00% 

M.truncatula 176 1.70% 1.70% 96.59% 0.00% 

T.aestivum 267 0.75% 0.75% 98.50% 25.00% 

Z.mays 152 1.32% 1.97% 96.71% 0.00% 

G.max 268 0.00% 0.00% 100.00% 0.00% 

P.trichocarpa 197 0.00% 0.00% 100.00% 0.00% 

S.bicolor 135 0.00% 0.00% 100.00% 0.00% 

S.italica 146 0.00% 0.00% 100.00% 0.00% 

S.viridis 146 0.00% 0.00% 100.00% 0.00% 

 

 
The YSL genes in A. thaliana and O.sativa are an example that provides evidence for the 
validity of the KIG list pipeline: AtYSL3, OsYSL9 and OsYSL16 were listed in their respective 
species as primary genes (Table 1) and after the ortholog search were annotated as 
primary/inferred genes, referencing each other (STable1). AtYSL2 in A. thaliana, was not listed 
as primary gene, but was inferred through its rice orthologs OsYSL9 and OsYSL16. Additionally, 
AtYSL1 in A. thaliana is not a paralog of AtYSL3 or an ortholog of OsYSL9 and OsYSL16 
according to PhytoMine’s InParanoid results, and is not listed as an ortholog to either of the O. 

sativa YSL genes in the KIG list. Other examples include AtVIT1 and OsVIT1/OsVIT2 (S. A. Kim 
et al. 2006; Yu Zhang et al. 2012), and the vacuolar Mn transporters AtMTP8 and OsMTP8 
(Eroglu et al. 2016; Z. Chen et al. 2013). Thus, we can reliably generate inferred genes and 
create a species-specific KIG list for any species in PhytoMine. 
 

The primary list covers 23 elements (Figure 2) according to the reported elements from 
authors in the primary list, which is more elements than predicted by the GO term annotations 
for those genes. Some GO annotations for these genes mention only a portion of elements 
listed by the literature in the primary list. This may be due to GO annotation evidence codes 
lacking curation or biological data (IEA,ND,NAS) (Wimalanathan et al. 2018), or it may be due to 
alterations in one element leading to alterations in other elements (I. R. Baxter et al. 2008).  

https://paperpile.com/c/pp9iAH/7Pbx+NGhz
https://paperpile.com/c/pp9iAH/7Pbx+NGhz
https://paperpile.com/c/pp9iAH/SfjU+hldv
https://paperpile.com/c/pp9iAH/2m4e
https://paperpile.com/c/pp9iAH/oPo2


 
Figure 2. Number of primary genes from each species listing each element. 

 

A. thaliana is the only species to have a primary gene listing for each element. There is a bias 
towards manganese, zinc and iron which have 2, 3 and 4 times more associated genes than the 
average 13±12 genes of other elements. Iron is the only element to contain genes from all five 
species in the primary list. In addition to biases towards certain elements, our primary list is also 
skewed towards an overrepresentation of ionome genes in above ground tissue studies (Figure 
3). This is likely due to the difficulties in studying the elemental content of below ground tissues.  
All M. truncatula genes come from studies of the nodule in this model legume species. 



 
Figure 3. Number of primary genes each type of tissue contributes to the known ionome 

gene list. Above ground is a summary of anther, leaf, seed and shoot, while below 

ground is a summary of root and nodule.  
 

Querying the manually curated PANTHER GO-slim biological process database 
(PANTHER v14.1, released 03-12-2019) and the GO complete biological process database (GO 
Ontology database, released 10-08-2019), with the A. thaliana KIG genes returned significantly 
(FDR < 0.05) overrepresented annotation terms related to the transport, response, and 
homeostasis of iron, zinc, copper and manganese ions. Additionally, the GO complete results 
had terms for cadmium, nickel, cobalt, sulfur, arsenic, lead, selenium, boron, magnesium, 
phosphorus, sodium, potassium, and calcium; covering most of the elements in the KIG list 
(Figure 4). Even though some genes were annotated as associated in the “other transport” of 
glycoside, glucose, oligopeptides, or phloem transport, the citations that have added them into 
our primary list show that their mutant alleles altered elemental accumulation. AtABCC1 is 
annotated as encoding a glycoside transporter protein, but Park et al. (2012) found 
overexpression of AtABCC1 increased cadmium concentrations in shoot tissue. The YSL genes 
and OPT3 are annotated as genes encoding oligopeptide transporters, but more specifically 
they are encoding predicted phloem-localized metal-nicotianamine complex and iron/cadmium 
transporters, respectively (Waters et al. 2006; Zhai et al. 2014). Lastly, NRT1.5/NPF7.3 is also 
annotated as encoding an oligopeptide transporter, but Li et al. (H. Li et al. 2017) identified it as 
a xylem loading potassium ion antiporter. 

https://paperpile.com/c/pp9iAH/8dBr
https://paperpile.com/c/pp9iAH/aGqz+w7R8
https://paperpile.com/c/pp9iAH/xpeL


 
Figure 4. Known ionome genes relating to different terms from the GO complete biological 
process dataset. Ontology groups of GO Enrichment Analysis from PANTHER.  
 

The PANTHER GO-slim molecular function annotation database found a significant 
overrepresentation for iron and potassium cation transmembrane transporter activity in the 
A.thaliana genes. The results using the GO complete molecular function database supported 
this, and additionally included terms for arsenic, cadmium, zinc, boron, manganese, phosphate, 
sulfur and magnesium ion transmembrane transporter activity. The GO complete molecular 
database also returned overrepresented terms for metal ion binding and cyclic nucleotide 
binding annotations. The cyclic nucleotide binding annotation genes were more specifically 
cyclic nucleotide ion gated channel genes (Gobert et al. 2006). The PANTHER GO-slim cell 
component and GO complete cell component annotation database both returned significant 
overrepresentation for vacuoles and the plasma membrane, both known to be critical for 
elemental movement and storage (Barkla and Pantoja 1996). The molecular function and cell 
component results are further evidence that our list is dominated by ion transporters. 
 

To test the completeness of the KIG list, we searched PANTHER’s biological processes 
annotations for the number of A. thaliana genes encoding predicted elemental transporters. We 
found 618 A.thaliana genes predicted to encode elemental transport, and only 40 of these 
PANTHER genes are listed in the KIG list. We checked these results against ThaleMine 
(v1.10.4, updated on 06-13-2017) genes with the term “ion transport” in the gene name, 
description, or GO annotation and found only 358 genes, with 52 of these genes listed in the A. 

thaliana known ionome gene list. Interestingly, 219 of the genes from ThaleMine were not found 
in the 634 from PANTHER. 

https://paperpile.com/c/pp9iAH/jEV6
https://paperpile.com/c/pp9iAH/FPPq


 
Discussion 

Here we have produced a curated list of genes known to alter the elemental composition of 
plant tissues. We envision several possible uses for this list: 

1. Researchers can use the list to identify candidate genes in loci from QTL and GWAS 
experiments. 

2. This list can serve as a gold standard for computational approaches. 
3. The list can serve as a reading list for those interested in learning about elemental 

accumulation.  
It is important to highlight that the inferred genes lists are not likely to be perfect predictors of 
the causal genes. Our use of InParanoid orthologs may exclude homologs that are likely 
candidates. Additionally, the reasons that some genes have been studied could be the result of 
human bias towards research topics (I. Baxter 2020). The list is highly enriched for 1) 
transporters, 2) genes that affect elemental accumulation in above ground tissues and 3) genes 
that affect the accumulation of Fe and Zn. Transporter genes became obvious candidates for 
studying plant nutrition when disruption allele collections were produced (McDowell et al. 2013). 
Above ground tissues are easier to study without contamination from the soil, and such studies 
are therefore more prevalent. Finally, while Fe and Zn are important biochemical cofactors, 
these elements are likely enriched in the KIG list due to their considerable interest to the 
community where the ionomics approach was developed. This is further illustrated in the 
PANTHER GO-slim databases, where Fe was the only element to have its overrepresented 
response, homeostasis and transport related GO terms show up in the PANTHER GO-slim 
biological process and molecular function databases, which are selected subsets of terms 
meant to broadly summarize data. Overrepresented terms related to other KIG list elements are 
only found in the GO complete databases. Taken together, these factors warn against forming 
conclusions about the nature of all elemental accumulation genes based on this limited dataset.   
 
Most entries on this list are derived from model organisms suggesting that most of our 
knowledge about genes that affect elemental accumulation comes from these species. A. 

thaliana and M. truncatula account for 64% of the primary genes list, which is probably a lower 
bound for the influence of knowledge generated in model organisms. Several of the genes in 
crop plants were found due to being orthologs of genes in the model organisms (Ahmad, Mian, 
and Maathuis 2016; Jiming Xu et al. 2017), and on closer inspection of the 50 papers identifying 
primary genes in rice, 38 cited a gene in Arabidopsis (not necessarily the direct ortholog) as a 
source for why the gene was investigated.The higher quality of the GO terms in Arabidopsis 
when compared to other species is another reflection of this disparity of knowledge and a 
significant hindrance when trying to clone genes in other organisms.  
 
Call for more submissions 

While we have done our best to ensure that the current list is useful and thorough, it is possible 
we are still missing genes. We ask readers who know of genes that we are missing to contribute 
by submitting them here: 
https://docs.google.com/forms/d/e/1FAIpQLSdmS_zeOlxTOLmq2wB45BuSQml1LMKtKnWSat
mFRGR2Q1o0Ew/viewform?c=0&w=1 or email corresponding author. KIG lists v1.0 for each of 

https://paperpile.com/c/pp9iAH/ONAC
https://paperpile.com/c/pp9iAH/cOKT
https://paperpile.com/c/pp9iAH/4Orv+lOpq
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https://docs.google.com/forms/d/e/1FAIpQLSdmS_zeOlxTOLmq2wB45BuSQml1LMKtKnWSatmFRGR2Q1o0Ew/viewform?c=0&w=1
https://docs.google.com/forms/d/e/1FAIpQLSdmS_zeOlxTOLmq2wB45BuSQml1LMKtKnWSatmFRGR2Q1o0Ew/viewform?c=0&w=1


the species can be viewed in STable1, and future updates to the list can be found at 
https://docs.google.com/spreadsheets/d/1XI2l1vtVJiHrlXLeOS5yTQQnLYq7BOHpmjuC-
kUejUU/edit?usp=sharing. 
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Abstract 

Understanding the mechanisms underlying plants’ adaptation to their environment will require 
knowledge of the genes and alleles underlying elemental composition. Modern genetics is 
capable of quickly, and cheaply indicating which regions of DNA are associated with particular 
phenotypes in question, but most genes remain poorly annotated, hindering the identification of 
candidate genes. To help identify candidate genes underlying elemental accumulations, we 
have created the known ionome gene (KIG) list: a curated collection of genes experimentally 
shown to change uptake, accumulation, and distribution of elements. We have also created an 
automated computational pipeline to generate lists of KIG orthologs in other plant species using 
the PhytoMine database. The current version of KIG consists of 176180 known genes 
coveringin 5 species, 23 elements and their 15881625 orthologs in 10 species. KIG covers 23 
elements: aluminum, arsenic, boron, calcium, cadmium, cobalt, cesium, copper, iron, 
potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, phosphorous, lead, 
rubidium, sulfur, selenium, strontium and zinc. Analysis of the known genes demonstrated that 
most were identified in the model plant Arabidopsis thaliana, and that transporter coding genes 
and genes altering the accumulation of iron and zinc are overrepresented in the current list.  
 
Introduction 

Understanding the complex relationships that determine plant adaptation will require detailed 
knowledge of the action of individual genes, the environment and their interactions. One of the 
fundamental processes that plants must accomplish is to manage the uptake, distribution and 
storage of elements from the environment. Many different physiological, chemical, biochemical 
and cell biology processes are involved in moving elements, implicating thousands of genes in 
every plant species. Modern genetic techniques have made it easy and inexpensive to identify 
hundreds to thousands of loci for traits, such as, the elemental composition (or ionome) of plant 
tissues. However, moving from loci to genes is still difficult as the number of possible candidates 
is often extremely large and the ability of researchers to identify a candidate gene from its 
functional annotations is limited by our current knowledge and inherent biases about what is 
worth studying (Stoeger et al. 2018; I. Baxter 2020).  
 

https://paperpile.com/c/pp9iAH/Q3cf+ONAC


The most obvious candidates for genes affecting the ionome in a species are orthologs of genes 
that have been shown to affect elemental accumulation in another species. Indeed, there are 
multiple examples of orthologs affecting elemental accumulation in distantly related species, 
such as Arabidopsis thaliana and rice (Oryza sativa), including Na+ transporters from the HKT 
family (Z.-H. Ren et al. 2005; I. Baxter et al. 2010); the heavy metal transporters AtHMA3 and 
OsHMA3 (Chao et al. 2012; Jiali Yan et al. 2016); E3 ubiquitin ligase BRUTUS and OsHRZs 
that regulate degradation of iron uptake factors (Selote et al. 2015; Hindt et al. 2017; T. 
Kobayashi et al. 2013) and the K+ channel AKT1 (Lagarde et al. 1996; Ahmad, Mian, and 
Maathuis 2016). To our knowledge, no comprehensive list of genes known to affect elemental 
accumulation in plants exists. To ameliorate this deficiency, we sought to create a curated list of 
genes based on peer reviewed literature along with a pipeline to identify orthologs of the genes 
in any plant species and a method for continuously updating the list. Here we present version 
1.0 of the known ionome gene (KIG) list.  
 
Materials and Methods 

The list includes all functionally characterized genes from the literature that are linked to 
changes in the ionome. Criteria for inclusion in the primary KIG list were as follows:  
1) The function or levels of the gene are unambiguously altered (i.e. a confirmed knockout, 
knockdown or over expressor). For double mutants, both genes are listed.  
2) The levels of at least one element are significantly altered in a plant tissue. 
3) Publication in the form of a peer reviewed manuscript.  
Note that our definition excludes genes that are linked to metal tolerance or sensitivity but do 
not alter the ionome, genes where the levels of the transcript are correlated with elemental 
accumulation, and genes involved in accumulation of organic elements, such as nitrogen. This 
list is focused on elements that are well-measured by inductively coupled plasma mass 
spectrometry (ICP-MS), such as: aluminum, arsenic, boron, calcium, cadmium, cobalt, cesium, 
copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, 
phosphorous, lead, rubidium, sulfur, selenium, strontium and zinc. In order to identify the KIG 
genes, we created a Google survey that was distributed to members of the Ionomicshub 
research coordination network (NSF DBI-0953433), as well as advertising on Twitter and in oral 
presentations by the authors. We asked submitters to provide the species, gene name (or 
names where alleles of two genes were required for a phenotype), gene ID(s), tissue(s), 
element(s) altered and a DOI link for the primary literature support. Subsequently, authors FKR 
and LW did an extensive literature search.  
 
Creating the inferred orthologs list 

The known ionome gene list contains known genes from the primary list and their orthologous 
genes inferred by InParanoid (v4.1) pairwise species comparisons (Remm, Storm, and 
Sonnhammer 2001). The InParanoid files were downloaded from Phytozome for each 
organism-to-organism combination of species in the primary list, plus Glycine max, Sorghum 

bicolor, Setaria italica, Setaria viridis and Populus trichocarpa. Orthologs of the primary genes 
were labeled as “inferred” genes. If a primary gene was also found as an ortholog to a primary 
gene in another species, the status was changed to “Primary/Inferred” in both species. It is 
important to note that only primary genes can infer genes; inferred genes cannot infer other 

https://paperpile.com/c/pp9iAH/3mPz+I3cO
https://paperpile.com/c/pp9iAH/kYSI+Z1Wd
https://paperpile.com/c/pp9iAH/PTfU+UdSl+GxvA
https://paperpile.com/c/pp9iAH/PTfU+UdSl+GxvA
https://paperpile.com/c/pp9iAH/fq8S+4Orv
https://paperpile.com/c/pp9iAH/fq8S+4Orv
https://paperpile.com/c/pp9iAH/gcpY
https://paperpile.com/c/pp9iAH/gcpY


genes. The pipeline for transforming the primary list into the known ionomics gene list can be 
found at https://github.com/baxterlab/KIG. 
 
 

 

Gene Enrichment analysis 

Overrepresentation analysis (released 07-11-2019) was performed on the primary and inferred 
genes in A. thaliana using the GO Consortium’s web-based GO Enrichment Analysis tool 
powered by the PANTHER (v14) classification system tool (Ashburner et al. 2000; The Gene 
Ontology Consortium 2017; Mi et al. 2017). We restricted overrepresentation analysis to A. 

thaliana because of its dominance in the KIG list and our lack of confidence in the functional 
annotation of the other species in the list. An analysis performed by Wimalanathan et al. 
(Wimalanathan et al. 2018) found that maize gene annotations in databases like Gramene and 
Phytozome lacked GO annotations outside of automatically assigned, electronic annotations 
(IEA). IEA annotations are not curated and have the least amount of support out of all the 
evidence codes (Harris et al. 2004). A. thaliana annotations come from a variety of evidence 
types, showing a higher degree of curation compared to maize (Wimalanathan et al. 2018). The 
whole-genome Arabidopsis thaliana gene list from the PANTHER database was used as the 
reference list. 

We tested both the PANTHER GO-slim and the GO complete datasets for biological 
processes, molecular function and cellular component terms versus our primary list of genes. 
GO-Slim datasets contain a selected subset of terms that give a broad summary of the gene list, 
whereas the complete dataset contains all the terms returned for a more detailed analysis. The 
enriched terms (fold enrichment > 1 and with a false discovery rate <0.05) from the complete 
dataset were sorted into five specific categories relating to the ionome based annotation terms: 

1. Ion homeostasis - terms include homeostasis, stress, detoxification, regulation of an ion 
2. Ion transport - terms specifically state transport, export, import or localization of ion(s). 

Does not include hydrogen ion transport 
3. Metal ion chelation - terms relating to phytochelatins, other chemical reactions or 

pathways of metal chelator synthesis 
4. Response to ions - vaguely states a response to ions, but does not have any parent 

annotation terms that offer any more clarification (ie. stress response). Broadly this is 
referring to any change to the state or activity of cell secretion, expression, movement, 
or enzyme production (Carbon et al. 2009) 

5. Other transport - annotation stating the transfer of anything that is not an ion (glucose, 
peptides, etc.) 

Genes may belong to more than one category, but if they belong to a parent and child term in 
the same category, they are only counted once. 
 
Results 

The current primary list (v1.0) consists of 180 genes from A. thaliana, O. sativa, 
Medicago truncatula, Triticum aestivum and Zea mays with the majority coming from A. thaliana 

and O. sativa (Table 1)(Figure 1).  
 

https://github.com/baxterlab/KIG
https://paperpile.com/c/pp9iAH/zAzw+kjYR+IRSZ
https://paperpile.com/c/pp9iAH/zAzw+kjYR+IRSZ
https://paperpile.com/c/pp9iAH/2m4e
https://paperpile.com/c/pp9iAH/f2QsQ
https://paperpile.com/c/pp9iAH/2m4e
https://paperpile.com/c/pp9iAH/GINg


 

 

 

 

 

Table 1. Primary known ionome genes. 

 

Species GeneID GeneName Elements Tissue Citation(s) 

A.thaliana AT1G01340 CNGC10 K,Ca,Mg 
Roots,shoots

Shoots (K. M. Guo et al. 2010) 

A.thaliana AT1G01580 FRO2 Fe Root (Robinson et al. 1999) 

A.thaliana AT1G07600 MT1A Cd,Zn,As Shoots (Zimeri et al. 2005) 

A.thaliana AT1G08490 CPNIFS Se,S Roots,shoots (Van Hoewyk et al. 2005) 

A.thaliana AT1G12640 LPCAT1 P Leaf (Kisko et al. 2018) 

A.thaliana AT1G14040 PHO1;H3 P Shoots (Khan et al. 2014) 

A.thaliana AT1G14870 PCR2 Zn ShootsRoots (Song et al. 2010) 

A.thaliana AT1G18910 BTSL2 Fe,Mn,Zn Leaf (Hindt et al. 2017) 

A.thaliana AT1G20110 FYVE1 Fe,Zn,Co,Mn Root (Barberon et al. 2014) 

A.thaliana AT1G30270 CIPK23 K Shoots (Jiang Xu et al. 2006) 

A.thaliana AT1G30400 ABCC1 Cd Shoots (Park et al. 2012) 

A.thaliana AT1G30450 CCC Ca,K,Na,S seeds (McDowell et al. 2013) 

A.thaliana AT1G31885 NIP3;1 As Shoots (W. Xu et al. 2015) 

A.thaliana AT1G32450 

AtNRT1NRT1.

5 / 

AtNPF7/NPF7

.3 K, NO3- 
Shoots, 

Roots (H. Li et al. 2017) 

A.thaliana AT1G36370 AtMSA1MSA1 S, Se Shoots (Huang, Chao, et al. 2016) 

A.thaliana AT1G56160 myb72MYB72 Fe,Cd,Zn,Co,Mo Leaf (Palmer et al. 2013) 

A.thaliana AT1G56430 NAS4 Fe,Cd,Co,Mo Leaf (Palmer et al. 2013) 

A.thaliana AT1G59870 PEN3 Cd Shoots, roots (D.-Y. Kim et al. 2007) 

A.thaliana AT1G60960 AtIRT3IRT3 Fe Roots (Lin et al. 2009) 

A.thaliana AT1G62180 AtAPR2APR2 S, Se Shoots 
(Loudet et al. 2007; Chao, 
Baraniecka, et al. 2014) 

A.thaliana AT1G63440 
AtHMA5HMA

5 
Cu Shoots 

(Andrés-Colás et al. 2006) 

A.thaliana AT1G66240 AtAX1AX1 Cu Shoots (L.-J. Shin, Lo, and Yeh 2012) 

A.thaliana AT1G68320 MYB62 P Roots,shoots (Devaiah et al. 2009) 

A.thaliana AT1G71200 AtCITF1CITF1 Cu 
Shoots, 

Anthers (Jiapei Yan et al. 2017) 

A.thaliana AT1G74770 BTSL1 Fe,Mn,Zn Leaf (Hindt et al. 2017) 

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt, Not Bold, Font color: Auto

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

https://paperpile.com/c/pp9iAH/WUuk
https://paperpile.com/c/pp9iAH/nB5j
https://paperpile.com/c/pp9iAH/EBMd
https://paperpile.com/c/pp9iAH/1BLX
https://paperpile.com/c/pp9iAH/T5FA
https://paperpile.com/c/pp9iAH/wNjr
https://paperpile.com/c/pp9iAH/QBNb
https://paperpile.com/c/pp9iAH/UdSl
https://paperpile.com/c/pp9iAH/wwax
https://paperpile.com/c/pp9iAH/jnih
https://paperpile.com/c/pp9iAH/8dBr
https://paperpile.com/c/pp9iAH/cOKT
https://paperpile.com/c/pp9iAH/c0Zx
https://paperpile.com/c/pp9iAH/xpeL
https://paperpile.com/c/pp9iAH/sPiU
https://paperpile.com/c/pp9iAH/stNs
https://paperpile.com/c/pp9iAH/stNs
https://paperpile.com/c/pp9iAH/TmNM
https://paperpile.com/c/pp9iAH/lvi2
https://paperpile.com/c/pp9iAH/pHBY+aJyn
https://paperpile.com/c/pp9iAH/pHBY+aJyn
https://paperpile.com/c/pp9iAH/086w
https://paperpile.com/c/pp9iAH/e0lo
https://paperpile.com/c/pp9iAH/wnfX
https://paperpile.com/c/pp9iAH/tW6b
https://paperpile.com/c/pp9iAH/UdSl


A.thaliana AT1G76430 PHT1;9 P,As Roots,shoots (E. Remy et al. 2012) 

A.thaliana AT1G80760 NIP6;1 B 
Leaves,shoot

s (M. Tanaka et al. 2008) 

A.thaliana AT1G80830 
AtNRAMP1N

RAMP1 Mn Shoots,roots (Cailliatte et al. 2010) 

A.thaliana AT2G01770 VIT1 Fe Seed (S. A. Kim et al. 2006) 

A.thaliana AT2G01980 SOS1/NHX7 Na Shoots (Shi et al. 2003) 

A.thaliana AT2G13540 ABH1 S seeds (McDowell et al. 2013) 

A.thaliana AT2G16770 
AtbZIP23bZIP

23 Zn Shoots, roots (Assunção et al. 2010) 

A.thaliana AT2G19110 
AtHMA4HMA

4 Zn Shoots,seeds 

(Hussain et al. 2004; Olsen et 
al. 2016)(Hussain et al. 2004) 
(Olsen et al. 2016) 

A.thaliana AT2G21045 AtHAC1HAC1 As Shoots (Chao, Chen, et al. 2014) 

A.thaliana AT2G23150 
AtNRAMP3N

RAMP3 Fe,Mn,Zn Shoots (Lanquar et al. 2010) 

A.thaliana AT2G23240 AtMT4bMT4b Cu,Zn Seeds (Y. Ren et al. 2012) 

A.thaliana AT2G25680 MOT1 Mo Leaf (I. Baxter et al. 2008) 

A.thaliana AT2G28160 FRU Fe Shoots (Yuan et al. 2008) 

A.thaliana AT2G28670 ESB1 
Ca,Mn,Zn,Na,S,K,As, 

Se,Mo Leaf (I. Baxter et al. 2009) 

A.thaliana AT2G32830 PHT1;5 P Roots (Nagarajan et al. 2011) 

A.thaliana AT2G33770 PHO2 P Roots,shoots (T.-Y. Liu et al. 2012) 

A.thaliana AT2G37430 ZAT11 Ni Shoots (X.-M. Liu et al. 2014) 

A.thaliana AT2G38460 FPN1 Co Leaf (Morrissey et al. 2009) 

A.thaliana AT2G38940 PHT1;4 P Roots,shoots (H. Shin et al. 2004) 

A.thaliana AT2G39450 
AtMTP11MTP

11 Mn 
Shoots,roots

Roots (Peiter et al. 2007) 

A.thaliana AT2G42000 AtMT4aMT4a Cu,Zn Seeds (Y. Ren et al. 2012) 

A.thaliana AT2G46430 CNGC3 K Leaf (Gobert et al. 2006) 

A.thaliana AT2G46800 AtMTP1MTP1 Zn Shoots 
(Desbrosses-Fonrouge et al. 
2005) 

A.thaliana AT2G47160 BOR1 B Shoots 
(Miwa, Takano, and Fujiwara 
2006) 

A.thaliana AT3G01310 VIH2 P Shoots (Zhu et al. 2019) 

A.thaliana AT3G06060 TSC10a 
Na,K,Rb,Mg,Ca,Fe, 

Mo Leaf (Chao et al. 2011) 

A.thaliana AT3G06100 NIP7 As NA 
(Lindsay and Maathuis 2016; 
Isayenkov and Maathuis 2008) 

A.thaliana AT3G08040 FRD3/MAN1 Mn Leaf (Delhaize 1996) 

A.thaliana AT3G12750 AtZIP1ZIP1 Mn Roots (Milner et al. 2013) 

A.thaliana AT3G12820 myb10MYB10 Fe,Cd,Zn,Co,Mo Leaf (Palmer et al. 2013) 
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A.thaliana AT3G13320 CAX2 Mn,Fe,K,P Seed (Connorton et al. 2012) 

A.thaliana AT3G13405 mir169a N Root (M. Zhao et al. 2011) 

A.thaliana AT3G14280  S seeds (McDowell et al. 2013) 

A.thaliana AT3G15380 AtCTL1CTL1 Na, Fe, Zn, Mn, Mo 
Shoots, 

Roots (Gao et al. 2017) 

A.thaliana AT3G18290 BTS Fe,Zn,Mn Leaf (Hindt et al. 2017) 

A.thaliana AT3G22890 
AtATPS1ATP

S1 S Shoos (Koprivova et al. 2013) 

A.thaliana AT3G23210 bHLH34 Fe Root, shoot (X. Li et al. 2016) 

A.thaliana AT3G23430 PHO1 P Shoots (Khan et al. 2014) 

A.thaliana AT3G43790 ZIFL2 Cs Leaf (Estelle Remy et al. 2015) 

A.thaliana AT3G47640 PYE Fe,Zn,Mn,Co Root (Long et al. 2010) 

A.thaliana AT3G47950 AHA4 Na Root (Vitart et al. 2001) 

A.thaliana AT3G51860 CAX3 P,K Seed (Connorton et al. 2012) 

A.thaliana AT3G51895 SULTR3;1 S Leaf (Cao et al. 2013) 

A.thaliana AT3G56970 bHLH38 Fe Shoots (Yuan et al. 2008) 

A.thaliana AT3G56980 bHLH39 Fe Shoots (Yuan et al. 2008) 

A.thaliana AT3G58060 AtMTP8MTP8 Mn Shoots,seeds (Eroglu et al. 2016, 2017) 

A.thaliana AT3G58810 AtMTP3MTP3 Zn Shoots 
(Arrivault, Senger, and Krämer 
2006) 

A.thaliana AT3G58970 MGT6 Mg 
Roots,shoots

Shoots (Mao et al. 2014) 

A.thaliana AT3G62270 BOR2 B Shoots 
(Miwa et al. 2013)(Miwa, 
Takano, and Fujiwara 2006) 

A.thaliana AT4G02780 GA1 Fe Root (Wild et al. 2016) 

A.thaliana AT4G10310 
AtHKT1HKT1;

1 Na Leaf (I. Baxter et al. 2010) 

A.thaliana AT4G10380 NIP5;1 B Roots,shoots (Takano et al. 2006) 

A.thaliana 
AT4G13420 HAK5 Rb,Cs Roots 

(Rubio et al. 2008; Qi et al. 
2008)(Rubio et al. 2008) 

A.thaliana AT4G14410 bHLH104 Fe Root, shoot (X. Li et al. 2016) 

A.thaliana AT4G16370 OPT3 Fe,Cd Leaf (Zhai et al. 2014) 

A.thaliana AT4G18910 NIP1;2 Al Roots (Y. Wang et al. 2017) 

A.thaliana AT4G19690 IRT1 Fe,Mn,Co,Cd,Zn Root (Eide et al. 1996) 

A.thaliana AT4G23100 GSH1 Cd,As Shoots (J. Guo et al. 2008) 

A.thaliana AT4G24120 YSL1 Fe,Zn,Cu NA (Waters et al. 2006) 

A.thaliana AT4G28610 AtPHR1PHR1 P Shoots 
(Nilsson, Müller, and Nielsen 
2007) 

A.thaliana 
AT4G30110 

AtHMA2HMA

2 Zn Shoots,seeds 
(Hussain et al. 2004; Olsen et 
al. 2016) 
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A.thaliana 
AT4G30120 

AtHMA3HMA

3 Cd,Zn Leaf 
(Chao et al. 2012; Pita-Barbosa 
et al. 2019) 

A.thaliana AT4G33000 CBL10 K Shoots (X.-L. Ren et al. 2013) 

A.thaliana 
AT4G35040 

AtbZIP19bZIP

19 Zn Shoots, roots (Assunção et al. 2010) 

A.thaliana 
AT4G37270 HMA1 Zn Shoots (Y.-Y. Kim et al. 2009) 

A.thaliana AT5G02600 NaKR1 Na,K,Rb Leaf (Tian et al. 2010) 

A.thaliana 
AT5G03455 ACR2 As,P Roots,shoots (Dhankher et al. 2006) 

A.thaliana 
AT5G03570 FPN2 Co,Ni Leaf 

(Morrissey et al. 2009; Schaaf et 
al. 2006)(Morrissey et al. 2009) 

A.thaliana AT5G09690 MGT7 Mg Shoots (Kamiya et al. 2012) 

A.thaliana AT5G13740 ZIF1 Zn,Fe Shoots (Haydon et al. 2012) 

A.thaliana AT5G15070 VIH1 P Shoots (Zhu et al. 2019) 

A.thaliana AT5G15410 CNGC2/DND1 Ca,Mg seeds (McDowell et al. 2013) 

A.thaliana 
AT5G17290 APG5 Fe, Mn, Zn 

Leaf, shoots, 

seeds (Pottier et al. 2019) 

A.thaliana AT5G18830 AtSPL7SPL7 Cu Shoots, roots (Bernal et al. 2012) 

A.thaliana 
AT5G20650 COPT5 Cu 

Shoots, roots, 

Roots,seeds (Klaumann et al. 2011) 

A.thaliana AT5G35410 SOS2 Na seeds (McDowell et al. 2013) 

A.thaliana 
AT5G42130 AtMfl1Mfl1 Fe 

Leaves, 

shoots (Tarantino et al. 2011) 

A.thaliana 
AT5G43350 PHT1;1 P,As Shoots 

(H. Shin et al. 2004; Catarecha 
et al. 2007) 

A.thaliana 
AT5G44070 PCS1 Zn,Cd,As Leaf 

(Kühnlenz et al. 2016; J. Guo et 
al. 2008)(Kühnlenz et al. 2016) 

A.thaliana AT5G53130 CNGC1 Pb Leaf (Sunkar et al. 2000) 

A.thaliana AT5G53550 YSL3 Fe,Zn,Cu NA (Waters et al. 2006) 

A.thaliana AT5G54680 ILR3 Cd,Co,Fe,Mn,Zn Leaf (Rampey et al. 2006) 

A.thaliana AT5G54810 AtTSB1TSB1 Cd Roots,shoots (Sanjaya et al. 2008) 

A.thaliana 
AT5G57620 

AtMYB36MYB

36 

Li, B, Na, Mg, K, Ca, 

Mn, Fe, Co, Ni, Cu, 

Zn, Rb, Sr, Mo, Cd Shoots (Kamiya et al. 2015) 

A.thaliana AT5G59030 COPT1 Cu Seed,Leaf (Sancenón et al. 2004) 

A.thaliana AT5G64930 CPR5 K Leaf (Borghi, Rus, and Salt 2011) 

A.thaliana AT5G67330 
AtNRAMP3N

RAMP3 Fe,Mn,Zn Shoots (Lanquar et al. 2010) 

M.truncatula Medtr1g010270 
MtMOT1MOT

1.2 Mo Nodules (Gil-Díez et al. 2018) 

M.truncatula Medtr3g088460 
MtNramp1NR

AMP1 Fe Nodules (Tejada-Jiménez et al. 2015) 
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M.truncatula Medtr3g464210 
MtMOT1MOT

1.3 Mo Nodules (Tejada-Jiménez et al. 2017) 

M.truncatula Medtr4g019870 
MtCOPT1CO

PT1 Cu Nodules (Senovilla et al. 2018) 

M.truncatula Medtr4g064893 MtMTP2MTP2 Zn Nodules (León-Mediavilla et al. 2018) 

M.truncatula Medtr4g083570 MtZIP6ZIP6 Zn Nodules (Abreu et al. 2017) 

O.sativa LOC_Os01g03914 
OsMTP9MTP

9 Mn Shoots (Ueno et al. 2015) 

O.sativa LOC_Os01g08300 CDT3 Al Roots (Xia, Yamaji, and Ma 2013) 

O.sativa LOC_Os01g20160 
OsHKT1HKT1

;5 
Na Leaf, shoots 

(N. I. Kobayashi et al. 2017) 

O.sativa LOC_Os01g45990 AKT1 K NA 
(Ahmad, Mian, and Maathuis 
2016) 

O.sativa LOC_Os01g64250 
OsHORZ1HO

RZ1 Fe 
Shoots, 

seeds (T. Kobayashi et al. 2013) 

O.sativa LOC_Os01g64890 
OsMGT1MGT

1 Mg,Na 
Roots, 

shootsShoots (Z. C. Chen et al. 2017) 

O.sativa LOC_Os02g03900 NRAMP4 Al Roots (Xia et al. 2010) 

O.sativa LOC_Os02g06290 
OsHAC4HAC

4 As Seed (Jiming Xu et al. 2017) 

O.sativa LOC_Os02g10290 
OsHMA4HMA

4 Cu 
Roots, 

shoots, seeds (Huang, Deng, et al. 2016) 

O.sativa LOC_Os02g13870 
OsNIP1NIP1;

1 As Shoots (Sun et al. 2018) 

O.sativa LOC_Os02g43370 OsYSL2YSL2 Fe,Mn Seeds (Ishimaru et al. 2010) 

O.sativa LOC_Os02g43410 
OsYSL15YSL

15 Fe 
Roots, 

shoots, seeds (Lee et al. 2009) 

O.sativa LOC_Os02g51110 LSI1 Se 
Roots,shoots 

(X. Q. Zhao et al. 2010) 

O.sativa LOC_Os02g53490 
OsMTP8MTP

8.2 Mn 
Shoots, 

rootsRoots (Takemoto et al. 2017) 

O.sativa 
LOC_Os02g56510 

OsPHO1PHO

1;2 
P Shoots 

(Secco, Baumann, and Poirier 
2010) 

O.sativa LOC_Os03g05640 OsPT2PT2 Se Roots, shoots (L. Zhang et al. 2014) 

O.sativa LOC_Os03g09140 
OsRab6aRab

6a Fe,Zn 
Seeds, shoot, 

roots (Yang and Zhang 2016) 

O.sativa LOC_Os03g12530 
OsMTP8MTP

8.1 Mn 
Shoots, 

rootsRoots (Z. Chen et al. 2013) 

O.sativa LOC_Os03g18550 OsMITMIT Fe Shoots (Bashir et al. 2011) 

O.sativa 
LOC_Os03g19420 

OsNAS2NAS

2 
Fe Seeds 

(Lee et al. 2012) 

O.sativa 
LOC_Os03g21240 

OsPHR2PHR

2 
P Shoots 

(Zhou et al. 2008) 

O.sativa LOC_Os04g32920 
OsHAK1HAK

1 Cs 
Shoots, 

seeds (Rai et al. 2017) 

O.sativa LOC_Os04g38940 OsVIT1VIT1 Fe,Zn Shoots,seeds (Yu Zhang et al. 2012) 

O.sativa LOC_Os04g45860 OsYSL9YSL9 Fe Shoots,seeds (Senoura et al. 2017) 
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O.sativa LOC_Os04g45900 
OsYSL16YSL

16 Cu 
Roots,shoots, 

seeds (Zheng et al. 2012) 

O.sativa LOC_Os04g46940 
OsHMA5HMA

5 Cu Roots,shoots (Deng et al. 2013) 

O.sativa LOC_Os04g49410 EXPA10 Al Roots (Che et al. 2016) 

O.sativa LOC_Os04g52310 OsZIP3ZIP3 Zn Shoots (Sasaki et al. 2015) 

O.sativa LOC_Os04g52900 
OsABCC1AB

CC1 As Seeds (Song et al. 2014) 

O.sativa LOC_Os04g56430 OsRMCRMC Fe,Mn,Cu 
Root,shoot, 

seeds (Yang et al. 2013) 

O.sativa LOC_Os05g34290 
OsPCS1*PCS

1 As Seeds (Hayashi et al. 2017) 

O.sativa LOC_Os05g37470 AUX3 Al Roots (M. Wang et al. 2019) 

O.sativa LOC_Os05g39560 OsZIP5ZIP5 Zn Leaf (Lee et al. 2010) 

O.sativa LOC_Os05g47780 OsHRZ2HRZ2 Fe 
Shoots, 

seeds (T. Kobayashi et al. 2013) 

O.sativa LOC_Os05g48390 
OsPHO2PHO

2 P Leaf (C. Wang et al. 2009) 

O.sativa LOC_Os06g01260 
OsPCS2*PCS

2 As, Cd Seeds (Uraguchi et al. 2017) 

O.sativa LOC_Os06g05160 SPDT P Seed (Yamaji et al. 2017) 

O.sativa LOC_Os06g48720 
OsHMA2HMA

2 Zn 
Shoots, 

rootsRoots (Takahashi et al. 2012) 

O.sativa 
LOC_Os06g48810 

OsHKT2HKT2

;1 
Na Roots, shoots 

(Horie et al. 2007) 

O.sativa LOC_Os07g01810 TPKb K Leaf, root (Ahmad et al. 2016) 

O.sativa LOC_Os07g09000 OsPHF1PHF1 P Leaf, root (J. Chen et al. 2011) 

O.sativa LOC_Os07g12900 
OsHMA3HMA

3 Cd Shoots,seeds (N. Tanaka et al. 2016) 

O.sativa LOC_Os07g15370 NRAMP5 Fe,Mn,Cd Leaf (Sasaki et al. 2012) 

O.sativa LOC_Os08g01120 
OsMOT1MOT

1;1 Mo Shoots,Seed (Huang et al. 2019) 

O.sativa LOC_Os08g04390 OsPRI1PRI1 Fe Shoots, roots (H. Zhang et al. 2017) 

O.sativa LOC_Os08g05590 
OsNIP3NIP3;

2 As Roots (Y. Chen et al. 2017) 

O.sativa LOC_Os08g05600 
OsNIP3NIP3;

3 As Shoots (Sun et al. 2018) 

O.sativa LOC_Os08g10480 OsATX1ATX1 Cu 

Shoots, roots, 

seedsRoots, 

Seeds (Yuanyuan Zhang et al. 2018) 

O.sativa LOC_Os09g23300 OsVIT2VIT2 Fe,Zn Shoots,seeds (Yu Zhang et al. 2012) 

O.sativa LOC_Os12g03899 ZIFL12 Fe Shoots (Che et al. 2019) 

O.sativa LOC_Os12g18410 OsMIRMIR Fe 
Shoots, 

Roots, seeds (Ishimaru et al. 2009) 

O.sativa LOC_Os12g32400 
OsbHLH133b

HLH133 Fe 
Leaf,root, 

shoot (L. Wang et al. 2013) 

O.sativa LOC_Os12g37840 
OsBOR1BOR

1 B Shoots (Nakagawa et al. 2007) 

O.sativa Os01g0689300 OsHRZ1HRZ1 Fe Shoots, (T. Kobayashi et al. 2013) 
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seeds 

T.aestivum 

2AL-TRIAE_CS42_ 

2AL_TGACv1_095050_

AA0306410 TaIPK1IPK1 Fe, Zn Seed (Aggarwal et al. 2018) 

T.aestivum Traes_4AS_7220D33B3 Ta-PHR1 P Shoots (J. Wang et al. 2013) 

T.aestivum Traes_4BL_7091749BF 
TaABCC13AB

CC13 Ca Seed (Bhati et al. 2016) 

T.aestivum Traes_4DL_3F8034BFD HKT2;1 Na Roots (Laurie et al. 2002) 

Z.mays GRMZM2G047616 
ZmHKT1HKT

1 Na Leaf (M. Zhang et al. 2018) 

Z.mays GRMZM2G060952 YS1 Fe Root (Von Wiren et al. 1994) 

Z.mays GRMZM2G063306 YS3 Fe Leaf 
(Chan-Rodriguez and Walker 
2018) 

Z.mays GRMZM2G084779 
ZmHAK5HAK

5 
K Roots, shoots 

(Qin, Wu, and Wang 2019) 

Z.mays GRMZM2G176209 TLS1 B 
Shoots, roots, 

anthers (Durbak et al. 2014) 
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Figure 1. Number of genes for each species that are primary, inferred from other primary 

genes in other species, or both. 

 
Most primary genes have orthologs in other species. Less than 10% of primary genes in A. 

thaliana, 12% in O.sativa and one of the four primary genes in wheat (T. aestivum) lack 
orthologs (Table 2). G. max, P.trichocarpa, S. bicolor, S. italica, and S. viridis currently contain 
only inferred genes (Table 2, Figure 1).  
 

Table 2. Break down of primary/inferred genes in each species.  

Species 
Total 

Genes 
Primary 

Genes 
Primary/Inferred 

Genes 
Inferred 

Genes 

Primary & Primary/ 

Inferred Genes 

withoutw/o orthologs 

A.thaliana 136 65.4464.71% 16.1891% 18.38% 9.9101% 

O.sativa 141146 20.5721.92% 14.8915.07% 64.5463.01% 12.0011.11% 

M.truncatula 176178 1.7069% 1.7069% 96.5963% 0.00% 

T.aestivum 267274 0.7573% 0.7573% 98.5054% 25.00% 

Z.mays 152157 1.3227% 1.9791% 96.7182% 0.00% 

G.max* 268274 0.00% 0.00% 100.00% 0.00% 

P.trichocarpa* 197201 0.00% 0.00% 100.00% 0.00% 

S.bicolor* 135139 0.00% 0.00% 100.00% 0.00% 

Formatted Table



S.italica* 146150 0.00% 0.00% 100.00% 0.00% 

S.viridis* 146150 0.00% 0.00% 100.00% 0.00% 

 

 
The YSL genes in A. thaliana and O.sativa are an example that provides evidence for the 
validity of the KIG list pipeline: AtYSL3, OsYSL9 and OsYSL16 were listed in their respective 
species as primary genes (Table 1) and after the ortholog search were annotated as 
primary/inferred genes, referencing each other (STable1). AtYSL2 in A. thaliana, was not listed 
as primary gene, but was inferred through its rice orthologs OsYSL9 and OsYSL16. Additionally, 
AtYSL1 in A. thaliana is not a paralog of AtYSL3 or an ortholog of OsYSL9 and OsYSL16 
according to PhytoMine’s InParanoid results, and is not listed as an ortholog to either of the O. 

sativa YSL genes in the KIG list. Other examples include AtVIT1 and OsVIT1/OsVIT2 (S. A. Kim 
et al. 2006; Yu Zhang et al. 2012), and the vacuolar Mn transporters AtMTP8 and OsMTP8 
(Eroglu et al. 2016; Z. Chen et al. 2013). Thus, we can reliably generate inferred genes and 
create a species-specific KIG list for any species in PhytoMine. 
 

The primary list covers 23 elements (Figure 2) according to the reported elements from 
authors in the primary list, which is more elements than predicted by the GO term annotations 
for those genes. Some GO annotations for these genes mention only a portion of elements 
listed by the literature in the primary list. This may be due to GO annotation evidence codes 
lacking curation or biological data (IEA,ND,NAS) (Wimalanathan et al. 2018), or it may be due to 
alterations in one element leading to alterations in other elements (I. R. Baxter et al. 2008).  
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Figure 2. Number of primary genes from each species listing each element. 

 

A. thaliana is the only species to have a primary gene listing for each element. There is a bias 
towards manganese, zinc and iron which have 2, 3 and 4 times more associated genes than the 
average 13±12 genes of other elements. Iron is the only element to contain genes from all five 
species in the primary list. In addition to biases towards certain elements, our primary list is also 
skewed towards an overrepresentation of ionome genes in above ground tissue studies (Figure 
3). This is likely due to the difficulties in studying the elemental content of below ground tissues.  
All M. truncatula genes come from studies of the nodule in this model legume species. 



 

Figure 3. Number of primary genes each type of tissue contributes to the known ionome 

gene list. Above ground is a summary of anther, leaf, seed and shoot, while below 

ground is a summary of root and nodule.  
 

Querying the manually curated PANTHER GO-slim biological process database 
(PANTHER v14.1, released 03-12-2019) and the GO complete biological process database (GO 
Ontology database, released 10-08-2019), with the A. thaliana KIG genes returned significantly 
(FDR < 0.05) overrepresented annotation terms related to the transport, response, and 
homeostasis of iron, zinc, copper and manganese ions. Additionally, the GO complete results 
had terms for cadmium, nickel, cobalt, sulfur, arsenic, lead, selenium, boron, magnesium, 
phosphorus, sodium, potassium, and calcium; covering most of the elements in the KIG list 
(Figure 4). Even though some genes were annotated as associated in the “other transport” of 
glycoside, glucose, oligopeptides, or phloem transport, the citations that have added them into 
our primary list show that their mutant alleles altered elemental accumulation. AtABCC1 is 
annotated as encoding a glycoside transporter protein, but Park et al. (Park et al. 2012) found 
overexpression of AtABCC1 increased cadmium concentrations in shoot tissue. The YSL genes 
and OPT3 are annotated as genes encoding oligopeptide transporters, but more specifically 
they are encoding predicted phloem-localized metal-nicotianamine complex and iron/cadmium 
transporters, respectively (Waters et al. 2006; Zhai et al. 2014). Lastly, NRT1.5/NPF7.3 is also 
annotated as encoding an oligopeptide transporter, but Li et al. (H. Li et al. 2017) identified it as 
a xylem loading potassium ion antiporter. 
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Figure 4. Known ionome genes relating to different terms from the GO complete biological 
process dataset. Ontology groups of GO Enrichment Analysis from PANTHER.  
 

The PANTHER GO-slim molecular function annotation database found a significant 
overrepresentation for iron and potassium cation transmembrane transporter activity in the 
A.thaliana genes. The results using the GO complete molecular function database supported 
this, and additionally included terms for arsenic, cadmium, zinc, boron, manganese, phosphate, 
sulfur and magnesium ion transmembrane transporter activity. The GO complete molecular 
database also returned overrepresented terms for metal ion binding and cyclic nucleotide 
binding annotations. The cyclic nucleotide binding annotation genes were more specifically 
cyclic nucleotide ion gated channel genes (Gobert et al. 2006). The PANTHER GO-slim cell 
component and GO complete cell component annotation database both returned significant 
overrepresentation for vacuoles and the plasma membrane, both known to be critical for 
elemental movement and storage (Barkla and Pantoja 1996). The molecular function and cell 
component results are further evidence that our list is dominated by ion transporters. 
 

To test the completeness of the KIG list, we searched PANTHER’s Prowler tool to 
search their biological processes terms for the number of A. thaliana genes 
encoding predicted elemental transporters. We found 290 A.thaliana genes predicted to 
encode elemental transport, and only 16 of these PANTHER genes are listed in the KIG list. 
We checked these results against ThaleMine (v1.10.4, updated on 06-13-2017) genes with the 
term “ion transport” in the gene name, description, or GO annotation and found only 358 genes, 

https://paperpile.com/c/pp9iAH/jEV6
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with 52 of these genes listed in the A. thaliana known ionome gene list. Interestingly, 245 of 
the genes from ThaleMine were not found in the 290 from PANTHER. 
 
Discussion 

Here we have produced a curated list of genes known to alter the elemental composition of 
plant tissues. We envision several possible uses for this list: 

1. Researchers can use the list to identify candidate genes in loci from QTL and GWAS 
experiments. 

2. This list can serve as a gold standard for computational approaches. 
3. The list can serve as a reading list for those interested in learning about elemental 

accumulation. 
It is important to highlight that the inferred genes lists are not likely to be perfect predictors of 
the causal genes. Our use of InParanoid orthologs may exclude homologs that are likely 
candidates. Additionally, the reasons that some genes have been studied could be the result of 
human bias towards research topics (I. Baxter 2020). The list is highly enriched for 1) 
transporters, 2) genes that affect elemental accumulation in above ground tissues and 3) genes 
that affect the accumulation of Fe and Zn. Transporter genes became obvious candidates for 
studying plant nutrition when disruption allele collections were produced (McDowell et al. 2013). 
Above ground tissues are easier to study without contamination from the soil, and such studies 
are therefore more prevalent. Finally, while Fe and Zn are important biochemical cofactors, 
these elements are likely enriched in the KIG list due to their considerable interest to the 
community where the ionomics approach was developed. This is further illustrated in the 
PANTHER GO-slim databases, where Fe was the only element to have its overrepresented 
response, homeostasis and transport related GO terms show up in the PANTHER GO-slim 
biological process and molecular function databases, which are selected subsets of terms 
meant to broadly summarize data. Overrepresented terms related to other KIG list elements are 
only found in the GO complete databases. Taken together, these factors warn against forming 
conclusions about the nature of all elemental accumulation genes based on this limited dataset.   
 
Most entries on this list are derived from model organisms suggesting that most of our 
knowledge about genes that affect elemental accumulation comes from these species. A. 

thaliana and M. truncatula account for 65% of the primary genes list, which is probably a 
lower bound for the influence of knowledge generated in model organisms. Several of the genes 
in crop plants were found due to being orthologs of genes in the model organisms (Ahmad, 
Mian, and Maathuis 2016; Jiming Xu et al. 2017), and on closer inspection of the 54 papers 
identifying primary genes in rice, 39 cited a gene in Arabidopsis (not necessarily the direct 
ortholog) as a source for why the gene was investigated.The higher quality of the GO terms in 
Arabidopsis when compared to other species is another reflection of this disparity of knowledge 
and a significant hindrance when trying to clone genes in other organisms.  
 
While our list is focused on elements measured by ICP-MS, a known gene list for other 
elements and any other trait can be easily created with our pipeline at 
https://github.com/baxterlab/KIG. Our repository also contains user instructions on how to add 
more species from Phytozome to the list. 
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Call for more submissions 

While we have done our best to ensure that the current list is useful and thorough, it is possible 
we are still missing genes. We ask readers who know of genes that we are missing to contribute 
by submitting them here: 
https://docs.google.com/forms/d/e/1FAIpQLSdmS_zeOlxTOLmq2wB45BuSQml1LMKtKnWSat
mFRGR2Q1o0Ew/viewform?c=0&w=1 or email corresponding author. KIG lists v1.0 for each of 
the species can be viewed in STable1 (xlsx), and machine readable files (csv) can 
be found at https://github.com/baxterlab/KIG. Future updates to the list can be found at 
https://docs.google.com/spreadsheets/d/1XI2l1vtVJiHrlXLeOS5yTQQnLYq7BOHpmjuC-
kUejUU/edit?usp=sharing. 
 
 
Contributions: 
Contributed genes: IB, FKR, FM, SC, EW, PK 
Analyzed data: LW, GZ 
Wrote paper: LW, FKR, IB 
Edited paper: FKR, FM, SC, EW, PK, GZ, LW, IB 
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