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27 Originality-Significance Statement

28 The role of autotrophic carbon fixation in SOC formation is unclear to date. This study 

29 detects marker genes from all known autotrophic pathways in paddy soils for the first 

30 time using metagenomic analysis. 14C-labelling experiment shows that autotrophic 

31 microbes are active and contribute significantly to the stable SOC pool. Our work 

32 highlights the importance of microbial CO2 fixation to SOC accumulation in paddy 

33 soils.

34

35 Summary

36 Autotrophic carbon dioxide (CO2) fixation by microbes is ubiquitous in the 

37 environment and potentially contributes to the soil organic carbon (SOC) pool. 

38 However, the multiple autotrophic pathways of microbial carbon assimilation and 

39 fixation in paddy soils remain poorly characterized. In this study, we combine 

40 metagenomic analysis with 14C-labelling to investigate all known autotrophic 

41 pathways and CO2 assimilation mechanisms in five typical paddy soils from southern 

42 China. Marker genes of six autotrophic pathways are detected in all soil samples, 

43 which are dominated by the cbbL genes (67-82%) coding the ribulose-bisphosphate 

44 carboxylase large chain in the Calvin cycle. These marker genes are associated with 

45 a broad range of phototrophic and chemotrophic genera. Significant amounts of 

46 14C-CO2 are assimilated into SOC (74.3 to 175.8 mg 14C kg-1) and microbial biomass 

47 (5.2 to 24.1 mg 14C kg-1) after 45 days incubation, where more than 70% of 14C-SOC 

48 was concentrated in the relatively stable humin fractions. These results show that 

49 paddy soil microbes contain the genetic potential for autotrophic carbon fixation 

50 spreading over broad taxonomic ranges, and can incorporate atmospheric carbon into 

51 organic components, which ultimately contribute to the stable SOC pool.

52

53 Introduction

54 Soil is the second largest pool of carbon on Earth, with 2000 Pg C in the form of 
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55 soil organic carbon (SOC) (Janzen, 2004). Soil organic carbon provides an important 

56 source of carbon for microbial growth (Schimel and Schaeffer, 2012; Lehmann and 

57 Kleber, 2015) and as part of soil organic matter supplies nutrients such as 

58 phosphorus, sulfur, calcium, magnesium, and trace elements (Kapkiyai et al., 1999; 

59 Dincher et al., 2020), which all contribute to the creation and maintenance of healthy 

60 soils that are able to perform a wide range of ecosystem services (Schmidt et al., 

61 2011). The production and degradation of SOC also modulates the sequestration or 

62 release of CO2 (Lal, 2008), and thus directly helps to regulate short-term climate and 

63 potentially mitigate against current climate change (Davidson and Janssens, 2006). 

64 Traditionally SOC is thought to derive mainly from plant detritus, but new research 

65 now shows that organic carbon from microbial sources might be the main contributor 

66 to SOC (Simpson et al., 2007; Kallenbach et al., 2016; Liang et al., 2017), with 

67 microbial necromass contributing up to 50-80% of SOC (Liang et al., 2019). This new 

68 work highlights the potential importance of soil microbes in producing and 

69 subsequently controlling the fate of SOC. Heterotrophic microbes have two critical but 

70 contrasting roles in controlling SOC: promoting release of C to the atmosphere 

71 through their catabolic production of CO2, and preventing release of C to the 

72 atmosphere by transforming labile organic carbon into a more stable form through 

73 anabolism (Schimel and Schaeffer, 2012; Liang et al., 2017). Autotrophic microbes 

74 meanwhile can fix CO2 from the atmosphere and synthesize this into microbial 

75 biomass (MBC) (Yuan et al., 2012b; Ge et al., 2013), which directly contributes to the 

76 SOC pool. Autotrophic metabolisms result in net C sequestration and can add to SOC 

77 in a continuously iterative process of cell generation, population growth and death 

78 (Liang and Balser, 2011; Liu et al., 2016). To date however, the role of autotrophic 

79 carbon fixation in SOC formation is unclear and remains to be elucidated. 

80 The assimilation of CO2 into organic material is quantitatively the most important 

81 biosynthetic process on Earth (Berg et al., 2007), as autotrophs generate the biomass 

82 on which all other organisms thrive (Thauer, 2007). Six autotrophic CO2 fixation 
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83 pathways have been found in various environments to date: the Calvin cycle 

84 (Bassham et al., 1950), the reductive tricarboxylic acid (rTCA) cycle (Evans et al., 

85 1966), the reductive acetyl-CoA pathway (Wood et al., 1986), the 

86 3-hydroxypropionate / malyl-CoA cycle (Holo, 1989), and the 3-hydroxypropionate /  

87 4-hydroxybutyrate and dicarboxylate / 4-hydroxybutyrate cycle (named together as 

88 the 4-hydroxybutyrate cycle) (Berg et al., 2007; Huber et al., 2008). The enzymes 

89 catalyzing difficult steps in a given pathway are usually conserved and act as key 

90 enzymes (Berg, 2011), and the corresponding coding genes, often named as marker 

91 genes (Lever, 2013), are commonly used in microbial ecological studies. For example,  

92 cbbL was used for ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) of 

93 the Calvin cycle (Alfreider et al., 2003; Selesi et al., 2005; Yuan et al., 2012a; Xiao et 

94 al., 2014b), acl for the ATP citrate lyase, oorA for 2-oxoglutarate: acceptor 

95 oxidoreductase in the rTCA pathway (Campbell et al., 2003; Campbell and Cary, 2004; 

96 Xiao et al., 2014a), and hcd for the 4-hydroxybutyryl-CoA dehydratase of both of the 

97 4-hydroxybutyrate cycle (Zhang et al., 2010). Despite the discovery of these six 

98 pathways most studies only focus on one to two pathways (mainly the Calvin cycle), 

99 and there is a lack of comprehensive understanding of these pathways due to 

100 limitations of PCR primers, like bias or poor specificity. Metagenomics involves the 

101 direct sequencing of DNA from the environment and thus allows the examination of 

102 multiple biochemical pathways and associated processes, bypassing PCR primers, 

103 and so it is not limited to studying individual pieces of the metabolic puzzle (Venter et 

104 al., 2004; Mackelprang et al., 2011). With the development of high-throughput 

105 sequencing techniques and a dramatic drop of sequencing prices, diversity analysis 

106 based on metagenomes is now feasible, which can target all metabolic pathways in 

107 soil and does not rely on the specificity and coverage of the primers used (Liu et al., 

108 2018; Ma et al., 2018). Moreover, metagenomics allows us to specifically analyze or 

109 explore functional groups, study gene function and even reconstruct whole microbial 

110 genome from complex environment samples (Tyson et al., 2004; Hultman et al., 2015; 
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111 Lam et al., 2015; Anantharaman et al., 2016; Metcalf et al., 2016). 

112 Paddy soil is a common soil type in China and around the world, and is also an 

113 ideal model system for studying microbiological and biogeochemical processes 

114 (Liesack et al., 2000; Xiao et al., 2014a). In this study metagenomics and 14CO2 

115 labelling approaches are used to determine the genomic and geochemical potential of 

116 multiple autotrophic metabolisms in paddy soils to assimilate and fix atmospheric CO2 

117 into SOC. Soil physicochemical properties are used for statistical analyses to identify 

118 the key factors driving microbial CO2 sequestration in paddy soils. With a systematic 

119 analysis of multiple autotrophic pathways and their activities in paddy soil, this work 

120 provides new insight into the role of autotrophic CO2 fixation in SOC formation.

121

122 Results

123 Marker genes of different autotrophic pathways in paddy soil

124 Marker genes of six autotrophic pathways are detected in all samples (Fig. 1a): 

125 cbbL (Calvin cycle, coding ribulose-bisphosphate carboxylase large chain) 7.2-11.7 

126 ppm, aclA (rTCA cycle, coding ATP-citrate lyase alpha-subunit) 0.8-1.6 ppm, acsA 

127 (reductive acetyl-CoA pathway, coding carbon-monoxide dehydrogenase catalytic 

128 subunit) 0.7-1.9 ppm, accA (3-hydroxypropionate/malyl-CoA cycle, coding acetyl-CoA 

129 carboxylase carboxyl transferase subunit alpha) 0.02-0.1 ppm, and hcd 

130 (4-hydroxybutyrate cycle, coding 4-hydroxybutyryl-CoA dehydratase) 0.2-1.8 ppm. 

131 The gene cbbL dominates (67-82%) in all samples, while accA is always the lowest (< 

132 1%) (Fig. 1b).

133 Fig. 1 

134 Table 1 

135 Autotrophic microbes in paddy soils

136 Diverse microbes associated with marker genes are found for six autotrophic 

137 pathways in paddy soils (Tab. S1). There exists the highest diversity for cbbL, second 

138 for acsA, followed by hcd and accA, lowest for aclA (Tab. 1). In the Calvin cycle, there 
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139 are 80 associated genera, with 34 phototrophs (13-20%), 50 chemotrophs (69-78%) 

140 and 3 mixotrophs (both phototrophs and chemotrophs, 5-11%) - Rhodopseudomonas 

141 palustris, Thiocystis violascens and Rhodobacter sphaeroides. In the reductive citric 

142 acid cycle, these microbes are exclusively chemotrophs, dominated by Nitrospira 

143 defluvii (94-98%). In the reductive acetyl-CoA pathway, all 28 genera are 

144 chemotrophs, mainly anaerobes like sulfate-reducing bacteria, acetogenic bacteria 

145 and methanogens. All four genera involved in the 3-hydroxypropionate / malyl-CoA 

146 cycle are phototrophs- Chloroflexus aggregans, Chloroherpeton thalassium, 

147 Erythrobacter litoralis and Roseiflexus sp. RS-1. In the 4-hydroxybutyrate cycle, all 

148 detected genera involved belong to chemotrophic archaea, and are dominated by two 

149 ammonia oxidation archaea-Nitrosopumilus koreensis and Nitrososphaera gargensis. 

150 The co-occurrence patterns of autotrophic microbes of six pathways in paddy soils are 

151 shown by network inference (Fig. 2). The resulting network consists of 121 nodes and 

152 871 edges with an average node connectivity of 14. The clustering coefficient is 0.65, 

153 and the modularity index is 0.5 (values > 0.4), suggesting that the network has a 

154 modular structure (Newman, 2006). Microbes associated with the Calvin cycle and 

155 the reductive acetyl-CoA pathway dominate the network owning to high diversity (Tab 

156 1), and microbes associated with the same pathway are inclined to cluster together 

157 and have stronger connections.

158 Fig. 2 

159 Evidence of 14C-CO2 assimilation by soil

160 After 45 days incubation the amounts of 14C-CO2 incorporated into the soil 

161 organic carbon (14C-SOC) and microbial biomass (14C-MBC) are determined. 

162 Significant amounts of 14C-SOC and 14C-MBC are recovered from soils incubated 

163 under 14CO2 atmosphere (Fig. 3a). The amounts of 14C-SOC and 14C-MBC range from 

164 74.3 (JX) to 175.8 (LZ) mg kg-1 and from 5.2 (YT) to 24.1 (TY-G) mg kg-1, respectively, 

165 and 14C-MBC / 14C-SOC varies between 3.4% (LZ) and 24.9% (TY-G). The 

166 differences between soils in terms of incorporation into SOC and MBC vary 
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167 significantly between some paddy soils (P < 0.05). The calculated rates of CO2 

168 assimilation into SOC in paddy soils are 34.2-62.2 mg C m-2 d-1 (Fig. 3b). The total Fe, 

169 clay and sand contents, and abundances of cbbL are significantly (P < 0.05) 

170 correlated with the amounts of 14C-SOC in paddy soils (Tab. 2). 

171 Fig.3 

172 Table 2. 

173 Fractionations of soil organic carbon (SOC)

174 The distribution of SOC and 14C-SOC in paddy soils after 45 days incubation are 

175 characterized by either physical separation into different sizes or chemical separation 

176 into different fractions based on solubility in alkali or acid. Soil organic carbon and 

177 14C-SOC are mainly detected in micro-aggregates (0.25–0.053 mm) and silt and clay 

178 (< 0.053 mm) except for LZ and TY-B, while 14C-SOC tends to concentrate in 

179 macro-aggregates compared to the small proportions in bulk soil (Fig. 4a). For the 

180 chemical fractions, humins (HM) and fulvic acids (FA) dominate in bulk SOC, while 

181 14C-SOC concentrates mainly in HM for all samples (> 70%) (Fig. 4b)

182 Fig. 4 

183 Discussion

184 Marker genes and microbes involved in six autotrophic pathways for atmospheric 

185 CO2 fixation in soils are detected and compared systematically for the first time in 

186 paddy soils using metagenomic analyses. These genes are as abundant as other 

187 genes involved in carbon, nitrogen, and sulfur cycling, arsenic metabolism, and 

188 antibiotic resistance, etc. (Mackelprang et al., 2011; Xiao et al., 2016b; Xiao et al., 

189 2016a; Su et al., 2017). Results show that the Calvin cycle is the most abundant 

190 pathway in paddy soils according to marker genes analysis (Fig. 1), while other 

191 studies show that the reductive citric cycle dominates in desert soils (Liu et al., 2018), 

192 and the reverse tricarboxylic acid cycle dominates in free-fiving microorganisms at 

193 deep-sea hydrothermal vents (Campbell and Cary, 2004). These results indicate the 

194 niche preference of different autotrophic metabolisms. The genera carrying cbbL are 
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195 similar to previous studies using the regular sanger-sequencing methods (Yuan et al., 

196 2012b; Xiao et al., 2014b), with phototrophs dominated by cyanobacteria, and 

197 chemoautotrophs by microbes involved in sulfur, ammonia and iron oxidation (Tab. 

198 S1). Results here also show that the marker genes associated with alternative 

199 autotrophic pathways, other than the Calvin cycle, are ubiquitously found in paddy 

200 soils (Fig. 1). There exists varied redox conditions in paddy soils, due to different 

201 spatial and temporal conditions like rhizosphere vs. bulk soil, flooded vs. drained 

202 conditions (Liesack et al., 2000), so genes and microbes associated with the rTCA 

203 (mainly in micro-aerophiles and anaerobes) and especially the reductive acetyl-CoA 

204 pathways (only in anaerobes) also exist in our samples. The 3-hydroxypropionate / 

205 malyl-CoA cycle is poorly represented in the paddy soils, which is known to have 

206 limited distribution due to the high energy cost involved in CO2 assimilation (Berg, 

207 2011). An important characteristic of this pathway is that it allows the co-assimilation 

208 of numerous organic compounds, making it suitable for the mixotrophic microbes 

209 (Zarzycki and Fuchs, 2011). The 4-hydroxypropionate cycle is only recently proposed 

210 (Berg et al., 2007; Huber et al., 2008) and only found in archaea to date, however this 

211 pathway is important in soils as it is lately found to be used by the Thaumarchaea, a 

212 main ammonia oxidizer in soil (Zhang et al., 2010), as the data here also shows (Tab. 

213 S1).

214 Results here show that autotrophic microbes are active and assimilate CO2 into 

215 MBC in paddy soils, which ultimately contributes to SOC (Fig. 3). In the work here 

216 significant 14CO2 assimilation is detected only when soils are incubated in the light, 

217 with almost no uptake when incubated in the dark (Yuan et al., 2012b; Ge et al., 2013), 

218 suggesting that the microbial CO2 assimilation processes are driven primarily by 

219 autotrophs (including photo and chemoautotrophic microbes) in paddy soil. After 45 

220 days incubation, 0.4-1.4% SOC and 6.7-15.1% MBC (data not shown) are labelled by 

221 14C, corresponding to turnover times of 8.8-30.3 years for SOC and 0.8-1.8 years for 

222 MBC, assuming a net autotrophic metabolism in paddy soil. This shows that OC from 
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223 microbial CO2 fixation can sustain a relatively fast turnover of microbial biomass in 

224 paddy soil, but that this C tends to become more stable after partitioning into SOC. In 

225 particular results show that more than 70% of the 14C-SOC concentrates in humins 

226 (Fig. 4b), which are thought to be the least available for microbial degradation as they 

227 are usually found to be strongly associated with soil minerals (Calace et al., 2007). In 

228 support of this assertion there are significant positive correlations between clay 

229 contents, total Fe and 14C-SOC in the paddy soils (Tab. 2), which is in line with the 

230 growing evidence for the role of abiotic mechanisms, involving mineral sequestration 

231 of SOC, in controlling SOC persistence in (Totsche et al., 2018; Hemingway et al., 

232 2019), with clay and iron oxides as the main minerals involved (Schweizer et al., 2019; 

233 Wan et al., 2019). Soil microbes are also known to excrete extracellular polymeric 

234 substance (EPS) (Cai et al., 2019), which play an important role in binding to soil 

235 minerals and thus creating stable soil aggregates (Cai et al., 2018; Lin et al., 2018) 

236 that help stabilize organic carbon in soil (Totsche et al., 2018). In our data, 14C-SOC 

237 was distributed in different sizes of soil aggregate (Fig. 4a), suggesting that the 

238 organic carbon from autotrophic CO2 fixation contributes to the formation of soil 

239 aggregates (Paerl and Priscu, 1998; Luo et al., 2019). It is also noteworthy that 

240 organic carbon synthesized by autotrophs can be processed by heterotrophic 

241 microbes and even virus and then transformed into MBC or SOC. For example, virus 

242 in soil can lyse cell of autotrophs, releasing organics, which can be used by 

243 heterotrophs, or transformed into more stable organic carbon (Liang and Balser, 2011; 

244 Schimel and Schaeffer, 2012; Liang et al., 2019; Bi et al., 2020). Taken together 

245 multiple processes (like mineral protection, aggregation, and microbial transformation, 

246 etc.) can strengthen the contribution of autotrophic metabolism to SOC accumulation 

247 in paddy soils.

248 Paddy soil proves to be a reservoir of multiple autotrophic metabolisms (Fig. 1 

249 and Tab. S1) and thus is an ideal natural laboratory for their study. In particular there 

250 exists periodically changing redox conditions (oxic / anoxic) in paddy soil (Liesack et 
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251 al., 2000; Ge et al., 2012), so these might prove to be ideal environments to study the 

252 role of oxygen on the evolution and diversification of autotrophic pathways, where 

253 oxygen is thought to be one of the main controlling factors of these processes (Thauer, 

254 2007; Ward and Shih, 2019). Autotrophic pathways emerged and diversified as a 

255 result of oxygenation events during Earth history and key enzymes of many 

256 autotrophic pathways show different sensitivities to oxygen, which directly determines 

257 their distribution among microbes and in different environments (Berg, 2011). Some 

258 microbes have more than one autotrophic pathway, like Thioflavicoccus mobilis which 

259 possesses the genes for both the Calvin cycle and rTCA pathway (Tab. S1) (Markert 

260 et al., 2007; Rubin-Blum et al., 2019) and the conditional usage of different CO2 

261 fixation pathways can be advantageous for this bacterial symbiont under fluctuating 

262 redox conditions (Berg, 2011). The interplay between the Calvin cycle and rTCA cycle 

263 in this bacterium may contribute to the high efficiency of carbon fixation under similar 

264 conditions in paddy soils as well. Lastly, Geobacter sulfurreducens, a common 

265 heterotrophic bacteria in paddy soil, is found to have a hidden chemolithoautotrophic 

266 metabolism and can reduce CO2 via the rTCA cycle after adaption in 

267 chemolithoautotrophic growth medium containing Fe (III) and formate (Zhang et al., 

268 2020), implying hidden autotrophic potential in other common microbes. Therefore a 

269 better understanding of these autotrophic metabolisms is needed, which is also 

270 critical for management practices to increase SOC in the context of climate change 

271 (Sá et al., 2017; Soussana et al., 2019). 

272 In summary marker genes of six autotrophic pathways are detected in all paddy 

273 samples using metagenomic analysis, which are dominated by the cbbL genes in the 

274 Calvin cycle. Autotrophic microbes are active and assimilate 74.3 to 175.8 mg 14C kg-1 

275 into SOC and 5.2 to 24.1 mg 14C kg-1 into MBC after 45 days incubation. Autotrophic 

276 microbes contribute significantly to the stable organic carbon pool, where more than 

277 70% of 14C-SOC was concentrated in the relatively stable humin fractions. Our work 

278 highlights the importance of microbial CO2 fixation to SOC accumulation in paddy 
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279 soils. 

280

281 Experimental procedures

282 Soil sampling and DNA extraction

283 Top soil (0-20 cm) from five distinct sites in south China, Leizhou in Guangdong 

284 Province (LZ), Jiaxing in Zhejiang Province(JX), Yingtan in Jiangxi Province (YT), 

285 Gushi in Taoyuan (TY-G) and Baodongyu in Taoyuan (TY-B) in Hunan Province were 

286 obtained. Rice is the main crop in these areas and diverse paddy soils develop from 

287 different parent materials (Fig. S1). Physiochemical characteristics of the collected 

288 soils are detailed in previous studies (Xiao et al., 2014b). To obtain sufficient DNA 

289 from each of the five soil samples for metagenomic sequencing, DNA was extracted 

290 from the five paddy soils (in duplicates) using the MoBio PowerSoil kit (MOBIO) 

291 according to the manufacturer’s protocol. DNA yields of 10 samples were between 1.0 

292 and 2.5 ug, as quantified using the Quant-iT Picogreen dsDNA HS assay kit 

293 (Invitrogen) according to the manufacturer’s manual.

294 Sequencing and reads annotation

295 DNA library preparation was performed according to the Illumina TruSeq DNA 

296 sample preparation protocol. Each DNA sample was mechanically sheared by 

297 Covaris M220 (Covaris). Libraries were then size-selected to about 300 bp. 

298 Fragments were quantified using Agilent 2100 High Sensitivity DNA Assay (Agilent). 

299 Sequencing was performed at Majorbio, Inc., Shanghai, China using Illumina Hiseq 

300 2000 (Illumina) generating 2 x 101 bp paired end reads. BBtools 

301 (https://sourceforge.net/projects/bbmap/) was used to remove trace contaminants. 

302 Raw reads were trimmed of adaptors and low quality reads using Sickle 

303 (https://github.com/najoshi/sickle) and Seqprep (https://github.com/jstjohn/SeqPrep) 

304 at default parameters, respectively. Low quality reads that contained ambiguous 

305 nucleotides or had a quality value lower than 20 were removed (Chen et al., 2013). 

306 The chimeric sequences were filtered out by UCHIME (Edgar et al., 2011). A total of 
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307 750,385,006 clean reads were generated across all 10 samples with an average of 

308 75,038,500 reads per sample. Data are available at the NCBI Short Read Archive 

309 under accession number SRA023560. 

310 To facilitate the annotation speed, nucleotide and amino acid sequences of 

311 targeted KEGG Orthologies (KO) of five marker genes (K01601 cbbL, K15230 aclA, 

312 K00198 acsA, K01962 accA and K14534 hcd) involved in microbial CO2 fixation 

313 pathways were extracted from the KEGG database and used as a subject database 

314 for analysis. These sequences were reviewed with high quality and strictness, which 

315 had to be confirmed by case studies already, and only the complete open reading 

316 frame (ORF) sequences were included. The local BLASTX programs were employed 

317 to align clean reads of each data set to the subject database with e value 1 x 10-5, 

318 similarity > 90%, and aligned amino acids length > 25 (Cai et al., 2013; Xiao et al., 

319 2016a). The relative abundance of each gene was determined as hit numbers divided 

320 by total number of reads (ppm, one read in one million reads). Marker genes 

321 associated microbes were defined as microbes of aligned sequenced and 

322 summarized at genus level. Microbial community diversity was quantified using 

323 Shannon–Weiner diversity index (H, e as bases), as listed in Table 1. Similarity matrix 

324 of microbial co-occurrence network was calculated using Spearman correlation in R 

325 (https://personality-project.org/r/psych). Co-occurrence network was visualized by 

326 Gephi (Bastian et al., 2009), with cut-off values correlation coefficient > 0.6 and false 

327 discovery rate (FDR) corrected (P < 0.01).

328 Incubation with 14C-labeled CO2 

329 One set of microcosms of the five soils, each with four replicates, were prepared 

330 by weighing 500 g (on an oven-dried basis) of fresh soil into PVC plastic tubes (20 cm 

331 diameter × 15 cm height). All PVC columns were incubated in a growth chamber (80 × 

332 200 cm, height 120 cm) for 45 days with continuous 14C-CO2 labeling as described 

333 previously (Ge et al., 2013; Wu et al., 2015). The 14C-CO2 was generated by forcing a 

334 14C-Na2CO3 solution (1.0 M, a radioactivity of 1.68 × 104 Bq µg-1 C) into an acid bath 
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335 (HCl, 2 M) and giving a concentration from 360 and 380 µL L-1 (Shsen-QZD, Qingdao, 

336 China). Two temperature humidity sensors (SNT-96S, Qingdao, China) were installed: 

337 one inside the chamber, and another in the surrounding rice field in the open air. An 

338 air-conditioning system was used to control the temperature inside the chamber within 

339 1°C from ambient temperature in the field (outside). Two fans continuously circulated 

340 the atmosphere in the growth chamber. The incubation chamber system was placed 

341 outdoors in order to maintain natural exposure to sunlight (Ge et al., 2014), as there 

342 was almost no uptake of 14CO2 when incubated in the dark (Yuan et al., 2012b; Ge et 

343 al., 2013). The paddy soils were permanently flooded (2-3 cm water layer) by the 

344 addition of sterile distilled water as required during the incubation span. At the end of 

345 the 45 days incubation, soils were removed from the microcosms, mixed thoroughly 

346 then divided into two separate portions. One portion was oven-dried at 70°C to a 

347 constant weight to determine the amount of 14C-SOC fixed from 14CO2, and the other 

348 was stored at 4°C to determine 14C-MBC. The synthesis rates (RS) of 14C-SOC (RS, g 

349 C m–2 d–1) were calculated using the formula: RS = 14C-SOC * (1/(3.14* (D/2)2)) / T, 

350 where D represents the internal diameter of the container (m) and T, the incubation 

351 time (45 d) respectively. 

352 Soil partition and 14C radioactivity analysis 

353 Soil aggregate size fractionation was performed by the wet sieving method (Gale 

354 et al., 2000). Briefly, air-dried soil was sieved through 8 mm mesh and was gently 

355 crumbled manually to approximately 2 mm pieces. A 100 g soil sample was 

356 transferred to two sieves (0.25 and 0.053 mm) and shaken for 5 min. Subsequently, 

357 macro-aggregates (2–0.25 mm) and micro-aggregates (0.25–0.053 mm) were 

358 collected from the 0.25 mm and 0.053 mm sieves, respectively. The remaining 

359 material that passed through the 0.053 mm sieve was classified as silt and clay (< 

360 0.053 mm). All size fractions were dried at 70 °C, weighed, and stored for 14C analysis. 

361 The extraction of SOC pools from air-dried soil was performed using the methodology 

362 recommended by the International Humic Substances Society (IHSS), using 
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363 NaOH-Na4P2O7·10H2O (0.1 M, pH = 13) as the extraction agent (Swift, 1996). Three 

364 fractions were separated from 5 g soil samples based on their solubility in alkaline and 

365 acid solutions, and separated into three fractions: (a) alkali- and acid-extractable fulvic 

366 acids (FAs); (b) alkali-extractable, acid non-extractable humic acids (HAs); and (3) 

367 alkali and acid non-extractable humin (HM). For 14C analysis, 3.0 ml 2.5 M HCl was 

368 added and mixed with 1.50 g of soil (sieved with a mesh < 0.149 mm) (v: w = 2: 1) in 

369 Dophin tubes for 24 hours to remove inorganic carbon (such as CaCO3 in soil 

370 samples). Then, the aliquots were washed twice with 3.0 ml H2O to remove any 

371 remaining HCl (Theis et al., 2007) before measuring 14C-SOC. After that, 1.50 g 

372 inorganic carbon-removed soil was digested with a mixture of K2Cr2O7 and 

373 concentrated H2SO4–H3PO4, as described by Ge et al. (2013). 14C-MBC measurement 

374 was performed based on the fumigation-extraction method and was determined using 

375 K2SO4 extracts (Wu and O'Donnell, 1997), and the 14C radioactivity was measured 

376 using an automated liquid scintillation counter (LS-6500, Beckman, Germany). The 

377 14C-SOC and 14C-MBC amounts were calculated according to the procedure 

378 described by Ge et al. (2013). Full details are given in previous studies of the 

379 co-author groups (Ge et al., 2013; Wu et al., 2014; Wu et al., 2015).

380 Statistical analysis

381 All data are expressed as the mean ± standard error (or deviation). Differences 

382 between means were evaluated by one-way analysis of variance (ANOVA) after 

383 normal distribution test. Correlation analyses were carried out using the Spearman 

384 correlation method. Significance was defined at the 0.05 level unless otherwise stated. 

385 All analyses were performed using SPSS 18.0.

386
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615 Table and Figure legends

616

617 Table 1 Shannon–Wiener index of marker genes associated microbes.

cbbL aclA acsA accA hcd

LZ 3.43 0.25 2.06 0.59 0.96
JX 3.53 0.07 2.59 0.92 0.79
YT 3.60 0.22 2.41 0.6 0.81

TY-G 3.43 0.09 2.31 0.66 0.86
TY-B 3.45 0.07 2.15 0.51 0.87

618

619 Table 2. Correlation of soil properties and marker genes with amounts of 14C-SOC 

620 and 14C-MBC in paddy soils after 45 d incubation.

14C-SOC 14C-MBC

Soil properties

pH 0.23 0.03

Total C -0.76 0.76

Total N -0.75 0.54

SOC -0.73 0.78

DOC -0.02 0.70

Total Fe 0.93* -0.25

Total Mn 0.79 0.20

clay 0.93* -0.27

silt -0.80 0.08

sand -0.90* 0.59

Gene abundance

cbbL 0.90* -0.36

aclA -0.65 -0.38

acsA 0.37 -0.26

accA 0.23 -0.68

hcd 0.05 -0.81

621 *Correlation is significant at the 0.05 level (2-tailed).

622
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624 Fig. 1 Abundances of marker genes of six autotrophic pathways in five paddy soils 

625 from South China, (a) abundance ppm, one read in one million reads, error bars 

626 indicate the standard deviation of the mean (n = 2), (b) relative abundance 

627 percentages (%) of five marker genes. cbbL (ribulose-bisphosphate carboxylase large 

628 chain), aclA (ATP-citrate lyase alpha-subunit), acsA (carbon-monoxide 

629 dehydrogenase catalytic subunit), accA (acetyl-CoA carboxylase carboxyl transferase 

630 subunit alpha), hcd (4-hydroxybutyryl-CoA dehydratase). LZ, Leizhou in Guangdong 

631 Province; JX, Jiaxing in Zhejiang Provicne; YT, Yingtan in Jiangxi Province; TY-G, 

632 Gushi of Taoyuan in Hunan Province; TY-B, Baodongyu of Taoyuan in Hunan 

633 Province. Abbreviations apply to all figures and tables in the followings.

634

635 Fig. 2 Network of co-occurring autotrophic microbes (genera) of six pathways in 

636 paddy soils based on correlation analysis. The size of each node is proportional to the 

637 number of connections (that is, degree), and the colors of nodes denote microbes 

638 from different pathways: the Calvin cycle (I), the reductive tricarboxylic acid (rTCA) 

639 cycle (II), the reductive acetyl-CoA pathway (III), the 3-hydroxypropionate / malyl-CoA 

640 cycle (IV) and the 4-hydroxybutyrate cycle (V). The width of each edge is proportional 

641 to the weight and the colors of edge denote positive (pink) or negative (light blue) 

642 connection. 

643

644 Fig.3 The amounts of 14C-SOC, 14C-MBC (a) and the synthesis rates of 14C-SOC (b) 

645 in five paddy soils incubated in a growth chamber with 14CO2 for 45 d. Error bars 

646 indicate the standard error of the mean (n = 4) and means with the same letter are not 

647 significantly different among different soils (P > 0.05).

648

649 Fig. 4 Fractionation of soil organic carbon (SOC) in five paddy soils, (a) distribution of 

650 SOC and 14C-SOC in different sizes of soil aggregates, (b) distribution of SOC and 
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651 14C-SOC in different chemical fractions of soil, HM for humins, HA for humic acids and 

652 FA for fulvic acids.
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Fig. 2 
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Fig. 3 
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Fig. 4 
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