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Quantum networks are essential for realising distributed quantum computation and quantum

communication. Entangled photons are a key resource, with applications such as quantum key

distribution, quantum relays, and quantum repeaters. All components integrated in a quantum

network must be synchronised and therefore comply with a certain clock frequency. In quantum

key distribution, the most mature technology, the current standard clock rate is 1GHz. Here we

show the first electrically pulsed sub-Poissonian entangled photon source compatible with existing

fiber networks operating at this clock rate. The entangled LED is based on InAs/InP quantum

dots emitting in the main telecom window, with a multi-photon probability of less than 10% per

emission cycle and a maximum entanglement fidelity of 89%. We use this device to demonstrate

GHz clocked distribution of entangled qubits over an installed fiber network between two points

4.6km apart.

∗ jan.huwer@crl.toshiba.co.uk
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To perform high level operations [1–4] in a quantum network, entanglement must be dis-

tributed between nodes [5–8]. Intrinsic security of quantum communication protocols can be

provided by entangled photon sources with sub-Poissonian statistics such as semiconductor

quantum dots (QD)s [9, 10], unlike sources based on non-linear processes [11, 12].

Epitaxially grown semiconductor QDs can be readily incorporated into PIN diode struc-

tures, enabling the fabrication of light sources using standard semiconductor processing

techniques [9, 13]. As QDs embedded within diodes can be electrically excited [14], it is pos-

sible to create entangled photon sources that can be conveniently operated similar to other

standard light sources, such as telecom laser diodes. InAs/InP QDs emit in the lowest-loss

silica fiber window [15], which makes them prime candidates for transmission over standard

fiber networks.

Entangled LED (ELED) telecom C-band sources have been demonstrated with DC ex-

citation [16]. Pulsed single [13, 17, 18] and entangled [9, 14, 19–22] photon sources based

on semiconductor QDs have been developed but are either at short wavelengths, and there-

fore incompatible with existing fiber networks, or only operate at repetition rates too slow

for current quantum network applications. Entanglement distribution experiments over in-

stalled networks have used low repetition rates [6–8] while GHz clock rates, necessary for

synchronisation with standard quantum key distribution (QKD) systems, have only been

demonstrated with Poissonian sources over long fiber in a laboratory [23, 24].

The fabrication of ELED devices used in this work was developed to be simple, with only

two etch steps and two metal depositions. An image of a device is shown in figure 1(a).

This design allows for fast electrical operation at GHz frequencies, with dimensions close

to the limit imposed by the size of a bond ball as can be seen in figure 1(a). The ELED

shows good electrical performance as a diode, with the resistance reaching 50Ω beyond the

turn-on voltage. The wafer structure, described in Methods, is designed for QD emission

in the telecom C-band. The emission spectrum shown in figure 1(b) comes from a QD

that is located within a 5µm connected pillar, as can be seen in figure 1(a), and so can be

readily relocated. The device was mounted onto the centre of a radio-frequency compatible

FR4 packaging with conductive paint before wire bonding to a Au layer on one end of 50Ω

impedance matched tracks, ending with a low-profile micro-coaxial connector as illustrated

in the inset of figure 1(b).

In QDs, single photons are emitted via the radiative recombination of confined electron-
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FIG. 1. A quantum dot LED for 1GHz pulsed electrical excitation. (a) A false colour scanning

electron microscope image of a device; an oval mesa with connected pillars, electrically isolated

from the surrounding wafer. (b) An electroluminescence (EL) spectrum of a quantum dot showing

the exciton (X) and biexciton (XX) emission lines. The inset shows an illustration of the radio

frequency compatible packaging; the ELED is wire bonded to impedance matched tracks (p-type

and n-type bond are shown in yellow and purple respectively) which finish at a low-profile micro-

coaxial connector.

hole (e-h) pairs [25]. Entangled photon pairs are emitted via the biexciton cascade [9]

where a QD initialised in the doubly excited biexciton (XX) state decays to the singly

excited exciton (X) state via emission of the first photon. This state subsequently decays

via emission of a second photon, leaving the QD in the ground state. Due to conservation of

angular momentum, the two emitted photons are maximally entangled in their polarization.

To assess the sub-Poissonian photon emission from the ELED, we measure the second

order autocorrelation function (g(2)) of X photons as shown in figure 2(a). This measurement

requires isolation of the X spectral line as in figure 1(b). Since the QD emits at telecom

wavelengths, a compact spectral wavelength filtering unit can be used that is based on an

optical add-drop multiplexer as shown in figure 2(b) (FWHM <0.25nm, 1.31dB loss), a

common component in classical telecommunication technology.

The ELED was electrically driven with ∼130ps FWHM pulses with a high of 1.5V and a

low of 0.3V; the arrival times of photons at each detector were recorded with respect to the

1GHz clock of these pulses. Photon correlations determined in postprocessing can be seen

in figure 2(c). Coincidences in the 1ns squares along the diagonal are strongly suppressed
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FIG. 2. Measurement of 1 GHz pulsed single photon emission. (a) Experimental setup for mea-

suring the second order autocorrelation (g(2)). Light from the ELED passes through a fiber-based

spectral filter unit followed by a fiber 50:50 beam splitter (BS), with each output detected using

superconducting nanowire single photon detectors and a time correlated single photon counter

(TCSPC). (b) A diagram of the filter unit, with a circulator followed by a fiber bragg grating

which reflects the X photons to the fiber output. (c) Time resolved coincidences of 1GHz clocked

X photons for 6 consecutive emission cycles (72ps time bins) as a function of detection time with

respect to the clock. (d) A histogram of normalised coincidences with 1ns bins for 21 relative time

delays.

compared to the rest of the grid, corresponding to an excellent suppression of multi-photon

emission within the same excitation cycle. The 1GHz pulsed operation of single photon

emission can be clearly seen from the grid pattern with a 1ns period.

Photon coincidences in each 1ns square were normalised using coincidences in cycles with

completely uncorrelated detection events. Figure 2(d) shows that the g(2) for X photons

emitted in the same 1ns cycle is 0.097±0.002 without application of any temporal post-

selection. This is far below the classical limit, proving strongly sub-Poissonian emission.
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As entangled photons are critical for quantum network applications, we now show the

generation of 1GHz clocked entangled photon pairs from our ELED. The device was driven

similarly to before, using pulses with a high of 1.5V and a low of 0.5V. The XX and X

photons were separated with a spectral filter and each were detected with a polarization

analyser comprising of an electronic polarisation controller (EPC) and a polarising beam

splitter (PBS) followed by superconducting nanowire single photon detectors (SNSPD)s as

in figure 3 (a). When detecting photons in a polarization basis PQ, P polarized XX photons

were measured at detector 1 in figure 3(a), with X photons of P and Q polarizations measured

at detectors 2 and 3 respectively. Photon arrival times for each detector with respect to the

1GHz clock signal divided by 64 were recorded with a time correlated single photon counter

(TCSPC), with photon correlations and entanglement fidelity evaluated in postprocessing.

Photon pair correlations in the horizontal-vertical (HV) basis covering three consecutive

excitation cycles can be seen in figure 3(b). Within a 1ns cycle both co (HH) and cross (HV)

-polarized photon correlations are suppressed for time bins corresponding to the arrival of

an X photon before a XX photon, due to the cascaded emission of the two photons of a

pair. For time bins corresponding to the arrival of a XX photon before an X photon, only

correlations for co-polarized photons are observed, as expected for the maximally entangled

Bell φ+ state. Importantly, correlations do not extend beyond each 1ns excitation cycle,

verifying a clean reinitialisation of photon-pair emission at a 1GHz rate.

The resulting fidelity to the maximally entangled Bell φ+ state, calculated as explained

in Methods, is shown in figure 3(c). For most of the grid in figure 3(c), the entanglement

fidelity is ∼0.25, corresponding to completely random polarization correlations. For XX and

X photons from the same 1ns cycle, the entanglement fidelity rises above the classical limit

of 0.5 for X photons arriving after XX photons, decaying with oscillations due to the fine

structure splitting of the QD of 6.0µeV.

Each vertical column of time bins in figure 3(c) contains photon coincidences with the

same relative XX-X time delay, but different arrival times within the 1ns emission cycles.

One can see that the entanglement fidelity drops for time bins at the start and end of the

1ns cycles due to reinitialisation of the emission (∼130ps). Therefore, to give an idea of the

highest possible value, XX and X photon arrival times were additionally gated to 0.864ns

around the center of 1ns cycles (shown as a white dashed box in figure 3(c)). The average

of each column is plotted in figure 3(d), resulting in a maximum fidelity to the Bell φ+ state
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FIG. 3. Measurement of entanglement. (a) The experimental setup with a free-space spectral filter

separating XX and X photons. Electronic polarization controllers (EPC)s followed by polarizing

beam splitters (PBS)s set the detection polarization basis, with time correlated single photon

counters (TCSPC)s recording photon arrivals at superconducting nanowire single photon detectors.

(b) Photon correlations of horizontally (H) and vertically (V) polarized biexciton (XX) and exciton

(X) photons, with (a) co- and (b) cross-polarized detection as a function of XX and X delay with

respect to the 1GHz clock (72ps time bins). (c) The fidelity to the maximally entangled Bell φ+

state with the same XX and X photon time bins as (b) but rotated by 135◦. Photon arrival times

gated to the central 0.864ns of each 1ns are shown by the dashed white square. A gate of 0.168ns

is shown by the dashed black square. (d) The fidelity to the maximally entangled Bell φ+ state as

a function of relative delays between XX and X photons (72ps time bins). The horizontal orange

line shows the classical limit of the entanglement fidelity.

of 0.89±0.06. However, this value corresponds to a bin size of 72ps, which is not compatible

with post-selection free detection schemes.

Detectors used in state of the art QKD systems operating at 1GHz clock rates have typical
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detection gate widths of <170ps [26, 27]. To assess the performance of the pulsed ELED

with these non-research grade detectors, we position a single 168ps integration window to

give maximum entanglement fidelity, shown as a black dashed box in figure 3(c). This

results in a fidelity of 0.86±0.14, in the regime compatible with error correction in quantum

key distribution applications [28]. Analysing the X autocorrelation data from figure 2 in a

similar fashion gives a g(2) of 0.05±0.01.

To demonstrate network compatibility of the pulsed entangled photon-pair source we

distributed entanglement over 4.6km between the Toshiba Cambridge Research Laboratory

(CRL) and the Physics Department of the University of Cambridge as shown in figure 4,

using installed network fiber. The source was operated at CRL where X photons were

detected, and XX photons were sent to a deployed detection system over 15km of installed

fiber with 6dB loss at 1550nm.

The electrical 1GHz clock signal used to drive the ELED was down-sampled to 15.6MHz

and converted to an optical signal at 1570nm and multiplexed with 1Gbit/s classical commu-

nication data traffic at 1310nm. The communication channel was required for remote control

of the detection system and data acquisition, both classical signals were transmitted over

a separate installed fiber. At the other end, both classical signals were demultiplexed, and

the clock signal was converted back to an electrical signal to be used as the synchronisation

reference in the deployed detection system.

In both locations, photon arrival times in two detector channels were recorded with

respect to the reference clock with TCSPCs similar to the lab measurements previously

discussed. Photon arrival times were measured in the three principal detection bases in

sets of 7 minutes. Polarization drifts occurring over the network fiber due to changing

environmental conditions were compensated for before each measurement using a similar

stabilisation system as in [29]. Photon correlations were evaluated in postprocessing.

Entangled photon pairs were distributed between East and West Cambridge for 14 con-

secutive hours of operation. Figure 5 (a) and (b) shows results plotted in a similar way to

figure 3 but for distribution of entanglement rather than a measurement in a laboratory.

The maximum fidelity to the Bell φ+ state, analysed on a 72ps grid with the reinitialisation

period discarded as for the laboratory measurement, is 0.79±0.03. The 10% reduction in the

fidelity when transmitting XX photons over the installed fiber is attributed to an increased

ratio of background events to XX photon signal at the deployed detectors from <2% to
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>10%. Using the timing characteristics of GHz clocked detectors as indicated in figure 5(a),

the maximum entanglement fidelity is 0.76±0.06. Figure 5(c) shows the evolution of the

FIG. 4. Experimental setup for distribution of 1GHz clocked entangled photon pairs across the

city of Cambridge. The entangled photon pairs were generated from an ELED at the Toshiba

Cambridge Research Laboratory, with the X photons detected locally using detectors 1 and 2

(SNSPDs) and the XX photons detected at the Physics Department of the University of Cambridge

with detectors 3 and 4 (APDs) in a deployed detection system. The detection polarization basis

was set by EPCs followed by PBSs, with TCSPCs recording photon arrivals at detectors. When

measuring photons in an arbitrary polarization basis PQ, detectors 1 and 3 measured P-polarized

X and XX photons respectively and detectors 2 and 4 measured Q-polarized X and XX photons

respectively. A polarization recovery system compensated for drifts occurring over the installed

fiber. Classical communication for remote control of system components was multiplexed with the

reference clock signal from a small form-factor pluggable transceiver (SFP) over a second fiber.
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FIG. 5. Distribution of entangled photon pairs over 15km of installed fiber. (a) The fidelity to the

maximally entangled Bell φ+ state for 14 hours of data acquisition as a function of XX and X delay

with respect to the 1GHz clock (72ps time bins) with gating applied similarly to in figure 3(c). (b)

Fidelity as a function of relative delays between XX and X photons (72ps time bins) . The horizontal

orange line shows the classical limit of the entanglement fidelity. (c) The maximum entanglement

fidelity from (a) for 2 hour sections throughout the experiment. The horizontal orange lines show

the classical limit of the entanglement fidelity (solid) and a fidelity of 0.8 (dashed).

maximum entanglement fidelity for sets of 2 hours of data. It remains around 0.79 for the

entire 14 hour experiment, demonstrating the excellent stability of the 1GHz clocked ELED

as a source for distributed entangled photon pairs across a real-world fiber network.

We have shown an electrically driven 1GHz clocked telecom ELED with strong single

photon characteristic, resulting in a two-photon probability of less than 10% without any

temporal post-selection. Using the ELED as a source of 1GHz clocked entangled photons

yields a maximum entanglement fidelity of 89%. In addition, the device is suitable for op-
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eration using standard actively gated GHz clocked detector modules as are used in current

QKD systems, with no additional software-based post-selection. Operation of the device in

the lowest-loss telecom window enabled us for the first time to demonstrate the distribution

of 1GHz clocked entangled qubits from a sub-Poissonian source on a city scale. The achieved

entanglement fidelity of 79% proves reliability for electrically pulsed semiconductor quan-

tum light sources connected to installed fiber networks. Pulsed operation with a common

telecommunication clock frequency opens up the possibility for seamless integration with

other quantum network hardware such as QKD systems and efficient time multiplexing with

classical communication signals.
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METHODS

Growth

The semiconductor wafer was grown by metal organic vapor phase epitaxy on an InP

substrate. A bottom distributed Bragg reflector (DBR) comprising 20 layer pairs, each

formed of 112nm of ((Al0.30Ga0.70)0.48In0.52As and 123nm of InP were grown, with the top

3 repeats doped with 2x1018cm−3 of Si. InAs droplet QDs as in [15] were grown in a cavity

on a 3λ/4 intrinsic InP layer followed by a 5λ/4 InP layer. The top nominal 150nm of the

cavity was grown with Zn doping of 2x1018cm−3 to improve high speed electrical injection

at low temperatures. 3 DBR pairs with Zn doping of 2x1018cm−3 and an InP capping layer

completed the p-i-n diode structure.

Fabrication

The device in figure 1(a) was fabricated in 4 steps. To contact the p-layer, CrAu was

thermally evaporated onto the wafer surface. The p-type contact was just large enough to fit

a bond ball, 80x110µm. The mesa and the isolated area were each etched using inductively

coupled plasma (ICP) with Cl2 based process chemistry. 150nm of AuGeNi was evaporated

onto the isolated area to contact the n-layer before annealing at 420◦C.

Characterisation

The device was cooled to 30K in a He vapour cryostat, with an xyz piezo nano-positioning

stage enabling navigation around the device. A fibre-based confocal microscope system with

NA 0.68 collected light emitted from the device. QD EL spectra were measured by sending

this light via a fiber to a spectrometer with an InGaAs array. The fine structure splitting

of a QD was measured as in [15], by polarization dependent spectroscopy using a quarter

wave plate and linear polarizer in front of the spectrometer. This measurement identified

XX and X lines, such as for the QD with the EL spectrum in figure 1(b) which had a fine

structure splitting of (6.0±0.3)µeV.
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Measurement of entanglement fidelity

XX and X photons emitted via the biexciton cascade are co-polarized in the horizon-

tal/vertical basis due to conservation of angular momentum [9]. The degree of correlation

in a polarization basis PQ is calculated from co-polarized, cPP , and cross-polarized, cPQ,

photon correlations by

CPQ =
cPP − cPQ

cPP + cPQ

.

The entanglement fidelity to the maximally entangled Bell φ+ state

f =
1 + CHV + CDA − CRL

4
,

is obtained [30] from measurements in the horizontal/vertical (HV), diagonal/antidiagonal

(DA), and right- and left-hand circularly polarized (RL) detection bases. A free-space spec-

tral filter was used to separate XX and X photons in the entanglement measurements in

figures 3, 4, and 5, followed by electronic polarization controllers and polarizing beam split-

ters before the detectors.

Entanglement distribution photon detection

At CRL, the overall timing jitter for detection was 70ps including the superconducting

nanowire single photon detectors (SNSPD)s (Single Quantum). In the deployed system,

the overall timing jitter for detection was around 75ps including the avalanche photodiodes

(APD)s. The combined X photon rate at the SNSPDs, detectors 1 and 2 in figure 4, was

around 190 000 cps and the combined XX photon rate at the APDs, detectors 3 and 4 in

figure 4, was around 15 000 cps.

To calibrate the detection basis, the QD emission was replaced by a polarization reference

matched to the eigenbasis of emitted photon pairs (not shown in figure 4). EPC voltages

were then varied to minimise the output signal from one output mode of the PBS at a

detector, aligning the detection basis to the reference.
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[18] F. Hargart, C. A. Kessler, T. Schwarzbäck, E. Koroknay, S. Weidenfeld, M. Jetter, and

P. Michler, “Electrically driven quantum dot single-photon source at 2 ghz excitation rep-

etition rate with ultra-low emission time jitter,” Applied Physics Letters, vol. 102, no. 1,

p. 011126, 2013.

[19] R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A

semiconductor source of triggered entangled photon pairs,” Nature, vol. 439, no. 7073, p. 179,

2006.

[20] J. Zhang, J. S. Wildmann, F. Ding, R. Trotta, Y. Huo, E. Zallo, D. Huber, A. Rastelli, and

O. G. Schmidt, “High yield and ultrafast sources of electrically triggered entangled-photon

pairs based on strain-tunable quantum dots,” Nature communications, vol. 6, p. 10067, 2015.

15



[21] C. Varnava, R. M. Stevenson, J. Nilsson, J. Skiba-Szymanska, B. Dzurňák, M. Lucamarini,
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