
This is a repository copy of A novel time-varying modelling and signal processing 
approach for epileptic seizure detection and classification.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/165418/

Version: Accepted Version

Article:

Wang, Q., Wei, H. orcid.org/0000-0002-4704-7346, Wang, L. et al. (1 more author) (2021) 
A novel time-varying modelling and signal processing approach for epileptic seizure 
detection and classification. Neural Computing and Applications, 33 (11). pp. 5525-5541. 
ISSN 0941-0643 

https://doi.org/10.1007/s00521-020-05330-7

This is a post-peer-review, pre-copyedit version of an article published in Neural 
Computing and Applications. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/s00521-020-05330-7.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Neural Computing and Applications  

 

ORIGINAL ARTICLE 

DOI  
 

  
 

A Novel Time-Varying Modelling and Signal Processing Approach for 

Epileptic Seizure Detection and Classification 

Qinghua Wang 1,† · Hua-Liang Wei 2,† · Lina Wang 1 · Song Xu 1 

 
Received:  

© The Natural Computing Applications Forum 2020 

Abstract  

Electroencephalogram (EEG) signal analysis plays an essential role in detecting and understanding epileptic seizures. It is 

known that seizure processes are nonlinear and nonstationary, discriminating between rhythmic discharges and dynamic 

change is a challenging task in EEG based seizure detection. In this paper, a new time-varying (TV) modeling framework, 

based on an autoregressive (AR) model structure, is proposed to characterize and analyze EEG signals. The TV parameters 

of the AR model are approximated through a multi-wavelet basis function expansion (MWBF) approach. An effective ultra-

regularized orthogonal forward regression (UROFR) algorithm is employed to significantly reduce and refine the resulting 

expanded model. Given a time-varying process, the proposed TVAR-MWBF-UROFR method can generate a parsimonious 

TVAR model, based on which a high-resolution power spectrum density (PSD) estimation can be obtained. Informative fea-

tures are then defined and extracted from the PSD estimation. The TVAR-MWBF-UROFR method is applied to a number of 

real EEG datasets; features obtained from these datasets are then used for seizure detection and classification. To make the 

results more accurate and reliable, a PCA algorithm is adopted to select the optimal feature subset, and a Bayesian optimiza-

tion technique based on the Gaussian process (GP) is performed to determine the coefficients associated with each of the 

classifiers. Experimental results of the proposed approach outperform the compared state-of-the-art classifiers on two 

benchmark datasets. Moreover, the results produced by the proposed time-frequency analysis scheme are more reliable for 

seizure detection based on the noisy EEG datasets used in our case studies. 

Keywords: electroencephalogram (EEG) · epileptic seizure detection· time-varying process · ultra-regularized orthogonal 

forward regression (UROFR) · time-frequency analysis · Bayesian optimization 

 
1 Introduction 

 

Epilepsy is a widespread and high-risk chronic disease [1]. 

The pathological cause of epilepsy in individuals is gener-

ally unexplained and the mechanisms behind seizure re-

main unknown [2]. The prevalence of epilepsy worldwide 

can be as high as 5% of the general population, and appro-  
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ximately 80% of the people who have epilepsy are in de-

veloping countries [3]. EEG signal contains various useful 

information relating to numerous physiological states of 

the brain and thus is an indispensable tool for understand-

ing brain diseases, such as epilepsy [4]. Classically, clinical 

diagnosis of epileptic seizures relied primarily on clinical 

examination and visual observations of EEG records, 

which was often time-consuming and subjective [5,6]. 

Therefore, it is of considerable significance to develop an 

effective automatic epileptic EEG signal classification sys-

tem to improve the efficiency and reliability of timely epi-

lepsy diagnosis. The crucial factor in EEG recognition is to 

extract valuable features to describe EEG signal character-

istics and exploit them for classification purposes [7,8].  

Studies over the past two decades have provided valua- 

ble information on epilepsy detection [9]. In [10], feature 

extraction methods based on the waveform feature of EEG 

signals were briefly reviewed. However, due to the appar-

ent rhythmicity and non-stationarity of EEG signals, fea-

ture extraction based on waveforms can only obtain partial 
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information [11,12]. Some scholars have tried to extract  

 

features of EEG signals using more complex time-

frequency analysis methods. For example, Gandhi et al. 

[13] Characterized the energy, variance and information 

entropy of EEG signals in a frequency band and studied 

the characteristics of EEG signals using wavelet functions. 

Guo et al. [14] employed a multi-scale wavelet transform 

to decompose EEG signals and took approximate entropy 

of each frequency band as the characteristics of EEG sig-

nals. In 2013, Li et al. [15] extracted the variance, fluctua-

tion index and other components from the Intrinsic Mode 

Functions (IMF) after EMD decomposition as epileptic 

EEG features. Faust et al. [16] utilized a DWT-based 

technique for EEG denoising and feature extraction in epi-

lepsy diagnosis, and their results demonstrated that the 

wavelet method was a practical method for automatic sei-

zure detection using EEG signals. In addition, Wani et al. 

[17] used the energy distribution of wavelet coefficients in 

each sub-band frequencies of the EEG records and adopt-

ed an Artificial neural network (ANN) for classification. 

Their seizure detection approach can efficiently recognize 

epileptic seizures and thus alleviate the burden of medical 

professionals. Non-parametric time-frequency analysis 

methods such as STFT and CWT have also been widely 

adopted in EEG signal analysis, but most of these meth-

ods are sensitive to noise and normally suffer from the is-

sue of a trade-off between temporal and frequency resolu-

tions [18,19]. Those shortages usually reduce the perfor-

mance of the extracted features from EEG signals [20,21]. 

Unlike those aforementioned nonparametric spectral 

approaches, the power spectral density (PSD) estimation 

based on the time-varying autoregressive (TVAR) model 

is a parametric time-frequency analysis method, which 

overcomes the deficiency of time-frequency resolution 

given by STFT and CWT methods [21]. Due to its 

straightforward structure and the allowance of time-

varying parameters, the TVAR model, as a simplified 

nonlinear model, provides an effective tool to reveal the 

dynamic characteristics of non-stationary time series such 

as EEG signal [22-24]. However, the ongoing challenge is 

to construct a sufficiently accurate TVAR model [21-23]. 

The central objective of this study is to develop an ef-

fective tool for epileptic seizure detection and classifica-

tion based on EEG recordings. In doing so, we propose a 

novel efficient TVAR-MWBF-UROFR approach, which 

can yield a parsimonious TVAR model with satisfying 

generalization ability to process、characterize and ana-

lyze EEG signals. Fig. 1 presents the schematic diagram 

of the proposed scheme for epileptic seizure detection. 

First of all, a new multi-resolution wavelet expansion 

method is introduced to approximate each of the time-

varying parameters of the TVAR model. Then a novel ul-

tra-regularized orthogonal forward regression algorithm 

(called UROFR), incorporating derivative information, is 

proposed to refine and reduce the TVAR model structure  

 

and estimate the corresponding parameters. Secondly, a 

PSD function is defined based on the reduced TVAR mod-

el, and the time-frequency features then extracted in five 

frequency sub-bands according to clinical experience. Fi-

nally, a PCA approach is exploited to reduce the dimen-

sionality of the extracted feature spaces, and the best-

identified classifier is obtained via a Bayesian optimization 

technique. Our proposed scheme is applied to several pub-

licly available EEG datasets and experimental results 

demonstrate that the proposed approach outperforms most 

existing methods in terms of sensitivity (SEN), specificity 

(SPE), and accuracy (ACC). Additionally, we also prelimi-

narily explored the robustness of the proposed method for 

classification of seizure EEG from non-resting EEG with 

muscle artifacts, and the accuracy has remained above 95% 

for epilepsy detection. These results suggest that the pro-

posed TVAR-MWBF-UROFR approach is robust for sei-

zure detection and classification. 

The remainder of the paper is arranged as follows. The 

second section introduces the EEG data used for the exper-

iments and section 3 is concerned with the methodology 

used for this study. Section 3.1 details the proposed 

TVAR-MWBF-UROFR algorithm. Model order determi-

nation is presented in Section 3.2. High-resolution time-

frequency analysis based on power spectral density is de-

picted in Section 3.3. Section 3.4 illustrates the classifica-

tion and performance evaluation. Results of the experiment 

are presented in Section 4. Detailed discussions about the 

effectiveness of the proposed method and its limitations are 

given in Section 5. Finally, Section 6 summarizes our main 

work and offers possible future extensions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The schematic diagram of the proposed method for epileptic 

seizure detection. 
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2 Dataset Description 

We perform comparative experiments on two independent 

EEG datasets to verify the general applicability of our 

proposed method. Dataset 1 was acquired from Bonn 

University, and Dataset 2 was collected from Neurology 

and Sleep Centre(NSC), New Delhi. 

2.1 Description of Dataset 1 

The EEG dataset includes five subsets, denoted as Z, O, F, 

N, and S, respectively [25]. Each subset consists of 100 

single-channel EEG records of a duration of 23.6 s, at a 

sampling rate of 173.61Hz. Subset Z and O involve sur-

face EEG signals recorded from five healthy participants 

with the EEG electrode arranged using an international 

10–20 system. Subjects were awake and relaxed with 

eyes-open (Set Z) and eyes-closed (Set O) in the recording 

process. The other three subsets N, F, and S contain intra-

cranial EEG signals taken from five epileptic patients un-

dergoing preoperative assessment. Subsets N and F were 

recorded in seizure-free intervals from five epileptic pa-

tients in the epileptogenic zone (set F) and the hippocam-

pal formation of the opposite hemisphere of the brain (set 

N). EEG segments in subset S consists of data recordings 

during a seizure (ictal) event. All EEG records were rec-

orded by the same 128-channel amplifier system with the 

equal average reference value, undergoing preliminary 

processing to remove artifacts, interference, etc[5,18]. 

This paper carries out four types of EEG signal classifica-

tion tasks: S/Z, S/N, S/F, S/NF. These four EEG signal 

classification tasks are of great significance in clinical 

practice and have been widely adopted by researchers. 

2.2 Description of Dataset 2 

The second dataset contains segmented EEG records of 

ten epilepsy patients, and it is freely available at 

https://www.researchgate.net/publication/308719109. All 

EEG recordings were attained at a sampling rate of 200 

Hz utilizing the GrassTelefactor Comet AS40 amplifica-

tion system, and the EEG record length of each trial is 

about 5.2 s (1024 samples). During the recording period, 

gold plated scalp EEG electrodes were placed on the sur-

face of the brain according to the 10-20 standard. The sig-

nals were first filtered using a band-pass filter with cut-off 

frequencies of 0.5 Hz and 70 Hz and then classified into 

pre-ictal (Set A), inter-ictal (Set B), and ictal (Set C) stag-

es by clinical experts. To verify the performance of the 

proposed approach in recognizing scalp seizure EEG sig-

nals, we performed four classification tasks C/A, C /B, 

C/AB, and A/B. 

3  Methodology 

3.1 Identification of time-varying models based on the 

new TVAR-MWBF-UROFR approach 

In this section, a new TVAR-MWBF-UROFR approach 

that provides useful information in the time-frequency do-

main is introduced. Specifically, the MWBF expansions 

are first utilized to approximate TV coefficients in the 

TVAR model, and the UROFR algorithm is then applied to 

refine and reduce the full NWBF expansion model to result 

in a parsimonious model with satisfactory generalization 

ability. 

3.1.1 Basis function expansions of the time-varying AR 

models 

A time-varying AR model of order 𝑝 is formulated as [21-

23,26]: 

 𝑦(t) = ∑ 𝑎𝑖(𝑡)𝑦(𝑡 − 𝑖) + 𝑒(𝑡)𝑝𝑖=1                                    (1) 

where 𝑦(𝑡) is the time-varying signal to be modeled, 𝑡 is a 

discrete-time sampling instant; 𝑝 is the model order, 𝑎𝑖(𝑡), 

with 𝑖=1,2,…, p, represents the 𝑖-th model parameter, and 𝑒(𝑡) is a stationary white noise sequence with zero mean 

and variance 𝜎𝑒2. 

Generally, the time-varying parameters 𝑎𝑖(𝑡)  can be 

expanded to a set of basis functions 𝜑𝑚(𝑡) for m=1,2,…,M, 
where M is the total number of the basis functions involved. 

The time-varying model in (1) can then be written as: 

 𝑎𝑖(𝑡) = ∑ 𝑐𝑖,𝑚𝜑𝑚(𝑡), 𝑖 = 1,2, … , 𝑝𝑀𝑚=1                           (2) 

where 𝑐𝑖,𝑚 are time-invariant weighting coefficients of the 

basis function 𝜑𝑚(𝑡). 

Substituting (2) into (1), yields:    𝑦(t) = ∑ ∑ 𝑐𝑖,𝑚𝜑𝑚𝑦(𝑡 − 𝑖) + 𝑒(𝑡)𝑀𝑚=1𝑝𝑖=1                       (3) 

We now define the following new variables: 

 𝑦𝑚(𝑡 − 𝑖) = 𝜑𝑚(𝑡)𝑦(𝑡 − 𝑖)                                            (4) 

Substituting (4) into (3), yields: 

 𝑦(t) = ∑ ∑ 𝑐𝑖,𝑚𝑦𝑚(𝑡 − 𝑖) + 𝑒(𝑡)𝑀𝑚=1𝑝𝑖=1                          (5) 

Equation (5) represents that the TVAR model has now 

been converted to a standard time-invariant linear AR 

model, where the time-invariant coefficients are 𝑐𝑖,𝑚,with 𝑖=1,2,…,p; m =1,2 …, M. 

Denote: 

  Φ(t) = [𝜑1(𝑡), 𝜑2(𝑡), … , 𝜑𝑀(𝑡)]𝑇              

  ΨM = [ψ1 , ψ2 , … , ψN ]𝑇 

  Ψ(𝑡) = [𝑦(𝑡 − 1)𝜑(𝑡)𝑇 , 𝑦(𝑡 − 2)𝜑(𝑡)𝑇 , … , 𝑦(𝑡 − 𝑝)𝜑(𝑡)𝑇]𝑇       
where the superscript T denotes the transpose of a matrix 

or vector. Equation (3) can be written in matrix form: 

   𝑦 = ψM 𝑐 + 𝑒                                                                   (6) 

where ψM is a N × M regression matrix, c= [𝑐1,1, 𝑐1,2, … , 𝑐1,𝑀, … , 𝑐𝑝,𝑀]𝑇 is the time-invariant expansion  

https://www.researchgate.net/publication/308719109
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coefficient vector. The identification problem of the 

TVAR model can now be simplified to a time-invariant 

regression problem that can be solved using a least-

squares type of algorithms. 

3.1.2 Analysis of the multi-wavelet basis functions

  

Under certain assumptions and considerations, multi-

resolution analysis (MRA) can be utilized to construct or-

thogonal wavelet systems. Referring to wavelet theory 

[27,28], a square-integrable scalar function 𝑓(𝑡) ∈ 𝐿2(𝑅) 

can be arbitrarily approximated using multiresolution 

wavelets decomposition: 

   𝑓(x) = ∑ 𝑎𝑗0,𝑘𝑘 𝜙𝑗0,𝑘(x) + ∑ ∑ 𝑑𝑗,𝑘𝛹𝑗,𝑘(𝑥)𝑘𝑗≥𝑗0                    (7) 

That is to say, the function 𝑓(x) can be expressed by a 

linear combination of functions ϕj,k  and 𝛹𝑗,𝑘(𝑥) , where 

the mother wavelet family  𝛹𝑗,𝑘(𝑥) = 2𝑗/2 𝛹(2𝑗𝑥 − 𝑘) 

and the father wavelet family 𝜙𝑗,𝑘 = 2𝑗∕2𝜙(2𝑗𝑥 − 𝑘) are 

orthonormal basis; 𝑗, 𝑘 ∈ 𝑍 (i.e., the set of all integers) are 

the scale and translation parameters, 𝑎𝑗0,𝑘 and 𝑑𝑗,𝑘 are the 

wavelet decomposition coefficients, and  is an arbitrary 

integer representing the coarsest resolution or scaling lev-

el. 

In real applications, in order to exploit the functional 

properties of different types of wavelets to sufficiently 

capture the inherent dynamics of the original data, the 

time-varying parameters 𝑎𝑖(𝑡) in TVAR model (1) can be 

expanded with truncated wavelet expansion as [22,23]: 

 𝑎𝑖(𝑡) = 𝑑−1,0(𝑖)  𝜙(𝑡) + ∑ ∑ 𝑑𝑗,𝑘(𝑖)𝑘≥0𝑗≥0 𝛹𝑗,𝑘(𝑡)                 (8) 

where 𝑑𝑗,𝑘(𝑖)
 are the wavelet coefficients for the 𝑖-th time-

varying parameters 𝑎𝑖(𝑡). 𝜙(𝑡) is called the scale function 

and 𝛹𝑗,𝑘(𝑡) is the mother basis functions. Once the scaling 

function and the mother wavelet are determined, the task 

of estimating the TV coefficients is to determine the coef-

ficients 𝑑𝑗,𝑘(𝑖)
 of each wavelet. More explanations for (8) 

will be given in the following paragraphs. Note that mul-

tiple wavelet basis function decomposition is different 

from multiresolution decomposition, the former utilizes 

different types of wavelets to approximate a given signal, 

whereas the latter adopts a set of orthogonal wavelet basis 

functions to obtain a multiresolution approximation to a 

signal. Interested readers are referred to [21-23] or more 

details. 

Although many functions can be selected as scaling or 

wavelet functions, most of them are not applicable to dy-

namic system identification, especially in the case of mul-

ti-dimensional and multi-resolution expansions. An im-

plementation, which has been proved to be valid for dy-

namic process modeling, is to use cardinal B-splines 

[29,30]. Given a set of knots 𝑠0, 𝑠1,…,𝑠𝑁,N≥n+1. A set  

 

of 𝑛-th order B-spline basis function can be calculated by 

the following recursive formula: 

 𝐵𝑖,𝑛(x) = 𝑥−𝑠𝑖𝑠𝑖+𝑛−𝑠𝑖 𝐵𝑖,𝑛−1(𝑥) + 𝑠𝑖+−𝑥𝑠𝑖+𝑛−𝑠𝑖+1 𝐵𝑖+1,𝑛−1(𝑥)       (9) 

The index 𝑖 denotes the location of the B-spline basis func-

tion, and the second index 𝑛 indicates the order of the B-

spline functions. (N-n)-th order B-spline basis function can 

then be determined by N knots. When the knots are even 

distribution, the function 𝐵𝑖,𝑛(𝑥) is a time shift of 𝐵0,𝑛(𝑥). 

The first order cardinal B-spline is the very famous Harr 

wavelet defined as [28]： 

 𝐵0,1(x) = {1, x ∈ [𝑠0, 𝑠1)0, other                              (10) 

In most cases, the initial value of the position 𝑖 can be 

chosen to be zero. In practical applications, the second-

order, third-order, fourth-order, and fifth-order cardinal B-

splines𝐵2(𝑥), 𝐵3(𝑥), 𝐵4(𝑥) and 𝐵5(𝑥) are commonly used, 

whose explicit formulas are given in the reference [22]. 

Among many commonly used basis functions, the B-

spline function is unique in that it has three excellent fea-

tures, namely, compact support, multi-resolution analysis, 

and an explicit analytical form [30]. These properties make 

the operation of the multiresolution decomposition even 

more accessible and enable B-splines applicable for non-

stationary signals processing and modelling. Given that the 𝑛-th order B-spline is defined on [0, 𝑛], the scale and shift 

indices 𝑗 and 𝑘 for the family of the function are  𝛹𝑗,𝑘(𝑥) =2𝑗/2 𝐵𝑛(2𝑗𝑥 − 𝑘) should satisfy 0 ≤ 2𝑗𝑥 − 𝑘 ≤ 𝑛. Sup-

pose that the function 𝑓(𝑥) to be estimated with decompo-

sitions is defined within [0,1], Then for any scale factor j, 

the practical values for the shift index k are constrained to 

the collection 𝛤𝑛 = {𝑘:−𝑛 ≤ 𝑘 ≤ 2𝑗 − 1}. 
Note that while the first- and second-order B-splines are 

non-smooth piecewise functions, they are very useful for 

signals with similar bursts and sharp transients, and higher-

order B-splines can better fit smoothing signals [30]. B-

splines of order 1 to 5 are preferred in many real applica-

tions. The unique nature of the B-spline basis function 

makes multi-resolution decomposition calculations more 

compact and convenient. Time-varying parameters 𝑎𝑖(𝑡) in 

the TVAR model (1) can be expanded with multi-wavelet 

basis functions from the families  {𝛹𝑘(𝑛): 𝑛 = 1,… ,5; 𝑘 ∈ 𝛤𝑛}. 
For instance, below is an expression of a combination of 

the families for the 𝑖-th model parameter: 

 𝑎𝑖(𝑡) = ∑ 𝑑𝑖,𝑘(𝑠)𝛹𝑗,𝑘(𝑠) ( 𝑡𝑁) +𝑘∈𝛤𝑠 ∑ 𝑑𝑖,𝑘(𝑞)𝛹𝑗,𝑘(𝑞) ( 𝑡𝑁)𝑘∈𝛤𝑞 +  ∑ 𝑑𝑖,𝑘(𝑙)𝛹𝑗,𝑘(𝑙) ( 𝑡𝑁) +𝑘∈𝛤𝑙 ∑ 𝑑𝑖,𝑘(𝑟)𝛹𝑗,𝑘(𝑟) ( 𝑡𝑁)𝑘∈𝛤𝑟                        (11) 

where 1 ≤ 𝑞 ≤ 𝑠 ≤ 𝑙 ≤ 𝑟 ≤ 5 , t=1,2,..,N and N is the 

length of the observation sequence. Experience from previ-
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ous studies shows that for most time-varying problems, 

the choice of r=1, 𝑙=2, q=3, s=4 and 𝑗=3 perform well to 

regain  

 

the time-varying parameters. The decomposition (11) can 

easily be converted to formula (2), where the collection 𝜑𝑚(𝑡)  for m=1,2,…,M is replaced by the union of the 
four families: 𝛹𝑗,𝑘(𝑛)(𝑡) , 𝑘 ∈ 𝛤𝑛 , n from 1 to 4.  Further der-

ivation can then lead to the standard linear regression 

equation: 

  𝑦(𝑡) = ∑ ∑ ∑ ∑ 𝑑𝑖,𝑘(𝑛)𝑘∈𝛤𝑛𝑛𝑗>𝑗0𝑝𝑖=1 𝛹𝑗,𝑘(𝑛) ( 𝑡𝑁) 𝑦(𝑡 − 𝑖) 𝑒(𝑡) 

                                            (12) 

  where ∑ ∑ ∑ 𝑑𝑖,𝑘(𝑛) = ∑ ∑ 𝑐𝑖,𝑚𝑀𝑚=1𝑝𝑖=1𝑘∈𝛤𝑛𝑛𝑝𝑖=1 . 

3.1.3 Ultra-Least Square Method for TVAR Model 

The objective of model structure detection is to select es-

sentially important model regressors and build a parsimo-

nious model. In practice, not all the terms in the MWBF-

based model are significant; some may be redundant and 

can be removed from the model [31]. Consequently, it is 

necessary to detect important model terms that should be 

involved in the MWBF-based expansion model. For iden-

tifying dynamic systems, where individual observed data 

points are time-correlated and may be interconnected in 

the derivative space of time-continuous functions, which 

can reveal many relevant features of the system. However, 

the standard least-squares regression can only utilize par-

tial information hidden in the observation data, ignoring 

the connection between the observed data points, and thus 

cannot find the difference in each time instance. All this 

can lead to overfitting of the least-squares regression 

model. [32,33]. 

In this study, a surrogate criterion called ultra-least-

squares (ULS) is introduced to improve the model repre-

sentation and generalization ability. In addition, the regu-

larized orthogonal forward regression (ROFR) algorithm, 

incorporating the zero-th order regular term with the or-

thogonal forward regression (OFR) algorithm, is used to 

enhance the robustness of the parameter estimation and 

prevent the overfitting issue while the calculation amount 

is equivalent to the OFR algorithm. Compact pseudo-code 

with some specific details of the ROFR algorithm is given 

in the Appendix. The ULS criterion is combined with the 

convenient ROFR algorithm to produce a novel ultra-

regularized orthogonal forward regression (called 

UROFR) algorithm for nonlinear system identification. In 

many modeling tasks, the UROFR algorithm has proven 

to be robust for model structure detection and is more 

promising to provide an optimal model. The generic par-

ametric linear problem (12) can be solved utilizing a least-

squares type of algorithm by minimizing the corresponding 

loss function: 

 𝐽𝐿𝑆 = ‖𝑦 − ∑ ∑ ∑ 𝑑𝑖,𝑘(𝑛)𝑥𝑖,𝑘(𝑛)𝑘∈𝛤𝑛𝑛𝑝𝑖=1 ‖22                          (13) 

 

where 𝑥𝑖,𝑘(𝑛) = ∑ 𝛹𝑗,𝑘(𝑛)𝑗>𝑗0 ( 𝑡𝑁) ∙ 𝑦(𝑡 − 𝑖) is an expanded 

term, and 𝑑𝑖,𝑘(𝑛)
is the corresponding time-invariant parame-

ter. Unlike the ordinary least-squares criterion concerning 

model fitting in the L2 space, the ULS criterion considers 

model fitting in a sub-space, called Sobolev space, which is 

a collection of functions defined on [0, 𝑇]. Mathematically, 

this space is defined as 𝐻𝑚([0, 𝑇]) = {𝑥(𝑡) ∈ 𝐿2([0, 𝑇])|𝐷𝑙𝑥 ∈ 𝐿2([0, 𝑇]), 𝑙 =1,2, … 𝑚}                                                                        (14) 

In the Sobolev space, the ULS approach enables to re-

veal useful inter-correlation information between signals 

which otherwise cannot be revealed by most least-squares 

type of algorithms. ULS utilizes information about weak 

derivatives of signals. For any smooth test function 𝜛(𝑡) ∈𝐶0∞([0, 𝑇]) has compact support on[0, 𝑇], the weak deriva-

tives 𝐷𝑙𝑥(𝑡) of a signal x(t) satisfy: 

  ∫ 𝑥(𝑡)𝐷𝑙𝜛(𝑡)𝑑𝑡 = (−1)𝑙 ∫ 𝜛(𝑡)𝐷𝑙𝑥(𝑡)𝑑𝑡[0,𝑇][0,𝑇]          (15) 

Note that the weak derivatives of up to 𝑚-th order are L2 

integrable on any finite interval [0, 𝑇]. It can be proved that 

if the 𝑙-th order weak derivative of a function exists, the de-

rivative is unique in the sense that it is almost zero every-

where. This study adopted test functions to smooth the ob-

served data, and it would be preferable for such functions 

to satisfy a bell-shape resemble a Gaussian function. In 

practice, test functions do not necessarily have infinitely 

differentiable, any function with functional properties, such 

as cubic B-spline basis function, can be adopted as the 

modulating function, whose first and second derivatives of 

the smoothed data are considered in the ULS criterion. 

In this paper, a new metric, defined in the Sobolev 

space 𝐻𝑚([0, 𝑇]), which is useful for revealing hidden in-

formation buried in observational data is introduced. The 𝐻𝑚  norm associated with the new metrics is defined as: 

  ‖𝑥‖𝐻𝑚 = √∑ ‖𝐷𝑙𝑥‖22𝑚𝑙=0                                                 (16) 

where 𝐷𝑙  represents the 𝑙-th order differentiation operator. 

Since differentiation is a linear operator, under the new 

proposed ULS criterion, model (12) can be written as: 𝐽𝐻 = ‖𝑦 − ∑ ∑ ∑ 𝑑𝑖,𝑘(𝑛)𝑥𝑖,𝑘(𝑛)𝑘∈𝛤𝑛𝑛𝑝𝑖=1 ‖22 + ∑ ‖𝐷𝑙𝑦 −𝑚𝑙=1   ∑ ∑ ∑ 𝑑𝑖,𝑘(𝑛)𝐷𝑙𝑥𝑖,𝑘(𝑛)𝑘∈𝛤𝑛𝑛𝑝𝑖=1 ‖22                                        (17) 

The lost function (17) comprises two parts: the first part 

is consistent with the standard least-squares norm that em-

phasizes the global similarity; the second part is the weak 
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derivatives that focus on the details and compactness of 

the data points. In this part, any subtle difference in the 

overall distribution can be reflected clearly. It is the sec-

ond part that makes it more useful for dynamic system 

identification.  

 

In combination with the 𝐻𝑚  criterion, the procedure mod-

ifies to solve an improved least-squares equation: 

[ 𝑦𝐷1𝑦⋮𝐷𝑚𝑦] = ∑ ∑ ∑ 𝑑𝑖,𝑘(𝑛)
[  
  𝑥𝑖,𝑘(n)𝐷1𝑥𝑖,𝑘(n)⋮𝐷𝑚𝑥𝑖,𝑘(n)]  

  𝑘∈𝛤𝑛𝑛𝑝𝑖=1                       (18) 

The introduction of the weak derivatives based on the 

locally defined test function 𝜛(𝑡) can reveal valuable dif-

ferential information in a time series. Different positions 

of the test function along the time axis produce various 

test functions, and the correlated weak derivative contains 

local information about the signal in a new location. Thus, 

instead of using overall test functions in the space 𝐶0∞([0, 𝑇]), a locally defined test function 𝜛(𝑡) and its 

time-shifted versions 𝜛(𝑡 − 𝜏) are used in the new ULS 

criterion. 

For a given test function 𝜛(𝑡) with finite support on [0, 𝑇0], (𝑇0 < 𝑇), the distribution ⟨𝐷𝑙𝑇𝑦 , 𝜛(𝑡 − 𝜏)⟩ can be 

viewed as a function of τ, which can be defined as: 𝑦𝑙(𝜏) = ⟨𝐷𝑙𝑇𝑦 , 𝜛(𝑡 − 𝜏)⟩ = (−1) ∫ 𝑦(𝑡)𝜛(𝑡 −𝑇0𝜏)𝑑𝑡, 𝜏 ∈  [0, 𝑇 − 𝑇0]                                                    (19) 

where 𝑦𝑙(𝜏) indicates the convolution of 𝑦(𝑡) with the 𝑙-
th derivative of the test function. Denote 𝑔(𝑡) = 𝜛(−𝑡), 

then the weight function 𝑔(𝑙)(𝑡) can be considered as the 

impulse response of a linear filter and 𝑦𝑙(𝜏) is the corre-

sponding output driven by the input signal 𝑦(𝑡). From the 

Leibniz integral rule, the order of differentiation and inte-

gration allows for interchange. In particular, the differen-

tial under the integral sign satisfies: 

 
𝑑𝑙𝑑𝑡𝑙 ∫ 𝑦(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏 = ∫ 𝑦(𝜏) 𝜕𝑙𝜕𝑡𝑙 𝑔(𝑡 − 𝜏)𝑑𝜏 =𝑡0𝑡0  ∫ 𝑦(𝜏) 𝑑𝑙𝑑𝑡𝑙 𝑔(𝑡 − 𝜏)𝑑𝜏𝑡0                                                 (20) 

Now the newly proposed functions 𝑦𝑙(𝜏) have a clear 

physical explanation. The function 𝑦𝑙(𝜏) smooths the data 

first and later calculates the derivatives of the smoothed 

data. Likewise, the functions (𝑥𝑖,𝑘(𝑛))𝑙(𝜏) can be expressed 

as: 

  (𝑥𝑖,𝑘(𝑛))𝑙(𝜏) = ⟨𝐷𝑙𝑇𝑥𝑖,𝑘(𝑛) , 𝜛(𝑡 − 𝜏)⟩ = (−1)∫ 𝑥𝑖,𝑘(𝑛)𝜛𝑙(𝑡 −   𝜏)𝑇0 𝑑𝑡           

(21) 

Then, the ULS problem (18) becomes: 

 

  [ 𝑦𝑦1⋮𝑦𝑚] = ∑ ∑ ∑ 𝑑𝑖,𝑘(𝑛)
[  
  𝑥𝑖,𝑘(𝑛)(𝑥𝑖,𝑘(𝑛))1⋮(𝑥𝑖,𝑘(𝑛))𝑚]  

  𝑘∈𝛤𝑛𝑛𝑝𝑖=1                          (22) 

where 𝑦𝑙  and (𝑥𝑖,𝑘(𝑛))𝑙
 are the associated derived functions 

defined by (19) and (21). There is a potential issue with the 𝐽𝐻  criterion given by (17) when applied to system iden-

tification in that the difference arising from the derivatives 

constitute a bigger proportion than that arising from the da-

ta themselves, that is:  ∑ ‖𝐷𝑙𝑦 − ∑ ∑ ∑ 𝑑𝑖,𝑘(𝑛)𝐷𝑙𝑥𝑖,𝑘(𝑛)𝑘∈𝛤𝑛𝑛𝑝𝑖=1 ‖22𝑚𝑙=1 ≥ ‖𝑦 −∑ ∑ ∑ 𝑑𝑖,𝑘(𝑛)𝑥𝑖,𝑘(𝑛)𝑘∈𝛤𝑛𝑛𝑝𝑖=1 ‖22                                              (23) 

Therefore, further modifications to the test function and 

its derivatives are required. The test function and the relat-

ed derivatives are normalized as: 

  �̅�𝑙 = 𝜛(𝑙)‖𝜛(𝑙)‖2 , 𝑙 = 1,2, … ,𝑚                                         (24)                       

which satisfies  ∫ 𝜛𝑙(𝑡)𝑑(𝑡) = 1[0,𝑇] . The normalized test 

functions ensure that each data from the modulated func-

tion 𝑦𝑙(𝜏) has the same weight in the criterion as the signal 

in the raw datum  y(𝑡) [33].Now the representation of the 

ULS criterion given by (17) can be re-written as follows: 

 𝐽𝐻 = ‖𝑦 − ∑ ∑ ∑ 𝑑𝑖,𝑘(𝑛)𝑥𝑖,𝑘(𝑛)̅̅ ̅̅ ̅𝑘∈𝛤𝑛𝑛𝑝𝑖=1 ‖22 + ∑ ‖𝑦 �̅� −𝑚𝑙=1 ∑ ∑ ∑ 𝑑𝑖,𝑘(𝑛) (𝑥𝑖,𝑘(𝑛)̅̅ ̅̅ ̅)𝑙𝑘∈𝛤𝑛𝑛𝑝𝑖=1 ‖2
2
                                      (25) 

The discrete-time expression of the modulation proce-

dure can be represented as: 

  𝑦 �̅�(𝑘) = ∑ 𝑦(𝑛)�̅�𝑙(𝑛 − 𝑘)𝑘+𝑛0𝑛=𝑘                                   (26) 

  𝑥𝑖,𝑘(𝑛)̅̅ ̅̅ ̅̅ (𝑘) = ∑ 𝑥𝑖,𝑘(𝑛)(𝑛)�̅�𝑙(𝑛 − 𝑘)𝑘+𝑛0𝑛=𝑘                            (27) 

where 𝑛0  is the support of the discrete test function and 𝑘=1,2,…,N-𝑛0. The following equation represents the ma-

trix form of the ULS problem: 𝑌𝑈𝐿𝑆 = 𝜙𝑈𝐿𝑆𝛩                                                                (28) 

where 

 𝑌𝑈𝐿𝑆 = [𝑦(1), … , 𝑦(𝑁), 𝑦1̅̅ ̅(1), … 𝑦1̅̅ ̅(𝑁 −                𝑛0), … , 𝑦𝑚̅̅ ̅̅ (1), … , 𝑦𝑚̅̅ ̅̅ (𝑁 − 𝑛0)]𝑇                   (29) 

 𝛩 = [𝑑0,𝑘(𝑛)(1), … , 𝑑𝑝,𝑘(𝑛)(𝑁), (𝑑0,𝑘(1))1, … (𝑑0,𝑘(𝑛))𝑚(𝑁 − 𝑛0)]𝑇 

                                               (30) 
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 𝜙𝑈𝐿𝑆 =
[  
   
  𝑥1,𝑘(𝑛)(1) … 𝑥𝑝,𝑘(𝑛)(1)⋮ … ⋮𝑥1,𝑘(𝑛)(𝑁) … 𝑥𝑝,𝑘(𝑛)(𝑁)𝑥1,𝑘(𝑛)̅̅ ̅̅ ̅1(1) … 𝑥𝑝,𝑘(𝑛)̅̅ ̅̅ ̅1(1)⋮𝑥1,𝑘(𝑛)̅̅ ̅̅ ̅𝑚(𝑁 − 𝑛0) …… ⋮𝑥1,𝑘(𝑛)̅̅ ̅̅ ̅𝑚(𝑁 − 𝑛0)]  

   
  
            (31) 

 

where 𝑌𝑈𝐿𝑆  is an output vector of size [((𝑚 + 1)N −𝑚𝑛0) × 1], 𝜙𝑈𝐿𝑆  is the regression matrix of size ((𝑚 +1)N − 𝑚𝑛0) × 𝑝𝑀 and 𝛩 is the time-invariant coefficient 

vector of size 𝑝𝑀 × 1. 

3.2 Model order determination 

For many dynamic regression problems, the equation (28) 

may initially involve a large number of candidate model 

terms (i.e., regressors), an effective model reduction 

method is often highly needed for generating parsimoni-

ous models. The proposed UROFR algorithm is demon-

strated to be robust for model term selection and parame-

ter estimation. As for model order determination, one ef-

fective solution is to exploit several metrics that balance 

the trade-off between model complexity and model fit, in-

cluding the famous Akaike information criterion (AIC) 

and Bayesian information criterion (BIC) which are as 

follows: 

   AIC(p) = ln(�̂�𝑝2) + 2𝑝𝑁        (32) 

   BIC(p) = ln(�̂�𝑝2) + 𝑃𝑁 ln (𝑁)       (33) 

where �̂�𝑝2 is the variance of the model residuals calculated 

from the associated model of order 𝑝, N is the sampled 

signals length. Both AIC and BIC include a penalty term 

associated to the number of model coefficients. The penal-

ty of BIC is larger than that of AIC, which means that the 

best order determined according to the BIC criterion is of-

ten smaller than that given by AIC [34-36]. 

3.3 High-Resolution time-frequency Analysis based on 

Power Spectrum Density 

The proposed TVAR-MWBF modeling approach can 

produce a high-resolution time-frequency representation 

for nonstationary signals. Once the initial full candidate 

time-varying model (1) refined and parameter estimates of 

the reduced model are obtained, the time-dependent pow-

er spectrum estimation then be accomplished as follows 

[5]: PSD(𝑡, 𝑓) = �̂�𝜀2|1−∑ �̂�𝑖(𝑡)𝑒−𝑗2𝜋𝑖𝑓/𝑓𝑠𝑝𝑖=1 |2                           

(34) where 𝑓 and 𝑓𝑠  are the natural (physical) frequency 

and sampling frequency, respectively. �̂�𝑖(𝑡) is the TVAR 

parameters estimated at time 𝑡, 𝑗 = √−1, and �̂�𝜀2 is the var-

iance of the estimated residual. The formula of the time-

frequency function (34) is continuous concerning the fre-

quency 𝑓. Thus it can be used for spectral estimation of any 

frequency point lower than the Nyquist frequency  𝑓𝑠/2. 

The frequency resolution is primarily not infinite and is re-

lated to the model order and the accuracy of parameter es-

timation. 

The PSD distribution calculated by the spectral function 

(34) is utilized to extract time-frequency features of the 

nonstationary EEG signals. Considering the knowledge of 

clinical medical experience, the energy distribution charac-

teristics of EEG signals are obtained by mesh band division 

in both the time and frequency domains [37]. Specially, 

three equal-sized windows and five sub-bands from the 

frequency domain are chosen in the present study. Fig. 2 

shows a sample PSD distribution which is employed for 

feature extraction using a dashed grid. 

 

Fig. 2   A sample PSD distribution result with dotted grid by using 

three time windows and five frequency sub-bands for feature extrac-

tion 

Each feature F(𝑎, 𝑏) is estimated as： F(a, b) = ∫ ∫ 𝑃𝑆𝐷𝑦(𝑡, 𝑓)𝑑𝑓𝑑𝑡𝑓𝑏𝑡𝑎                  (35) 

where 𝑃𝑆𝐷𝑦 is the PSD of the nonstationary time series 𝑦 

estimated using the aforementioned approach. The fre-

quency sub-bands, which were defined according to the 

medical knowledge including delta(0-4HZ), theta(4-8HZ), 

alpha(8-12HZ), beta(12-30HZ) and gamma(30-50HZ), re-

spectively. The size of the time window is determined by 
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the expertise of the neurologist consisting of 𝑡1(0~7.87𝑠), 𝑡2(7.87~15.73𝑠) and 𝑡3(15.73~23.6𝑠). 

The integral formula (35) is equivalent to  F(𝑎, 𝑏) =∑ ∑ 𝑃𝑆𝐷𝑦(𝑡,𝑓)𝑓∈𝑓𝑏𝑡∈𝑡𝑎  as 𝑃𝑆𝐷𝑦  is discrete. Each feature 

represents the divisional energy of the time series over a 

particular frequency band and time window; consequent-

ly, the feature set describes the energy distribution of the 

signal in the time-frequency plane. It is required that the 

feature set should contain adequate information about the 

non-stationary characteristic of the signal. Thus, the total 

energy of the signal is involved as an additional feature. 

Thus, the feature vector of each data set is 16 dimensions (3 × 5 + 1) [37]. 

 

 

3.4 Classification and performance evaluation 

The time-frequency energy distribution image is a high-

dimensional vector that generally consists of redundant 

features. In such a situation, it is certainly desirable to re-

move these unnecessary features from the original TF rep-

resentation through, for example the principal component 

analysis (PCA) algorithms and select an optimal feature 

subset for seizure detection. Once the optimal sub-feature 

set is chosen, the generated features are fed to an SVM 

classifier to implement the classification task. To select the 

best SVM parameters, a Bayesian optimization algorithm 

is adopted to improve the search efficiency. Meanwhile, 

the complete historical information is used to improve the 

computation speed. Following the conventional practice, 

the classification performance of the proposed approach 

can be assessed by several statistical metrics such as sensi-

tivity (SEN), specificity (SPE), and accuracy (ACC). 

These measures of SEN, SPE, and ACC are summarized 

below: 

 SEN = 𝑇𝑃𝑇𝑃+𝐹𝑁 × 100% 

 SPE = 𝑇𝑁𝑇𝑁+𝐹𝑃 × 100% 

 ACC = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 × 100% 

where TP, TN, FP, and FN represent true positive (e.g., 

seizure identified as seizure), true negative (e.g., non-

seizure identified as non-seizure), false positive (e.g., non-

seizure identified as seizure) and false negative (e.g., sei-

zure identified as non-seizure) separately.  

To achieve an unbiased measure of the classification 

performance, 10-fold cross-validation was applied to veri-

fy the proposed method. After a round of ten-fold cross-

validation, ten classification results are obtained. The av-

erage of the ten test results is calculated and used as the 

performance metric. In this paper, a total of ten rounds of 

ten-fold cross-validation are conducted, and the average of  

the ten rounds is reported as the final result. Therefore, the 

proposed method is unlikely to be influenced by way of 

how the data is sliced since each individual sample is used 

nine times in the training stage and once in the test stage. 

4  Experimental results 

In order to show the applicability and effectiveness of the 

proposed approach, both clean and noisy EEG data are 

considered for validation. We first examine this method in 

the two benchmark datasets mentioned in section 2, and 

then test the robustness of the proposed method for seizure 

detection against the EEG signals contaminated by muscle 

artifacts. 

In the experiment, the TVAR-MWBF-UROFR method 

is adopted to model the real EEG data. The B-splines of 

order from 1 to 4 were utilized as the basis functions to 

construct TVAR models. Simulation results suggested that 

the order of the TVAR model (1) can be chosen to be 5. 

The estimates of the five time-varying parameters 𝑎𝑖(𝑡)(𝑖 = 1,2,3,4,5)  are then attained by the UROFR 

method. In the UROFR algorithm, the cubic B-spline basis 

function was utilized as the modulating function and the 

first and second-order derivatives of the non-stationary 

signals are considered in the ULS criterion. 

Fig. 3 shows a comparison between the recovered signal 

by the identified TVAR model and the original EEG time 

series. Note that only data points from 2s to 4s are present-

ed in Fig. 3 for a clear visualization. It follows that the re-

sulting TVAR model provides an extremely satisfactory 

representation of the EEG data, thus further time-

frequency analysis can be carried out using the model.  

 
Fig. 3   A sample illustration of the recovered EEG signal and the orig-

inal signal. The original signal was obtained from subset S of dataset 1. 

As mentioned earlier, the power spectrum estimates cal-

culated based on (34) is utilized to extract time-frequency 

features of the EEG data. The extracted features are then 

used for the binary classification tasks described in Section 

2. Fig. 4a provides the accuracy performance acquired 

from five different classifiers. Obviously, the accuracy of 
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the SVM classifier is significantly better than other classi-

fiers, and the finding here is in line with those reported in 

previous studies [15,38-40]. Although SVM outperformed 

Random Forest in this study, it is worth mentioning that 

researchers employed Systematic Forest and Forest CERN 

to obtained 100% accuracy for seizure detection while re-

ducing the detection time in literature [41]. Fig. 4b com-

pares the accuracy obtained from two model structure se-

lection algorithms (orthogonal forward regression and ul-

tra-orthogonal forward regression) using the SVM classifi- 

 

 

 

  
Fig. 4   (a) The accuracy of five classifiers (RF, XGBoost, KNN, ANN and SVM), and (b) The accuracy of the two algorithms (OFR and UOFR). 

er, and what stands out in this figure is that the accuracy of 

the newly introduced UROFR algorithm is higher than that 

of the OFR algorithm in each classification task. These re-

sults indicate that the time-varying model identified by the 

proposed UROFR approach has better performance. 

To further check the reliability and applicability of the 

features extracted from the TVAR model via the PSD es-

timation, we tested the influence of feature reduction and 

non-reduction on classification performance. Experimental 

results are listed in Table 1 and Table 2, where it can be 

noticed that satisfactory classification results were ob-

tained without using PCA for feature dimension reduction 

(All the classification accuracy of seizure is above 95%, 

which can meet the requirements for various clinical con-

ditions). These results provide further support for the ef-

fectiveness and robustness of our method. Moreover, it is 

evident from the tables that, the use of PCA based dimen-

sionality reduction can further improve classification per-

formance due to the removal of redundant correlated fea-

tures. A notable finding is in the case of distinguishing 

pre-ictal and inter-ictal(A-B), the classification results pre-

sented relatively low accuracy (85.4% and 87.1%). This is 

understandable since the similarity between the two types 

of EEG signals was relatively high. In addition, compared 

with the method in literature [42], the accuracy of A-B is 

raised by 12.5% using our method (87.1% versus 74.6%). 

Both dataset 1 and dataset 2 have been processed to re-

move artifacts before public release. However, in some 

clinical situations, it is impractical to exclude artifacts. 

Ref. [43] provides a review of the most common artifacts 

(e.g., muscle artifacts, eyes blinking, and ambient noise) 

presented in EEG signals. In this study, we modeled the 

inevitable source of artifacts (i.e., muscle artifacts) using 

random noise filtered with a band-pass filter of 20Hz to 

60 Hz and added them to original EEG data as described in 

[43,44]. The amplitude of muscle artifacts can be adapted 

to generate noisy EEG signals with different signal-to-

noise-ratios (SNRs). Fig. 5a shows the changes in time-

domain after adding simulated muscle artifacts, and Fig. 

5b displays the difference in frequency spectrum. Note 

that the EEG signal was sampled from subset Z of dataset 

1 and the SNR value is equal to 0 dB in this example. It is 

evident from those figures that the muscle artifacts appre-

ciably change the characteristics of the original EEG sig-

nals, and thus may adversely affect the performance of 

seizure detection.  

Table 1. feature dimension effect on classification (dataset 1) 

Subsets Metrics 
Feature Set 

No reduction     Reduced via PCA 

S-F 

SEN 97.06 ± 0.80         100.0 ± 0.00 

SPN 97.43 ± 0.64         98.85 ± 0.41 

ACC 97.25 ± 0.59         99.45 ± 0.16 

S-Z 

SEN 100.0 ± 0.00         100.0 ± 0.00 

SPN 100.0 ± 0.00         100.0 ± 0.00 

ACC 100.0 ± 0.00         100.0 ± 0.00 

S-N 

SEN 99.28 ± 0.54         100.0 ± 0.00 

SPN 100.0 ± 0.00         100.0 ± 0.00 

ACC 99.65 ± 0.34         100.0 ± 0.00 

S-NF 

SEN 99.51 ± 0.25         99.89 ± 0.21 

SPN 97.53 ± 0.70         98.43 ± 0.68 

ACC 98.83 ± 0.18         99.36 ± 0.40 
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Table 2. feature dimension effect on classification (dataset 2) 

Subsets Metrics 
Feature Set 

No reduction      Reduced via PCA 

C-A 

SEN 98.13 ± 0.43         99.42 ± 1.25 

SPN 95.34 ± 1.22         95.99 ± 0.99 

ACC 96.40 ± 0.84         97.70 ± 0.48 

C-B 

SEN 100.0 ± 0.00         100.0 ± 0.00 

SPN 100.0 ± 0.00         100.0 ± 0.00 

ACC 100.0 ± 0.00         100.0 ± 0.00 

C-AB 

SEN 98.02 ± 0.19         98.69 ± 1.29 

SPN 94.58 ± 1.38         97.12 ± 0.47 

ACC 96.87 ± 0.32         97.47 ± 0.61 

A-B 

SEN 88.95 ± 2.71         90.74 ± 3.28 

SPN 82.07 ± 3.70         84.18 ± 2.41 

ACC 85.40 ± 2.22         87.10 ± 1.85 

Bold values indicate the best results on the corresponding dataset and 

metric. 

 

 
Fig. 5    (a) An example of the noisy and the original signal, and (b) The example frequency spectrum of noisy and original EEG signals. 

Therefore, this paper examines the practicability of our 

method in recognizing the seizure and non-seizure activi-

ties from EEG recordings with perceptible muscle arti-

facts. In the presence of muscle artifact within a certain 

range of SNR (-20 to 20dB), Fig. 6 presents the classifica-

tion result obtained with the proposed technique using two 

datasets. There are several intriguing observations from 

this illustration worth highlighting. Firstly, the accuracy of 

seizure detection is maintained above 95% at all levels of 

noise, which is much better than the reported performance 

in the literature e.g. [45] where the accuracy dropped by 

approximately 10% in a medium-level noise (i.e., 

SNR=5dB).  

This result clearly indicates the strong robustness of our 

method in detecting epileptic seizures when the EEG sig-

nals were obscured by muscle artifacts. Another interest-

ing finding is that, for classification tasks S/Z (i.e., epilep-

tic seizure versus healthy brain activities), and C/B (i.e., 

ictal versus inter-ictal), even if the EEG signals were en-

tirely buried in artifacts (i.e., SNR=-20dB), our proposed 

method still worked with 100% accuracy. This perfor-

mance is better than that reported in [44], and provides 

further evidence that this method has the ability to recog-

nize seizure EEG from non-resting EEG with muscle arti-

facts. 

 
Fig. 6   The change trend of seizure detection result obtained with the proposed method using two datasets in the presence of muscle artifacts 

As mentioned in Section 1, the key concern of seizure 

detection is to extract reliable features that can reflect val-

uable information contained in EEG signal. To facilitate 

an integrative analysis, we compare the PSD energy fea-

tures generated by four time-frequency analysis techniques 

(i.e., STFT, CWT, TVAR-MWBF-OFR, and TVAR-

MWBF-UOFR). Fig. 7 and Fig. 8 present the TF images 

of EEG segments from dataset 1 and dataset 2, respective-

ly. The most prominent finding from these illustrations is 

that the PSD distribution of the epileptic seizure EEG data 

(i.e., Set S and Set C) are significantly higher than that of 

other types of data. This is concordant with our previous 
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observations [5,22,37]. Among the four time-frequency 

analysis methods, the STFT method cannot acquire high 

temporal resolution and frequency resolution at the same 

time; in fact, its resolution is fixed and cannot be changed 

once the window function is selected. Although the CWT 

approach achieves a good trade-off between the temporal 

and frequency resolutions by using a narrow window in 

high frequency and a wide window in low frequency, it is 

difficult to accurately realize a high resolution in both low 

and high-frequency areas at the same time; this may de-

grade temporal resolution for low-frequency components 

and frequency resolution for high-frequency components. 

Compared with the STFT and CWT methods, the multi-

wavelet basis function expansion method, however, can 

capture quite a useful transient information of the inherent 

nonstationary dynamics in correlated EEG movements, 

thereby obtaining higher time-frequency resolution. A 

closer inspection of these plots shows that the time-

frequency images generated by the UROFR algorithm are 

much sharper and better defined, and precisely reflect the  

 

distribution of local frequency components changes across 

time. These results further confirm the superiority of the 

proposed TVAR-MWBF-UROFR method to other compa- 

 

red methods, proving its improved performance for model-

ling and feature extraction of the EEG time series.

Fig. 7   The PSD energy features of EEG segments by different time-frequency methods (obtained from dataset 1). 
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Fig.8   The PSD energy features of EEG segments by different time-frequency methods (obtained from dataset 2).

5  Discussion

Linear techniques have been extensively used in the field 

of time-frequency analysis, primarily because of their 

straightforward and adaptability. However, linear model-

ing methods may not be adequate to represent a nonlinear 

system and may result in the loss of some potentially relat-

ed and important information [46]. To overcome the limi-

tations of linear models, time-varying nonlinear models 

can be adopted to achieve more reliable analysis results. 

The implementation and identification of time-varying 

nonlinear models, however, may be very complicated. 

Thus, this study proposes a new multi-resolution wavelet 

expansion and UOFR method for TVAR model identifica-

tion and time-frequency analysis. Building a TVAR model 

instead of a traditional time-invariant AR model makes the 

model more flexible and suitable for capturing transient 

changes in non-stationary signals such as EEG data.  

Table 3. Performance comparison of different methods for seizure classification 

Authors and year Methods Task Accuracy(%) 

Polat et al.[47] (2007) FFT-decision tree classifier 

S and Z 

98.72 

Wang et al.[48] (2011) Wavelet transform and Shanon entropy k-nearest neighbor 99-100 

Fu et al.[49] (2015) Hilbert-Huang transform, Support vector machine 99.125 

Houssein et al.[50] (2018) Grasshopper Optimization Algorithm (GOA) and SVM 100 

This work TVAR-MWBF-UROFR, SVM, Bayesian optimization 100 

Tawfik et al.[51] (2016) Weighted Per-mutation Entropy (WPE) and SVM 

S and F 

96.50 

Hassan et al.[52] (2016)  CEEMDAN and linear programming boosting classifier 97.40 

Li et al.[53] (2019) MRBF-MPSO-OLS, GLCM+FV, and SVM 99.30 

This work TVAR-MWBF-UROFR, SVM, Bayesian optimization 99.45 

Zhu et al.[54] (2014) Degree and strength of HVG and K-nearest neighbor (K-NN) classifier 

S and N 

98 

Sharma et al.[55] (2017) ATFFWT and FD feature using LS-SVM 99 

Siddiqui et al.[41] (2019) Brain data mining, Systematic Forest (SysFor) and Forest CERN 100 

This work TVAR-MWBF-UROFR, SVM, Bayesian optimization 100 

Joshi et al.[56] (2014) FLP error energy and signal energy and SVM classifier S and NF 95.33 
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Rajeev Sharma et al.[57] 

(2015) 

95% Confidence area measure of 2D PSR of IMFs, IQR of Euclidian 

distance of 3D PSR of IMFs and LS-SVM classifier 
98.67 

Li et al.[5] (2018) MRBF-MPSO, PSD, PCA, Support vector machines 98.73 

Matin et al.[58] (2019) 
A hybrid dimension reduction model utilizing Independent and Princi-

pal Component Analysis (ICA, PCA) and SVM 
98.93 

This work TVAR-MWBF-UROFR, SVM, Bayesian optimization 99.36 

Bold values indicate better results of the proposed method than other method 

To make a comprehensive performance comparison, 

we compare the proposed method with the other existing 

well-known algorithms. Table 3 presents the classification 

accuracy of a number of state-of-the-art methods applied 

to the benchmark Bonn dada (Dataset 1). As can be seen 

from Table 3, the TVAR-MWBF-UROFR approach shows 

the best performance for all classification tasks. Specifical-

ly, in discrimination tasks, both S/Z and S/N reach 100% 

accuracy, and the accuracy of task S/F, S/NF achieve 

state-of-the-art results. On the dataset 2, Gupta et al. [42] 

and Li et al. [53] attained average classification accuracy 

of 79.70%, 96.50%, 91.80%, 74.60% and 97.40%, 

99.30%, 98.20%, 85.70% for cases of C-A, C-B, C-AB 

and A-B, respectively. For the purpose of comparison, our 

method yielded better results with an accuracy of 97.70%, 

100%, 97.47%, and 87.10%. The achievement of high 

classification accuracy of the proposed approach is primar-

ily attributed to the following factors: a) the use of multi-

wavelets as building blocks for TVAR model construction; 

b) an effective ultra-regularized UROFR is utilized for 

model reduction; c) a time-frequency power spectrum den-

sity (PSD) estimation approach is employed for feature ex-

traction; d) SVM hyperparameters determining was per-

formed with Bayesian optimization. These factors com-

bined enable the proposed TVAR-MWBF-UROFR 

framework to become a powerful and valuable tool for 

EEG signal modelling and epileptic seizure detection. 

Although the proposed method shows excellent per-

formances when applied to the two benchmark datasets, as 

demonstrated through a series of comprehensive validation 

studies in Section 4, it still has two limitations. The first 

disadvantage is the computational cost of the ULS criteri-

on was large. To make use of the derivative information, 

several simultaneous equation regression models are in-

volved, as defined in Eq. 31. However, compared with a 

steady improvement in identification performance, this 

computational problem may become less important after 

exploiting a high-performance computing machine. Anoth- 

er potential drawback is that we did not get further insight 

into the effect of different frequency bands’ activities (i.e., 

delta, theta, alpha, beta, and gamma) on the initiation of 

epileptic seizures. In this work, PCA was adopted to select 

an optimal subset from the original time-frequency repre-

sentation for classification and obtain a better result; this is 

because the PCA techniques can eliminate the mutual in-

fluence factors of the raw components, and thus attain the 

most discriminative features. But this did not locate to the 

specific frequency components that are associated with 

seizures. Therefore, we will extend our study to better un-

derstand the mechanisms underlying epilepsy seizure in 

the future with the help of the clinicians. 

6  Conclusion 

This paper presents an effective TVAR-MWBF-UROFR 

scheme for the time-frequency analysis of non-stationary 

dynamic processes such as EEG signals. The proposed 

framework mainly includes three key points. Firstly, a use-

ful modeling approach based on multi-wavelet basis func-

tion expansion is introduced. The UROFR algorithm is 

then employed to determine a parsimonious model with 

satisfying generalization performance. Secondly, the time-

varying PSD function is defined (Eq. (34)) and utilized to 

calculate power distributions of the EEG signals. Thirdly, 

the resulting feature vectors are processed using PCA and 

fed to different classifiers. A Bayesian optimization ap-

proach is applied to these classifiers to adjust the relevant 

parameters automatically. 

The promising results reported in Section 4 confirm that 

the proposed TVAR-MWBF-UROFR approach performs 

well for seizure detection from EEG data (including clean 

EEG data and noisy EEG data). Therefore, the method is 

potentially applicable to clinical practice for seizure detec-

tion. The achievement of the good performance of the 

novel approach is attributed to the employment of multi-

wavelet expansions and the UOFR algorithm, which can 

produce a parsimonious TVAR model for a simplified de-

scription of dynamical systems. Thus it is able to reveal 

the precise mapping of time-frequency components and 

capture the transient characteristics of non-stationary pro-

cesses. Additionally, the obtained high-resolution TF im-

ages based on PSD provide useful information about the 

temporal evolution of transient frequency components; this 

contributes to helping clinicians understand the pathogene-

sis of epilepsy through seizure EEG TF images.  There-

fore, this work offers valuable insights into developing an 

interpretive automatic epileptic detection system (e.g., a 

detector). Further research would be undertaken to explore 

how to build an end-to-end real-time online seizure moni-

tor with explicit medical and physical meanings based on 

the  
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proposed approach. Relevant results will be presented in 

future separate publications.  

 

Appendix  

Derivation of the ROFR algorithm. 

Consider the matrix form of model (6): 
 𝑦 = ψM 𝑐 + 𝑒 

 { 𝑦 = [𝑦(1), 𝑦(2), … , 𝑦(𝑁)]𝑇ψM = [ψ(1), ψ(2), … , ψ(N)]𝑇𝑒 = [𝑒(1), e(2), … , e(N)]𝑇                                   (36) 

Define the orthogonal decomposition of the regression ma-

trix as: 

 ψM = [𝑤1, 𝑤2, … , 𝑤𝑛] [10⋮0
𝛼1,21⋱…

⋯⋱⋱0
𝛼1,𝑁⋮𝛼𝑁−1,𝑁1 ] = 𝑊𝐴 

                                                                                       (37) 

where the orthogonal columns satisfying𝑤𝑖𝑇𝑤𝑗 = 0, 𝑖 ≠ 𝑗. 
The model can be rewritten as: 

 Y = Wg + e                                                                  (38) 

where the orthogonal weight vector g = [𝑔1, 𝑔2, … , 𝑔𝑁]𝑇  

and the parameter vector c satisfying Ac = g. 

The ROLS algorithm considers the zero-order regulari-

zation error, and its standardized error criterion is: 

  
(𝑒𝑇𝑒+𝜆𝑔𝑇𝑔)𝑌𝑇𝑌 = 1 − ∑ [(𝑤𝑖𝑇𝑤+𝜆)𝑔𝑖2]𝑌𝑇𝑌 = 1 − ∑ ∆𝑒𝑖𝑁𝑖=1𝑁𝑖=1       (39) 

where λ ≥ 0  is the regularization parameter, 𝛥𝑒𝑖  is the 

regularized error reduction ratio. An elegant method to de-

termine the regularization parameter is to employ a Bayes-

ian interpretation to the ROLS algorithm which results in  

the following iterative procedure for calculating 𝜆: 

 𝜆 = 𝜂𝑁−𝜂 ∙ 𝑒𝑇𝑒𝑔𝑇𝑔                                                                (40) 

 𝜂 = ∑ 𝑤𝑖𝑇𝑤𝑖𝑤𝑖𝑇𝑤𝑖+𝜆𝑖                                                                (41) 

Given an initial value λ0, after a few iterative calculations, 

a stable and algorithmic value can be obtained. Actually, λ was elected to be one in this paper. The pseudo code of 

the UROFR algorithm is shown below. 
 

Pseudo code for the ROFR algorithm (refer to Eq.(28)) 

Input: 

          Output signal: Y = 𝑌𝑈𝐿𝑆  

          Candidate terms: 𝜙𝑈𝐿𝑆 = 𝜑𝑖 , 𝑖 = 1,2, … 𝑝𝑀 

          Regularization parameter:  λ ≥ 0 

Predetermined threshold: τ 

Step 1. Set 𝐼1 = {1,2, … , 𝑝𝑀}, 𝑆 = 𝑝𝑀, 𝜎 = 𝑌𝑇𝑌; 

            for  𝑖 = 1 𝑡𝑜 𝑆: 

                   𝑤𝑖 = 𝜑𝑖; 
                   𝑅𝐸𝑅𝑅𝑖 = 〈𝑌,𝑤𝑖〉2σ(〈𝑤𝑖,𝑤〉+𝜆) × 100%;   𝑎11 = 1   

             end for 

              ℎ1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈𝐼1{𝑅𝐸𝑅𝑅𝑖};    𝑤10 = 𝑤ℎ   

              𝑔10 = 〈𝑌,𝑤10〉(〈𝑤10 ,𝑤10〉+𝜆); 
 Setp j.  j ≥ 2: 
             for   𝑗 = 2 𝑡𝑜 𝑆: 

                    𝐼𝑗 = 𝐼𝑗−1{ℎ𝑗−1}; 
                    for all 𝑖 ∈ 𝐼𝑗: 

                          𝑤𝑖 = 𝜑𝑖 − ∑ ( 〈𝜑𝑖,𝑤𝑘0〉〈𝑤𝑘0,𝑤𝑘0〉)𝑗−1𝑘=1 𝑤𝑘0 

                          𝑅𝐸𝑅𝑅𝑖 = 〈𝑌,𝑤𝑖〉2σ(〈𝑤𝑖,𝑤〉+𝜆) × 100% 

                     end for (end loop 𝑖) 
                     𝐽𝑗 = {𝑎𝑟𝑔𝑖∈𝐼𝑗(𝑤𝑖𝑇𝑤𝑖 < 𝜏)} ;   𝐼𝑗 = 𝐼𝑗\𝐽𝑗; 

                     ℎ𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈𝐼𝑗{𝑅𝐸𝑅𝑅𝑖};    𝑤𝑗0 = 𝑤ℎ𝑗; 
                      𝑔𝑗0 = 〈𝑌,𝑤𝑗0〉(〈𝑤𝑗0 ,𝑤𝑗0〉+𝜆) ;      𝑎𝑗𝑗 = 1 

                      for k=1 to j-1: 

                            𝑎𝑘𝑗 = 〈𝑤𝑘0,𝜑ℎ𝑗〉〈𝑤𝑘0,𝑤𝑘0〉 ; 
                      end for (end loop for k) 

                 end for (end loop for j) 

Output: 

            Selected model term: 𝜙 = [𝜑1, 𝜑2, … , 𝜑𝑙] 
            Term parameter:  𝛩 
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