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Commentary

How the stomate got his pore:
very long chain fatty acids and a
structural cell wall protein sculpt
theguardcell outer cuticular ledge

The epidermis forms a crucial barrier between a plant and its
environment. It stops uncontrolled loss of water by evaporation or
transpiration and protects underlying cells from solar radiation and
pathogens (Lewandowska et al., 2020). Overlying the leaf epider-
mis is the cuticle which consists of a matrix of cell wall proteins and
carbohydrates, interweaved fatty acids with various chain lengths
(known as cutin) and an outermost layer of wax, which varies in
constituents and thickness depending on species and in response to
environmental stimuli. The leaf epidermis contains trichomes (hair
cells), epidermal cells and stomatal guard cells, and it is likely that
the cuticularwax composition varieswith cell type although this has
been little studied (Hegebath& Jetter, 2017). Themajority of CO2

entry and water loss occurs through stomatal pores, with smaller
amounts diffusing through the epidermis when stomata are closed
(Boyer, 2015). The ability to quickly close these pores or in the
longer-term to adapt stomatal density in response to environmental
conditions such as drought is well documented, but less is known
about whether plants alter their cuticle composition to regulate
water loss, and if such changes occur in an epidermal cell type-
specific way (Holroyd et al., 2002). In the recently published article
in New Phytologist, Tang et al. (2020; doi: 10.1111/nph.16741)
have identified a novel Arabidopsis thaliana mutant osp1 (occluded
stomatal pore 1) that has disrupted synthesis of cuticular waxes and
shows structural alterations to the stomatal cuticular ledge. This
phenotype, which is reminiscent of the previously described fused
outer cuticular ledgemutant (focl1; Hunt et al., 2017), has effects on
both stomatal and nonstomatal water losses.

Plants lacking OSP1 have altered wax composition and
occluded stomatal pores

OSP1 is highly expressed in guard cells and encodes a putative
GDSL lipase, so called because of an arrangement of four conserved
Ser-Gln-Asn-Hismotifs (Akoh et al., 2004). These GDSL proteins
form a large family in plants (Volokita et al., 2011) and while
annotated as lipases, few experiments have been carried out to
define their likely in vivo substrate(s). Tang et al. show that OSP1
has thioesterase activity.OSP1 acts onC22:0-AcylCoA andC26:0-
AcylCoA substrates to generate very long chain fatty acids
(VLCFAs), which are major components of the cuticular waxes

and have roles as lipid signals. Like other GDSLs, OSP1 shows
broad esterase activity with artificial substrates but recent work on
two rice mutants suggests that GDSLs may have functions beyond
cutin and wax metabolism (Fig. 1). The BS1 andDEACETYLASE
ON ARABINOSYL SIDECHAIN OF XYLAN1 (DARX1) GDSL

‘We therefore propose that an interplay between a unique

proline rich protein in the guard cell wall, and a specifically

modified VLCFA component in the overlying wax cuticle,

is required to form each stomatal pore.’

lipases mutants both show secondary cell wall defects, which are
most likely due to the lack of removal of acetyl groups from
acetylated xylan and acetylated arabinosyl residues (Zhang et al.,
2017, 2019). Further evidence that lipids may not be the only
substrate for these enzymes comes from analysis of the mucilage of
Arabidopsis seeds which is rich in carbohydrates (rather than lipids)
yet proteomic analysis suggests several GDSLs are present at high
levels (Tsai et al., 2017).

Fig. 1 The known substrate specificities of plant GDSL lipases. In vitro

experiments have shown that members of the GDSL lipase family can act on
(a) Arabidopsis thaliana very long chain acyl-CoAs (VLC-CoA), which are
precursors of very long chain fatty acids (VLCFAs) (in the recently published
paper in New Phytologist, Tang et al., 2020; doi: 10.1111/nph.16741);
(b) rice acetylated xylan (Zhang et al., 2017) and (c) acetylated arabinose
(Zhang et al., 2019).This article is a Commentary on Tang et al. (2020), doi: 10.1111/nph.16741.
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The osp1 null mutant is the first Arabidopsis GDSL mutant to
have an identifiable phenotype. The stomata of osp1 lines are
occluded, caused by an extension of the thickened cuticular ledge
that surrounds the pore. This occlusion blocks transpiration and
results in plants with increased temperature when observed by
infrared imaging. This is an identical phenotype to that described
by Hunt et al. (2017), in a totally unrelated proline rich protein
mutant. focl1 has stomatal pores that are blocked in a similar
manner, resulting in increased leaf temperature and reduced plant
size, most likely due to a reduced ability to take in CO2. Analysis of
osp1 revealed a reduction in the total wax contents, with specific
reductions in the long chain C26 and C28 alcohols and C27–C33
alkanes. Cutin levels were largely unaltered. This led to osp1 having
increased epidermal permeability as shown by chlorophyll leaching
experiments.

What is the role of the cuticular ledge?

The outer cuticular ledge (OCL) is an extension of stomatal cell
walls (Merced & Renzaglia, 2014). Its exact functions are

unknown, but the OCL is believed to prevent water droplets
entering when the pore is open, to tilt its orientation to help open
and close the stomatal pore, and to prevent water entry by sealing
the pore when the stomate is closed (Fricker & Wilmer, 1996;
Kozma & Jenks, 2007). The ledges are also proposed to provide a
recognition point for pathogenic fungi that must locate stomatal
pores to gain entry to their host (Hoch et al., 1987). Absence of a
cuticular ledge, as seen in the gpta4gpta8 (glycerol-3-phosphate
acyltransferase 4/8) double mutant reduces drought resistance but
these mutants have defects in both pavement cell and guard cell
cuticle structure and thereby alter both stomatal and nonstomatal
water loss (Li et al., 2007).

What is the nature of the occlusion in OSP1?

There are now two reports of Arabidopsis mutants with cuticle-
covered stomatal pores (Tang et al. and Hunt et al. (2017)) which
raises the intriguing question of what links the FOCL1 and OSP1
proteins. Do they fulfil similar functions or act in the same
pathway? Intriguingly, FOCL1 and OSP1 both show root expres-
sion, a tissue that does not have a wax layer suggesting both proteins

(a)

(c)

10 μm

(b)

(d)

outer cu�cular ledges

Fig. 2 Proposed mechanism for stomatal cuticular ledge and pore formation. (a) Guard cells (GC) produce the extensin-like cell wall structural protein FUSED
OUTER CUTICULAR LEDGE 1 (FOCL1, shown in dark blue) and the GDSL lipase OCCLUDED STOMATAL PORE 1 (OSP1) which catalyses the formation of
specific very long chain fatty acid (VLCFA) components of the cuticular waxes (shown as grey zig zags). PC marks adjacent epidermal pavement cell. It is
proposed that FOCL1 is anchored in the guard cell wall (blue) and interacts with the specific VCLFA OSP1 product in the waxes of the overlying cuticle layer
(pink), thereby fixing it in position. (b) Scanning electronmicrographofwild-typeArabidopsis thaliana stomate showing structure ofGCouter cuticular ledges.
(c)Knockoutmutants lackingeither theproductofOSP1 (left) or FOCL1 (right) fail to anchor the cuticle to theGCwall anddonotdevelop thedistinct shapeand
separation of the GC cuticular ledges. This results in occluded stomatal pores and prevents gas exchange. (d) Electronmicrograph of focl1 stomate with fused
outer cuticular ledges and occluded pore.
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may have wider interactions in different plant tissues. FOCL1,
however, is not a GDSL lipase but a putative proline rich
glycoprotein, more likely to have a structural role in the cell wall.
The cuticle of osp1 has an altered wax content, but why should this
cause the two ledges to fuse together? Thismay be due to alterations
in physicochemical properties of thewax on the ledge that normally
hold the ledge apart, or the ledges may join together during
development and fail to separate during pore formation. Alterna-
tively, the wax may no longer be attached to the cell wall/cutin
matrix beneath possibly though a specific wax–cell wall protein
interaction.

Very long chain fatty acids play unique and poorly
understood roles in stomatal development

We have previously proposed that FOCL1 might facilitate
interactions between the cell wall and the cuticle that are needed
to sculpt the ledge (Hunt et al., 2017). It now seems likely that
OSP1 might provide the anchor points for FOCL interactions
within the cuticle or cuticular wax (Fig. 2). We therefore propose
that an interplay between a unique proline rich protein in the guard
cell wall, and a specifically modified VLCFA component in the
overlyingwax cuticle, is required to form each stomatal pore. This is
not the first time that VLCFA metabolism has been implicated in
the regulation of stomatal development; 20 years ago HIGH
CARBON DIOXIDE (HIC), which encodes a putative enzyme
involved in synthesis of guard cell VLCFAs, was shown to regulate
stomatal development at excessive CO2 levels (Gray et al., 2000).
Exactly howHICmodulates epidermal cell fate remains a mystery,
but what is now clear is that the specific composition of guard cell
cuticles is important for controlling both the number and
morphology of stomatal pores.
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