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Abstract 

 

Current hip prostheses make extensive use of the aerospace alloy Ti-6Al-4V. 

This material was designed for aerospace applications but has far from ideal 

mechanical properties for biomedical applications, namely, a high elastic modulus and 

poor fatigue resistance.  Moreover, its poor tribological properties are well known. 

However, beta, or near beta Ti alloys are known to have superior properties in that its 

elastic modulus is closer to that of bone coupled with a good fatigue resistance.  

Therefore, this work aims to analyse the tribocorrosion behaviour of 4 different titanium 

alloys (Ti-13Nb-13Zr, Ti-12Mo-6Zr-2Fe and Ti–29Nb–13Ta–4.6Zr aged at 300oC and 

at 400oC) at anodic potential, OCP and cathodic potential at 0.5N, 1N and 2N in bovine 

serum to identify the main cause of material degradation, the presence of a tribofilm 

and the synergism between corrosion and wear. The results show the alloys become 

more active when subjected to sliding in all conditions, but the material loss is lower 

at anodic potential. The alloys studied present a positive effect of corrosion on wear.  

 

Introduction 

The titanium alloy Ti6Al4V is the most common alloy used in components for 

total hip replacements [1]. It provides better corrosion resistance and osseointegration 

properties than CoCrMo or stainless steel [2]. Ti6Al4V alloy has established itself as 

the standard for femoral stems and acetabular cups [3-5]. Recent reports of adverse 

local tissue reactions (ALTR) due to taper corrosion have led to a further decline in the 

use of CoCrMo alloy for femoral stems and an increase of Ti6Al4V alloy. Yet, ALTR 

can occur in titanium stems coupled with CoCrMo femoral heads, and even in rare 

cases when coupled with ceramic heads [6]. Recently, a beta phase titanium alloy 

(TMZF) was introduced to provide better stress shielding properties and thus 



increased osseointegration [7]. However, implants made from TMZF showed in some 

cases gross trunnion failure (GTF) [8-12]. This failure mode led to an excessive 

release of titanium alloy debris and in some cases disengagement of the head from 

the stem. The reason for GTF is multifactorial including material properties, surface 

roughness, implant design, and femoral off-set (unfavourable moment arm) [8, 12, 13].  

Even though the use of TMZF for femoral stems has been discontinued, lessons 

learned can be applied to develop new alloys that provide improved tribocorrosion and 

fretting corrosion properties, decreased reduce stress shielding, and equal or better 

cyclic fatigue properties [14-19]. By doing so, it is of upmost importance to pay close 

attention to the implant alloy microstructure which can vary broadly even at the same 

chemical composition depending on the heat treatment and thermomechanical 

processing applied [20-23].  

It was the goal of this study a) to produce four different types of titanium alloy 

with distinctively different microstructures with lower elastic moduli and reduced 

amount of potentially toxic elements compared to Ti6Al4V, and b) to investigate the 

tribocorrosion properties of these alloys. Specifically Ti-13Nb-13Zr, Ti–29Nb–13Ta–

4.6Zr, Ti–29Nb–13Ta–4.6Zr aged at 300oC and Ti–29Nb–13Ta–4.6Zr aged at 400oC 

where investigated. The tribocorrosion behaviour was evaluated at three different 

loads, three different potentiostatic conditions, and the synergistic effect between wear 

and corrosion was evaluated using two different models. 

 

 

Methods 

 

All beta titanium alloys were produced in a vacuum arc melting furnace using 

an Arc 200 arc melter supplied by Arcast. Alloying elements for each alloy were melted 

with a DC transferred arc as the heat source. A hundred grams of material was melted 

for each alloy composition. The machine was evacuated and flooded with argon. 

After melting and casting, all samples were heat treated at 1000oC for 4 hours 

in an argon tubular furnace in order to homogenise, to remove microscale 

concentration gradients, and to obtain a uniform composition throughout the ingot. 

Ti-13Nb-13Zr was subjected to a reduction of 67% by hot rolling at 680oC. 

Subsequently, it was solution treated at 760oC for 1 hour and water quenched. Ti-



12Mo-6Zr-2Fe alloy was hot rolled (65% reduction), then aged at 600oC for 4 hours 

and air cooled. The β transus temperature of this alloy is 743oC.  

Ti–29Nb–13Ta–4.6Zr was cold rolled to 87% reduction. Then it was solution 

treated at 790oC for 1 hour followed by water quenching. Furthermore, this alloy was 

divided in two groups. The first group was aged at 400oC for 72 hours and water 

quenched, whereas the second group was aged at 300oC for 72 hours followed by 

water quenching. The β transus temperature of both alloys is 740oC. 

 

Microstructural analysis 

Phase volume fraction was determined on bulk alloy samples that were 

polished and viewed by scanning electron microscopy (SEM) using the backscatter 

electron (BSE) mode. Different phases could be distinguished by contrast based on 

the atomic number of the alloying elements present within each phase. For X-ray 

diffraction (XRD) a Bruker D2 Phaser was used to characterize the lattice structure of 

different phases present within each alloy. 

 

Surface analysis 

The initial surface of all samples was characterized by SEM (FEI, InspectF, 

Netherlands) and optical profilometry (Contour GT 3D Optical Microscope, Bruker, UK) 

was performed to measure the surface roughness. Profilometry was also used to 

assess the wear scar profile of the specimens after testing.  

 

Electrochemical measurements 

The polarization behaviour of all alloys was measured in an electrochemical 

cell consisting of a container with a Ag/AgCl 1M KCl reference electrode (potential with 

respect to the standard hydrogen electrode is 0.235V) and a platinum wire as a counter 

electrode. The exposed areas were 1.54 cm2. Polarization curves were measured 

using a VersaSTAT 3F Ametek potentiostat connected to the VersaStudio software. 

The potential scanning range was from -0.25V to 0.25V vs OCP at a sweep rate of 0.5 

mV/s. Tests were started after potential stabilization period of 15 minutes. Two types 

of test were conducted: 1) under static conditions, 2) under sliding conditions. The 

corrosion potential was determined under each condition using the Tafel’s method. 

 

Tribocorrosion tests 



 

Reciprocating sliding wear tests were carried out using a Bruker UMT Multi 

Specimen Test System (Bruker, UK) controlled by CETR UMT software. A ball on plate 

configuration according to ASTMG133 was used. The counter body was an alumina 

ball with 4 mm diameter and 99% purity (Oakwade Ltd., UK). An alumina ball was 

used to provide an inert counter face and to be able to compare the current tests with 

previous published work. New-born calf serum (First Link (UK) Ltd.) was to simulate 

body fluids. It was diluted to 25 vol% in an aqueous solution of phosphate buffer saline 

(Sigma-Aldrich). One wt% sodium azide (99% extra pure, ArcosOrganics) was added 

to the solution to avoid bacterial growth. The final testing solution had a protein content 

of 15.5 g/L. A stroke of 2mm at 5 Hz (0.02 m/s) was used for the reciprocating 

tribocorrosion test. The test duration was 3h in all cases (54,000 cycles/ 216 m sliding 

distance). The normal load (Hertzian contact pressure) was 0.5N (521 MPa), 1N (657 

MPa) and 2N (827 MPa). Tribocorrosion tests were performed at a cathodic potential 

(-1V vs OCP) and an anodic potential (0.3V vs OCP). The potentials were chosen 

according to ASTM G119.09 for synergy estimation. Also, potentiodynamic 

polarization tests were performed during the reciprocating sliding test. Tests were 

performed in duplicate for each alloy to test the reproducibility.  

Synergy estimations  

The synergism between corrosion and wear on tribocorrosion can be estimated 

by several ways. This study used two approaches: the synergistic approach [24] and 

mechanistic approach [25]. The synergistic approach is expressed by equation 1. 

Each component of equation 1 was found using ASTM G119.09 standard. 

T = Wo + Co + ΔWc + ΔCw       Eq. 1 

T: Total material loss; Wo: Material loss due to wear; Co: Material loss due to 

corrosion; Wc: The increase of wear due to corrosion and Cw: The increase of corrosion 

due to wear. 

In the mechanistic approach, the material loss is due to mechanical wear where 

the material will be worn due to mechanical contact, and wear accelerated corrosion 

where the area exposed by the mechanical contact will be more reactive. This 

approach is expressed by the equation 2. 



Vt = Vmec + Vchem               Eq. 2 

Where Vt is the total material loss, Vmech is the material loss due to mechanical 

wear and Vchem is the material loss due to corrosion. Using Faraday’s law, the materials 

loss due to corrosion is found using the following equation. 

𝑉𝑐ℎ𝑒𝑚 =
!	#	$	#	%

&	#	'	#	(
                    Eq. 3 

 

Results 

 

Materials characterization  

 

The Ti-13Nb-13Zr alloy was a αβ alloy with a martensitic microstructure in a β 

matrix (Fig. 1 (a)) and an average grain size of 140 µm. The phase content was 47.2% 

α and 52.8% β phase. X-ray diffraction (Fig. 2) confirmed the presence of β and α’’ 

phases which is the most intense peak seen for α’’ (112). The microstructure of Ti-

12Mo-6Zr-2Fe was characterized by fine grains (Fig. 1 (b)) with an average grain size 

of 1.6 µm both α and β phase. The phase content was 39.1% α and 60.9% β phase, 

which is considered a near β alloy. X-ray diffraction confirmed the presence of β phase 

as well as a low intensity (110) peak of the α phase (Figure 2).  

The microstructure of Ti–29Nb–13Ta–4.6Zr aged at 400oC had an average 

grain size of 20 µm (Figure 1 (c)) and the microstructure of Ti–29Nb–13Ta–4.6Zr alloy 

aged at 300oC (Figure 1 (d)) had an average grain size of 12.8 µm. Both alloys had an 

equiaxed β grain structure due to the heat treatment at the β domain, recrystallization 

and grain growth. Based on the SEM images both alloys exhibited a volume fraction 

of 100% β phase. However, ω phase could not be differentiated by BSE, but was 

identified only in this alloy by XRD. ω phase transformation is induced by aging at a 

low temperature. The ω phase volume fraction could not be assessed. X-ray diffraction 

confirmed a β microstructure for the alloy aged at 400oC (Figure 2), whereas at 300oC 

β and ω—indicated by the (112) peak—phases occurred. The low intensity of ω phase 

is expected, since this phase is known to occur in small fractions after aging.  

 



 

Fig. 1 – (a) SEM backscatter electron image of the αβ alloy microstructure, (b) SEM 

backscatter electron image of the Nβ alloy microstructure, (c) SEM backscatter 

electron image of the β alloy microstructure and (d) SEM backscatter electron image 

of the βω alloy microstructure 

 

Fig. 2 - X–ray diffraction of the alloys studied in this study. 

 



Corrosion potential 

 

For all materials, it was observed that the potential dropped to more active 

values and the corrosion current increased under sliding due to the effect of wear on 

corrosion (Figure 2, Table 1).  The corrosion potential before sliding was -0.49V and 

dropped to -0.96V under sliding for αβ alloy. The same was observed for the corrosion 

current, where it was 8.21 10-9 A/cm2 under static conditions and increased to 6.66 10-

7 A/cm2 under sliding condition.  

For the Nβ alloy, corrosion potential was -0.52V and dropped to -1.11V under 

sliding condition. A change in corrosion current was also observed which was 3.26 10-

9 A/cm2 and 6.22 10-7 A/cm2 under sliding conditions. The β alloy showed a corrosion 

potential of -0.71V and a corrosion current of 4.38 10-9 A/cm2 under static condition, 

and a corrosion potential -1.18V and corrosion current 1.14 10-6 A/cm2 at sliding 

conditions. βω alloy shows a corrosion potential of -0.51V and corrosion current of 

2.55 10-9 A/cm2 and corrosion potential -0.97V and corrosion current 9.72 10-7 A/cm2 

at sliding conditions. 

 

 

Fig. 3 – Potentiodynamic curves 
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Table 1 – Corrosion potential and corrosion current. 

Alloys Ecorr 
Static (V) 

Ecorr 
 Sliding (V) 

Icorr  
Static (A/cm2) 

Icorr  
Sliding (A/cm2) 

αβ -0.49 -0.46 8.21 10-9 6.66 10-7 

Nβ -0.52 -1.11 3.26 10-9 6.22 10-7 

β -0.71 -1.18 4.38 10-9 1.14 10-6 

βω -0.51 -0.97 2.55 10-9 9.72 10-7 

 

Tribocorrosion behaviour under potentiostatic conditions 

 

Current and COF during Cathodic tests  

For the αβ alloy, a current drop occurred from -110 µA (0.5N), -57 µA (1N), -

50µA (2N) to -175 µA (0.5N), -91 µA (1N) and -75 µA (2N) when sliding started for all 

normal loads applied, Fig. 4 (a), and it kept decreasing until the end of sliding, but the 

current increased to values lower than starting surface at cathodic potential. The COF 

evolution curves, Fig. 4 (b), exhibited a similar behaviour. The COF increase with 

increasing normal load. Also, a higher COF occurred at the beginning of sliding (0.65 

at 0.5N; 0.71 at 1N and 0.74 at 2N), but decreased until it reached a steady state after 

8,000s. 

For the Nβ alloy, the initial cathodic current was -100µA at 0.5N, -45 µA at 1N 

and -55 µA at 2N. The COF showed initial values of 0.42 at 0.5N, 0.45 at 1N and 0.46 

at 2N. These values increase with time and no running in period was observed.  

The initial current registered at cathodic potential was -34µA (all normal loads) 

for the β alloy and -30 µA (0.5N) and -39 µA (1N and 2N) for βω alloy. For the β alloy 

at 0.5N the current drops during the whole test up to -140 µA. At 1N it drops to -40 µA 

and at 2N it drops to -60 µA. Then after 2,000s the current stabilized until the end of 

the test at 1N and 2N. The current increased when sliding ended. For the βω alloy, 

the current dropped to -32 µA (0.5N), -47 µA (1N) and -52 µA (2N). A steady state was 

not observed for this alloy and the current increased to values that still remained lower 

after sliding compared to before sliding. The COF evolution had a similar qualitative 

behaviour with different values for each alloy, where a steady state is observed from 

5,000s. The COF is high at the beginning of sliding and it is higher at 2N (0.85 for β 

alloy and 0.8 for βω alloy) and lower at 0.5N (0.55 for β alloy and 0.5 for βω alloy). 

However, it dropped with time and showed final values around 0.4 and 0.45. 

 



Potential and COF during free potential tests 

At OCP, Fig. 4 (c), the potential evolution graph showed 3 areas: passivation, 

depassivation (wear test) and repassivation (end of sliding) for all alloys. The initial 

potential recorded before sliding for αβ alloy was -0.26V at 0.5N; -0.34 at 1N and -

0.39V at 2N. Then, the potential dropped when sliding started to -0.8V at 0.5N; -1.1V 

at 1N and 2N, Fig. 8. At 0.5N the cathodic drop was lower (ΔE = -0.54V) than 1N (ΔE 

= -0.76V) and 2N (ΔE = -0.71V). Then, the OCP value remained constant until the end 

of the test. The COF evolution at OCP, Fig. 4 (d), had a similar qualitative behaviour 

to the COF evolution at cathodic potential. It showed initial values of 0.45 at 0.5N; 0.65 

at 1N and 0.68 at 2N. The values decreased with time and at 2,000 s where it remained 

steady, Fig. 9.  

The initial potential of Nβ alloy was 0.09V, 0.08V and 0V at 0.5N, 1N and 2N 

respectively. The potential dropped to -1V when sliding started in all normal and the 

ΔE - 0.91, -0.92V and -1V at 0.5N, 1N and 2N respectively. The COF evolution 

exhibited a variation with time around 0.35 at 0.5N and 0.45 at 1N and 2N which the 

running in stage is only observed at 0.5N.  

The initial potential for β alloy was -0.54V (0.5N and 1N) and -0.59V (2N). Then 

a cathodic drop when sliding started was observed to -1V (0.5N and 1N) and -1.1V 

(2N) with a steady potential evolution with time. βω showed an initial potential of -0.2V 

(0.5N), -0.25V (1N) and -1.8V (2N) and a cathodic drop to -1V (0.5N) and -1.1V (2N) 

and then the same steady potential evolution with time was seen. COF evolution 

showed high values at 2N (0.75 for β alloy and 0.75 for βω alloy) and lower values at 

0.5N (0.45 for both alloys) at the beginning of the test. A transition point is shown at 

4,000s, when its curve showed a steady state with values varying from 0.29 to 0.45.  

Anodic tests 

Fig. 4 (e) shows the current evolution at anodic potential, the initial current was 

1 x 10-7 A and a current increase was observed when sliding starts for all alloys. This 

shows the effect of wear on corrosion. The current increase is higher at 2N and lower 

at 0.5N. The current decreased and then exhibited a steady curve until sliding ended, 

when it dropped to 1 x 10-6 A for all alloys. The reactions of this alloy at this potential 

is suggested as follow: Ti = Ti2+ + 2e-. The COF evolution, Fig. 4 (f), at this potential 



also showed a current drop (1,000s) and then a steady curve around 0.3. The values 

of COF at this potential were the lowest values observed in this study.  

The average COF, Fig. 5, show low values at anodic potential and high values 

at cathodic potential. Also, it increased with normal load, except at anodic potential. 

The lowest value observed is at anodic potential at 2N (0.24) αβ alloy, and the highest 

value is observed at cathodic potential at 2N (0.52) Nβ alloy.  

 

 

 

Fig. 4 – (a) Current evolution at cathodic potential, (b) COF evolution at cathodic 

potential, (c) potential evolution at OCP, (d) COF evolution OCP, (e) current 

evolution at anodic potential, (f) COF evolution at anodic potential. 

 



 

Fig. 5 – Mean COF. 

 

Wear and roughness  

The shallowest wear tracks, Fig. 6, were observed at anodic potential and at 

0.5N and the deepest wear tracks were observed at cathodic potential and at 2N. For 

αβ alloy the shallowest wear track occurred at 0.5N at anodic potential (depth of 35µm 

and a width of 0.71mm) and the deepest wear track was observed at 2N at cathodic 

potential (depth of 130µm and width of 1.2mm). For Nβ alloy, at anodic potential the 

width and depth varied from 0.8mm and 40µm at 0.5N to 1.3mm and 90 µm at 2N. At 

cathodic potential the width and depth varied from 1mm and 70 µm to 1.75mm and 

200 µm. The same trend was observed for β and βω alloys, at anodic potential and 

0.5N (depth of 50µm for β alloy and 48.5µm for βω alloy). 

The wear track volume is illustrated in Figure 6. It also showed lower values at 

anodic potential and at 0.5N and highest values at 2N at cathodic potential. The worn 

surface of αβ alloy at 0.5N at anodic potential had a volume of 0.02 mm3 and the worn 

surface at 2N at cathodic potential showed a volume of 0.22mm3. For Nβ alloy the 

wear track volume at anodic potential at 0.5N was 0.03 mm3 and at cathodic potential 

at 2N was 0.3mm3. β and βω alloys, track volume was 0.04 and 0.03 mm3 at anodic 

potential and 0.30 and 0.29 at cathodic potential respectively. 
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The specific wear rate, Fig. 7, was also higher at cathodic potential and lower 

values at anodic potential. However, that showed an increase from 0.5N to 1N and 

then a drop from 1N to 2N at OCP and cathodic potential. At anodic potential, the 

specific wear rate decreased with normal load such as for αβ alloy (2.29 10-4 mm3/Nm 

at 0.5N to 1.19 10-4 mm3/Nm at 2N). The lowest value of specific wear rate was 

observed at anodic potential at 2N for αβ alloy (1.19 10-4 mm3/Nm) and the highest 

value was observed at cathodic potential at 1N for Nβ alloy (9.03 10-4 mm3/Nm at 1N). 

Interestingly, the surface roughness, Fig. 8, was higher at anodic potential, 

lower at cathodic potential and increased with normal load. The lowest value of surface 

roughness was observed at anodic potential at 0.5N for αβ alloy (0.8µm) and the 

highest value was observed at cathodic potential at 2N for βω alloy (2.4µm). The 

presence of α phase plays the most important factor in this regard and it is attributed 

to the nature of HCP crystal.  

  

 

 

Fig. 6 – (a) Wear track profile αβ alloy, (b) wear track profile Nβ alloy, (c) wear track 

profile β alloy and (d) wear track profile βω alloy. 

 



 

Fig. 7 – Wear track volume. 

 

Fig. 8 – Specific wear rate. 
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Fig. 9 – Roughness of wear track. 

 Synergy estimations  

 

Synergy estimations according to synergistic approach and mechanistic 

approach were in agreement. Mechanical wear was the main cause of material loss 

and it increased with normal load and anodic potential (Fig. 10). In fact, chemical wear 

was only observed in low values at anodic potential. 

The synergistic approach, Fig. 11, also showed that material loss due to wear 

(Wo) is the main cause of material loss. The corrosion portion Wc was negative, 

indicating a beneficial effect by inhibiting material loss. 
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Fig. 10 – Mechanism approach. 

 

Fig. 11 – Synergistic approach. 

 

 

Discussion  

 

It was the goal of this study to explore alternative titanium implant alloys and to 

characterize their tribocorrosion behaviour. All four alloys exhibited distinctly different 

Ano OCP Cat Ano OCP Cat Ano OCP Cat

   ab   Nb b bw ab Nb b bw ab nb b bw ab Nb b bw ab Nb b bw ab Nb b bw ab Nb b bw ab Nb b bw ab Nb b bw

0.5 N 1 N 2 N

0.00

0.05

0.10

0.15

0.20

0.25

0.30  Mechanical Contribution

 Electrochemical Contribution

M
a
te

ri
a

l 
lo

s
s
 (

m
m

3
)

ab Nb b bw ab Nb b bw ab Nb b bw

0.5 N 1 N 2 N

-400

-200

0

200

400

600

800

1000

M
a
te

ri
a

l 
lo

s
s
 r

a
te

 (
m

m
/y

e
a

r)

 T

 Wo

 Co

 ΔCw

 ΔWc



microstructures, especially with respect to phase content, whereas the grain size was 

comparably small. It is clear that normal load had great impact on material loss. 

However, it is not the only important parameter. Alloy microstructure also has a notable 

influence where the presence of alpha phase is likely to lower material loss. 

Interestingly, these titanium alloys experienced lower material loss at anodic potential 

which is characteristic of an antagonistic behaviour. These main topics are discussed 

in the next paragraphs.  

 

Tribocorrosion behaviour 

In general, at cathodic potential, the current dropped after sliding started in all 

cases and it is due to proton reduction. This is caused by mechanical action and the 

enhancement of the cathodic reaction rate caused by the stirring of the electrolyte in 

the tribocell which affects the kinetics of mass transport. The main cathodic reactions 

proposed at this potential may be the oxygen reduction: O2 + 2H2O + 4e- à 4OH-. 

The constant value of OCP during sliding is linked to the dynamical equilibrium 

of depassivation and repassivation. The potential drops when sliding started, due to 

the exposure of a bare metal and it suggests this alloy becomes active as a result of 

the sliding. This reflects the galvanic coupling of two distinct surfaces states that are 

unworn area (cathodic area) and worn area (anodic area), which was stabilised. The 

constant value of OCP during sliding is attributed to the dynamic equilibrium between 

mechanical depassivation and electrochemical repassivation. When sliding stopped, 

a parabolic anodic shift was observed indicating a non-instantaneous repassivation.  

Other studies [26] have shown that Ti alloys become more active under 

tribological conditions. Zavieh [27] studied the effect of friction on tribocorrosion 

behaviour of stainless steel. It was found that at OCP, the potential dropped when 

sliding started suggesting a high depassivation rate and galvanic coupling between 

the unworn (passivated) area outside the wear track and the fresh (depassivated) area 

due to sliding of the counterpart. This is a typical behaviour of passive alloys. 

The current increased when sliding at anodic potential due to the removal of 

the passive film and exposure of bare and active material to the electrolyte in the 

contact region. It led to a reaction between the active exposed surface and the 

electrolyte accelerating the electrochemical reaction and anodic metal oxidation (metal 

dissolution) since the passive film acts as a charge barrier [28]. Guadalupe [29] applied 



anodic polarization on CoCr alloys with different carbide contents and observed that 

the wear test at anodic potential showed an increase of current when sliding started 

and attributed it to the enlargement of the wear track with progressing wear. Also, 

another study reported that COF is lower at anodic potentials for CoCrMo and 316L 

stainless steel in bovine serum and H2SO4 [30, 31]. The lower COF at anodic potential 

has also been identified in a study of tribocorrosion behaviour of Ti6Al4V in artificial 

seawater at low contact pressures [32] and for stainless steel in H2SO4 solution [33]. 

Diomidis [34] studied the surface state behaviour of complex metallic alloys in sliding 

contacts and observed the dependence of COF to electrochemical condition in PBS.  

The low mean COF and material loss at anodic potential could be explained by 

the presence of a tribofilm which acts as a lubricant. This was reported by Liao [35] 

which studied the graphitic tribological layers and concluded that transition metals 

remove water and ammonia from albumin which leads to a formation of a layer used 

to reduce friction. 

There is no significant difference on potential, current and COF evolution 

among these alloys. The average COF increases with normal load at cathodic 

potential and OCP and remained unchanged with normal load at anodic potential. 

However, cathodic potential always shows larger values while anodic potential shows 

lower values. The low COF of the αβ alloy is attributed to the presence of α phase 

which is harder than the β phase. The limited plastic deformability of α phase is 

explained by its number of slip systems. In fact, α phase is a hexagonal close packed 

phase and it has only 3 slip systems, while β phase (bcc) has 12 slip systems. It is 

clear that COF increases with normal load at OCP and cathodic potential and remains 

unchanged at anodic potential. 

 

Synergy estimations 

Material loss due to corrosion (Co) is low because these are passive metals 

and wear-accelerated corrosion (ΔCw) is higher than Co so it suggests that wear 

enhanced corrosion rate. However, corrosion-accelerated wear (ΔWc) showed 

negative values and all components increased with normal load, called negative 

synergism or antagonistic effect. The negative values observed on corrosion-

accelerated wear suggests that corrosion does not accelerate wear rate. In fact, it 



reduces wear rate and a positive effect of corrosion on wear that reduces friction is 

observed. This might be explained by presence of a lubricant and this might be why 

wear track volume at anodic potential show lower values. It changes the contact stress 

field where the effect of friction is reduced. 

Numerous studies, some listed in the next paragraphs, have found systems to 

have negative synergistic effects or antagonistic effect. This might be explained by the 

reactions of organic species and particles that create a self-healing film on worn 

surface.  

Albayrak [36] compared the tribocorrosion behaviour of CP titanium to duplex 

treated CP titanium and nitrided CP titanium in simulated body fluid. It was found that 

all alloys tested have an antagonistic effect behaviour and it was stronger on the nitride 

specimens. It was attributed to solution formed oxide layer on the surface of the alloys. 

Hodge [37] studied the tribo-corrosion mechanisms of 316L stainless steel in 

soft drinks. It was observed that medium loads and higher viscosities produce 

synergistic conditions whilst combinations of either high loads and low viscosities or 

low loads and high viscosities produce antagonistic conditions. It was stated that 316L 

stainless steel in both milk and soda experience antagonistic and transition regimes 

for the majority of loads tested due to the formation of protective passive films in the 

anodic regime. Also that corroded metals ions may alter the solution viscosity which 

will in turn have an effect on the contact friction coefficient. 

Sadiq [38] studied the behaviour of CoCrMo alloy in calf serum solution in a 

wide range of normal load and potentials.  The CoCr alloys showed an antagonistic 

effect when SiC particles are present in the electrolyte. The antagonistic effect was 

attributed to the accumulation of organic material on the alloy surface. Also, it was 

pointed out that the antagonistic effect may be a result of an increased solution 

viscosity, improving the lubrication regime and thus inhibiting corrosion–wear due to 

the mixed protein molecules and particles and that the hard SiC particles are likely to 

have embedded on the surface of the softer UHMWPE ball. 

The analysis of the micro-abrasion–corrosion of a CoCrMo alloy in Ringer’s 

solution show that antagonistic effects was also observed for the MoM and anodically 

polarised contacts [39]. 



A study with UNS S31603 and S32760 stainless steels show that they 

experienced an antagonistic effect while S30403 does not in NaCl solution. It was 

attributed to a reflection of the differences in repassivation kinetics or composition of 

the passive films reducing the overall level of two-body abrasion with S30403 having 

weaker repassivation/passive oxide film structure [40]. 

 

Conclusion 

 

• The microstructure does have an effect on tribocorrosion behaviour of titanium 

alloys. The presence of α phase, a hard phase, is linked to lower material loss. 

However, the electrochemical condition plays the most important role since at 

anodic potential titanium alloys show an improvement of wear properties and 

lower material loss. 

• Mechanical wear is the main cause of material degradation. It was identified 

that wear accelerates corrosion rate, but corrosion does not accelerate wear 

rate. In fact, corrosion deaccelerate wear rate - antagonistic behaviour – for this 

tribocorrosion system. 
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