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Abstract

As robots become more prevalent, particularly in complex public and domestic settings,

they will be increasingly challenged by dynamic situations that could result in

performance errors. Such errors can have a harmful impact on a user’s trust and

confidence in the technology, potentially reducing use and preventing full realisation of

its benefits. A potential countermeasure, based on social psychological concepts of

trust, is for robots to demonstrate self-awareness and ownership of their mistakes to

mitigate the impact of errors and increase users’ affinity towards the robot. We describe

an experiment examining 326 people’s perceptions of a mobile guide robot that employs

synthetic social behaviours to elicit trust in its use after error. We find that a robot

that identifies its mistake, and communicates its intention to rectify the situation, is

considered by observers to be more capable than one that simply apologises for its

mistake. However, the latter is considered more likeable and, uniquely, increases

people’s intention to use the robot. These outcomes highlight that the complex and

multifaceted nature of trust in human-robot interaction may extend beyond established

approaches considering robots’ capability in performance and indicate that social

cognitive models are valuable in developing trustworthy synthetic social agents.

Keywords: Human-Robot Interaction, Social Robotics, Trust, User Experience
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The effect of social-cognitive recovery strategies on likability, capability and trust in

social robots

Introduction

The emergence of social robotics has substantially expanded the potential roles

that robots may have in society. Whilst existing autonomous robotic applications have

kept robots largely segregated from humans (such as in manufacturing, warehouse

logistics, and hazardous environments), there is a rapidly increasing market for robots

in more public settings (e.g., entertainment, education, health and social care, domestic

service, delivery and transportation, IFR Statistical Department, 2019). In these

settings, robots will be expected to engage in reciprocal social interactions and promote

cooperation from potential users (Lee, Kiesler, & Forlizzi, 2010). While robots may be

able to perform useful actions in these flexible, social environments, whether people

accept and intend to interact with them remains a key issue (e.g., Savela, Turja, &

Oksanen, 2018). Given the widely reported evidence that people import social rules

from human-human interactions to interactions with non-living agents (e.g., Nass &

Moon, 2000), one means of addressing these issues is the use of various simulated social

approaches (e.g., persuasion, Lee & Liang, 2019; use of expressive gesture, Salem,

Eyssel, Rohlfing, Kopp, & Joublin, 2013) to build user trust, especially within dynamic

environments that pose challenges in ensuring flawless operation.

Schaefer, Chen, Szalma, and Hancock (2016) highlight trust as being essential in

the formation and development of collaborative relationships, and key to supporting

effective Human-Robot Interaction (HRI). However, the possibility of incorporating

social behaviours into the design of synthetic social agents specifically to affect user

perceptions raises important implementation and ethical issues in this still developing

field (Baker, Phillips, Ullman, & Keebler, 2018). As the sophistication of interactive

synthetic social agents increases, the relevance of social psychological models for both

underpinning agent design and for understanding user responses will also increase (e.g.

Dautenhahn, 2007; Fong, Nourbakhsh, & Dautenhahn, 2003a). However, quantifying a

complex emotional response into variables that can be measured through controlled
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experimentation is difficult, and meaning is inevitably lost. This can create an ‘object

conflict’ (Hess, 2007), in which two parties believe that they hold the same definition or

idea about a topic but actually do not. Thus, they may not realise that the reason they

cannot come to an agreement is because they are not actually talking about the same

thing. In a similar way, applying established approaches derived from earlier

human-computer interaction studies to seemingly autonomous agents has revealed

important epistemological issues as the field of HRI evolves (Baker et al., 2018); in

particular, an object conflict in what it means to ‘trust’ a robot.

Most highly-cited or prominent papers describe models of user trust towards

automation and autonomous agents in terms of capability and reliability in task

performance (e.g., Hancock et al., 2011; Lee & See, 2004; Muir, 1994). Trust, therefore,

is tacitly defined as an issue of whether the user feels confident that the machine can be

relied upon to consistently provide the desired function, and will not break down or

otherwise create a risk to users, property or task management. However, in the social

cognitive models employed in human-to-human interaction, trust is also regarded as an

element of warmth or likability, not solely of an agent’s capability to carry out a task as

expected (Fiske, Cuddy, & Glick, 2007; Rosenberg, Nelson, & Vivekananthan, 1968).

This has as-yet unacknowledged influence over how users may tacitly be defining trust

when engaging in HRI experiments, and how they may adapt social rules from

human-human interactions to guide their interactions with robots, particularly in an

interactive environment where the robot appears to be responding to social cues.

If one assumes that automation is a sophisticated tool to support users’ progress

towards goals, it may be intuitively appropriate to consider trust as a measure of the

users’ belief that the tool can capably support that effort. In these contexts, trust could

be explored through the extent to which users monitor an automated system’s activity

and capacity to ensure reliability in task-performance (e.g., Ruff, Narayanan, & Draper,

2002). However, while trust-as-capability may suffice in the factory context, social

questions acquire greater significance with reciprocity, when humans are engaged in

dependent relations with synthetic agents Allen et al. (2011). Increasingly, advanced
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social robots are expected to ‘engage with’ rather than just ‘do’, challenging the

perspective that relationships between people are qualitatively different from

relationships between people and automation (Lee & See, 2004) and in these contexts it

may be more appropriate to consider trustworthiness in social-cognitive terms. Here,

trust of others is identified as fundamental for interpersonal cooperation to be a success

(Barczak, Lassk, & Mulki, 2010; McAllister, 1995). A synthetic agent may be

considered extremely capable of reliably performing a set of expected actions, yet still

inspire distrust, even rejection, because it is not felt to be trustworthy in social terms.

Collaborative working in HRI contexts (such as advanced manufacturing:

Factories of The Future, European Commission, 2013; or assistive healthcare, Mukai et

al., 2010) may also be contingent on trust between agents, particularly on the

development of a person’s ability to trust a non-human agent. Without a clear

understanding of what ‘trust’ means to research participants, and how that might differ

from how ‘trust’ is being framed by the researchers themselves, it is difficult to know

exactly what we are measuring in HRI, or to compare experiments across the field. An

understanding of the social components of trust is required to enable the ethical

creation of robots that are meant to engender interactive trust in users, especially where

robots are configured for behaviours designed to elicit a social response (such as asking

questions or saying ‘follow me’). Particularly with regard to trust in the standard

testing of human-robot interactions with regard to error-handing procedures, designers

and users may also want to ask:

• Does the robot’s behaviour appear ‘sincere’ (Shim & Arkin, 2013) and in which

circumstances is that meaningful (Risen & Gilovich, 2007)?

• Who determines which errors are suitably insignificant that they need not be

designed out, and who holds responsibility for these errors should they occur

(Sharkey, 2017)?

This paper discusses an experiment which uses social psychological concepts of

trust to mitigate the negative effects of an autonomous tour-guide robot’s errors to
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begin to address that gap. Through this we contribute to a still-emerging theoretical

understanding of trust in the context of presumed machine agency, and an exploration

of nuances concerning the use of synthesized social behaviors when robots interact with

humans. With these aims in mind, we first explore how trust has so far been

approached in HRI research, then examine social definitions of trust arising from our

data, and finally consider how this contributes to the creation of a general theoretical

framework for exploring trust in social robotics which may better direct the field. By

this we also hope to improve the ethical frameworks guiding the development of robot

systems, which may be vital for both protecting users and shaping high-quality research.

Theoretical Development

Trust has been an area of interest for collaborative working, personal assistance

and social interaction in HRI for an extended period, and key papers in HRI and

automation addressing trust scale development (e.g., Jian, Bisantz, & Drury, 2000;

Muir, 1987) are highly cited and have directed the focus of this research. However,

despite these enduring efforts to define, measure, and explore ‘trust’, it remains a

concept which is not fully operationalised, potentially due to its meaning being tightly

bound to the original context of reliability in which it was developed (see Cameron et

al., 2015, for a discussion on this in terms of HRI).

In essence, it is not always clear in this research how measures of trust have been

theorised, used and interpreted, and whether researchers are exploring ‘trust’ as a

unified concept or as a series of factors. Even papers that clearly detail the process by

which the trust scales have been developed display issues in their interpretation and

use. For example, the 12-item survey in Jian et al. (2000) has been used both to score

trust as a single metric (e.g., Kaniarasu, Steinfeld, Desai, & Yanco, 2012; Selkowitz,

Lakhmani, Chen, & Boyce, 2015), and to more effectively represent two oblique factors:

trust and distrust (Spain, Bustamante, & Bliss, 2008). Further to this, while Schaefer

(2013) identifies that their developed scale captures elements of trust not measurable by

Jian et al. (2000), they do not specify what these could be. Inspection of the scale
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generation process in Schaefer (2013) suggests four candidate factors concerning trust

that are ultimately reduced down to a single measure derived from 40- or 14-item

scales. However, trust towards a robotic agent may be more multifaceted and complex

than these current scales suggest; to this end, it may be useful to consider psychological

models regarding trust as better describing the underlying values humans bring to these

interactions.

A prominent model in the social-cognitive literature positions evaluations of

others as being based on dimensions of competence and warmth (for a review, see Fiske

et al., 2007), which account for substantial variance (over 80%, Wojciszke, Bazinska, &

Jaworski, 1998) in people’s response. Fiske et al. (2007) also highlight trust as primarily

a construct of warmth, aligning it with concepts such as friendliness, helpfulness and

morality, which are connected to perceived intent. These are contrasted to competency

constructs (e.g., skill and intelligence) that are more related to perceived ability. Similar

perspectives are discussed in the education literature concerning earning trust as

teachers (Brookfield, 2015) and in the occupational psychology literature concerning

teamwork and group formation (Cuddy, Glick, & Beninger, 2011). Finally, McAllister

(1995) describes two forms of trust, cognitive and affective, namely the belief that

another agent is 1) capable and 2) good-natured; Casciaro and Sousa-Lobo (2005) also

emphasizes the importance of the affect/intent dimension of trust over perceived ability

when selecting collaborative partners. These understandings indicate a substantive

departure from how trust is usually framed in the HRI literature (e.g., Hancock et al.,

2011), where it primarily indicates task-reliability of the robot, assessing competence

rather than warmth, even when it is performing social tasks. Thus, the present

challenge of accurately evaluating trust in HRI may in part arise because the available

research methodologies, tools (Muir, 1987; Schaefer, 2013), and directions (Schaefer et

al., 2016) are limited by the assumption that the user also applies ‘trust’ only to the

robot’s apparent ability and their responses are not influenced by its apparent intent.

Despite this, a more interpersonal perspective of trust is beginning to emerge in

human-computer interaction (e.g., Kulms & Kopp, 2018) and in robotics (e.g., Cameron
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et al., 2015; van Straten, Peter, Kühne, de Jong, & Barco, 2018), making a

theoretically-grounded understanding of trust in robots as social agents timely.

Particularly in studies using a self-reporting design, there may be unexamined object

conflicts between ‘trust’ as conceived by the scale developers and ‘trust’ as understood

by researchers implementing the scale, or between researchers and participants

answering the questions. Additionally, as research shows that individuals can regard

even text-based computer systems as social agents (Reeves & Nass, 1996) the

anthropomorphic qualities of robots may further emphasize their social agency (Fong,

Nourbakhsh, & Dautenhahn, 2003b), particularly where these have communicative

functions, increasing the likelihood that people will consider and trust the robot from a

social (warmth, rather than competence) perspective. We therefore suggest

failure-of-competence experiments as a useful way of integrating social psychological

concepts into the field.

RQ1 Can trust towards social robots be meaningfully represented through social

cognitive perspectives?

Making Errors

Errors made during autonomous actions outside of strictly controlled

environments are inevitable. These include, but are by no means limited to: drawing

inferences from noisy sensor data, including sensor anomalies; mechanical and

computational failure during operation; and/or failure to respond to unanticipated

changes in the environment. Thus, it is imperative to understand user response to a

system that has demonstrated issues in performance reliability, particularly as open

environments may be sufficiently complex that it is not feasible for designers and

programmers to prepare specific behaviors for anything but the most likely

circumstances encountered. However, failure is also the area where psychological

aspects, such as perceived warmth or intent in the response to the error, are most likely

to influence user response (Honig & Oron-Gilad, 2018).

Typically, an HRI scenario entails an end goal for the user, the robot, or the two
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as a collaborative team; robot errors that draw either agent away from their goals may

have adverse effects on user experience which can be measured. In general, the

literature suggests errors negatively impact user views; for example, in constructed

scenarios comparing faulty and non-faulty versions of the same robot, users describe the

faulty robot as less competent and have less favorable intentions to use it (Brooks,

Begum, & Yanco, 2016). Errors in memory and reasoning or erratic behaviour may

result in users regarding the robot as being less competent and less reliable (Ragni,

Rudenko, Kuhnert, & Arras, 2016) or untrustworthy (Salem, Lakatos, Amirabdollahian,

& Dautenhahn, 2015), while navigation errors in a mobile robot may discourage use of

its autonomous systems (Desai, Kaniarasu, Medvedev, Steinfeld, & Yanco, 2013;

Goodrich, Olsen, Crandall, & Palmer, 2001).

Because they adversely affect belief that the robot is useful or usable, in turn

negatively affecting people’s intention to use again (Venkatesh, 2000), it is obviously

beneficial to prevent errors before their occurrence; to use feedback to iteratively design

them out, as is standard practice in HCI systems (Norman, 2016); or to develop

training which can support users both in accommodating errors and in maintaining use

of the automated systems (Dzindolet, Peterson, Pomranky, Pierce, & Beck, 2003; Lee &

Moray, 1992, 1994; Parasuraman & Riley, 1997). Advanced warning of the possibility of

an error (Lee, Kiesler, Forlizzi, Srinivasa, & Rybski, 2010) or notification of a robot’s

confidence in a decision can support user trust towards the robot (Kaniarasu, Steinfeld,

Desai, & Yanco, 2013) by supporting users to develop a clear mental model of a

system’s processes and capabilities (Norman, 2016), thus promoting usability. These

approaches consume time, however, often require preparation on behalf of the user, and

may not be available to users at the point of error. Some errors may only be apparent

at the point of or after occurrence, or they may present their own difficulties in terms of

processing power and speed of computation. Therefore, active recognition of robot

errors during HRI, particularly with regard to users’ understanding and response, has

emerged as a valuable topic of research (e.g., Mirnig et al., 2017).

Much of this has concentrated on the context of the error, which may have a
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significant impact on the response necessary from a robot (Correia, Guerra,

Mascarenhas, Melo, & Paiva, 2018a). For example an occasional error from a robot

designed for entertainment and play, such as Aibo (Lee, Peng, Jin, & Yan, 2006), might

be interpreted by the user not as an error but as an element of the robot engaging in

play, or a sign of its naivety and quirky ‘personality’, whereas errors that actually

endanger humans will elicit a very different response (Adubor, St John, & Steinfeld,

2017). In other words, the context, task demands, and accuracy required in a robot’s

behavior may allow for some errors to occur in HRI that need not be designed away.

While avoidance of possible errors will still remain integral to system development (as

with all effective design in HCI, Norman, 2016), a potential paradigm shift in future

design of effective robots (Salem et al., 2013) may instead consider the impact of a

robot recognizing it has made an error and engaging in interaction to mitigate the social

effects, or potentially even turning this into a net-positive for the interaction (e.g.,

Correia et al., 2018a; Hamacher, Bianchi-Berthouze, Pipe, & Eder, 2016; Kaniarasu et

al., 2013; Lee, Kiesler, Forlizzi, Srinivasa, & Rybski, 2010). Central to this will be

exploring the appropriate post-error actions and communication from the robot system

to the user.

The current literature offers a small variety of scenarios in which people’s

responses to robotic errors and recovery are experimentally observed. Robot social

recovery strategies such as offering an apology after an error (Hamacher et al., 2016;

Lee, Kiesler, Forlizzi, Srinivasa, & Rybski, 2010; Robinette, Howard, & Wagner, 2015),

justifying why the error occurred (Correia et al., 2018a), blaming itself for the error

(Groom, Chen, Johnson, Kara, & Nass, 2010; Kaniarasu & Steinfeld, 2014), asking for

assistance (Brooks et al., 2016), and promising to do better (Robinette et al., 2015)

have all been explored. Participants’ responses indicate the robots’ social recovery

strategies can mitigate robotic error’s negative effects both in general (Brooks et al.,

2016), and specifically on its capability (Lee, Kiesler, Forlizzi, Srinivasa, & Rybski,

2010), its likability (Groom et al., 2010; Kaniarasu & Steinfeld, 2014; Lee, Kiesler,

Forlizzi, Srinivasa, & Rybski, 2010), and on people’s intention to use (Hamacher et al.,
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2016; Robinette et al., 2015). Of note, the apology strategy deployed in Kaniarasu and

Steinfeld (2014) promoted likeability but lowered user perceptions of capability, as

would be anticipated given the social cognitive model’s oblique dimensions for these

(Rosenberg et al., 1968). Social recovery strategies have also mitigated impact on

trustworthiness across several measures: as a single reported score based on Schafer’s

(Schaefer, 2013) 14-item scale on the functionality of the robot (Correia et al., 2018a),

as an ad-hoc single item measure on whether a user trusted the robot or not (Robinette

et al., 2015), and as an ad-hoc single item score of how much a user trusts the robot

(Hamacher et al., 2016).

Crucially, each of the above studies uses social means to address the errors and, of

these, only two (promising to do better, justifying the error) specifically target the issue

of capability in the robot’s performance. An approach such as apologizing for the error

(Hamacher et al., 2016; Robinette et al., 2015) is a behaviour more closely reflecting

warmth-related constructs such as honesty and sincerity than capability, nonetheless, it

still supported people’s trust and intentions to use. As Casciaro and Sousa-Lobo (2005)

suggest in the context of human-human affiliation, this personable dimension may

create a human-machine affiliation response which has an important impact on trust of

non-human social agents.

RQ2 Which social recovery strategies are more effective in supporting people’s trust

towards, and intention to use, an error-prone robot?

Hypotheses

We anticipate that, in line with the social cognitive model (Fiske et al., 2007),

that following an error, a robot deploying social cognitive responses of either a warmth

focused recovery strategy (apology) or a competency focused strategy (explanation) will

have a positive impact on its likability and capability respectively. We further anticipate

that an apology-based strategy will have a negative impact on perceptions of capability

(following Kaniarasu & Steinfeld, 2014). Based on the social cognitive model, we

anticipate that people may draw some distinctions between trust of a robot relating to
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its warmth and competency in line with the above processes. Following Casciaro and

Sousa-Lobo (2005), likability and warmth-related trust outcomes would have a greater

positive impact on people’s intention to use the robot than capability and

competency-related trust outcomes. To explore our research questions regarding the

potential contrasting influences of a robot’s synthetic representations of warmth and

capability on people’s trust of, and intentions to use, a robot we consider the following

hypotheses:

H1 Apologies for an error support people’s perspectives of a robot’s likability

H2 Explanations for an error support people’s perspectives a robot’s capability

H3 Apologies reduce people’s perspectives of a robot’s capability

H4 Trust towards the robot, represented in both warmth and competency terms, is

affected in line with H1-3 respectively.

H5 Likability, and warmth-based trust, have greater effect than capability, and

competency-based trust, on intention to use

Method

Our experiment was designed to explore the potential of these social strategies of

trust development in social robotics, and develop an empirical foundation for using

trust models inspired from human-human interaction research. To achieve this, we

constructed a demonstration of a mobile tour guide robot making navigational errors

when leading a person to a target destination: a scenario designed to challenge

perceptions of reliability. This allowed us to examine how people use multifaceted

evaluations of trust through having the robot use varying social recovery strategies -

apologizing for the error or demonstrating knowledge of why the error occurred. This

was determined by user ratings of various trust-related words to describe the robot,

which we predicted would align with factors resembling the social cognitive dimensions

and demonstrate that these social recovery strategies had indeed had a positive impact.
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Design

A 2x2 independent measures design was implemented. The four conditions

comprised videos of an HRI scenario with the presence or absence of key statements

regarding i) the robot identifying how to correct its mistake, and ii) the robot

apologizing for making a mistake. Participants were randomly allocated to a single

condition and the Qualtrics survey engine prohibited participants repeating the survey.

Participants

Participants were recruited through university staff and student volunteer mailing

lists and through social media, and were offered a chance to win gift vouchers for their

contribution to the study. In total, 549 people responded to the study invitation,

however, 138 participants did not answer any questions in the surveys and so are

excluded from the analysis. Attrition in online studies, such as this one, is expected

(Hoerger, 2010), although the rate observed is higher than commonly seen. While we do

not have data for participants’ reasons they withdrew from the study early, the chance

to win vouchers may have been sufficient to inflate population interest in taking the

study but not to motivate full engagement (LaRose & Tsai, 2014).

Further participant exclusions were applied based on three criteria: 1) having

already seen the HRI-scenario video and so a non-naive sample (32 excluded); 2)

monitored play duration of the video being under 60 seconds and so not sufficient to

reach the critical scene (26 excluded); and 3) no indication they had paid attention to

the HRI video scenario in their descriptive response, e.g. "Very interesting" vs "A robot

showing someone around a building" (27 excluded). Initial inter-rater agreement on

participant written responses to include was 99.41% and 100% after discussion. After

exclusions were applied, 326 participants were included for analysis. Sample size

calculations for the study indicated that 326 participants would be sufficient to detect

an effect size F .15 in a 2x2 design at a two-sided significance level of .05 with 80%

power.

User demographics of age, nationality and gender were collected, given that each
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of these had previously been identified as impacting attitudes towards new technology

and intentions to use robots (De Graaf & Allouch, 2013). Of the included participants,

169 identified as female, 139 as male, and 18 declined to answer or identified as an

alternative gender. The large majority of participants, 211, were from the UK, while 97

were from overseas (38 from East Asia, 36 from Europe, 15 from North America, 4 from

the Middle East, 3 from South America, and 1 from Africa) and 18 declined to provide

this information. The mean age was 26.52 years (SD 9.97; with range from 18 to 62

years); sixteen participants declined to provide this information.

Procedure

Online distribution of pre-recorded HRI scenarios for participants’ evaluation is a

widely used approach (e.g., Kiesler, Powers, Fussell, & Torrey, 2008; Shen, Tennent,

Claure, & Jung, 2018; Srinivasan & Takayama, 2016) that enables researchers to reach

much more diverse audiences and in greater numbers than may be practical with ‘live’

HRI experiments. This approach is beneficial for exploratory work for its potential to

identify small effects worthy of following up in live HRI experiments, and as a

precaution against underpowered studies, which may produce difficult-to-replicate

findings.

The study itself was delivered through the online survey engine Qualtrics.

Participants were first presented with an information sheet on the study and a consent

form for participation. On signing the consent and agreeing to participate, individuals

were randomly allocated to view one of the four videos described below. The duration

that each participant spent on the video page was silently tracked and used as an

indicator of their engagement as participants who spent less than 60 seconds on the

page would not have had the opportunity to view the critical interaction scene and were

hence excluded from subsequent analysis. Participants then completed a brief statement

about the video, again used as an index of their engagement. Participants who

described either the robot or the scenario, even in broad terms, had their responses in

the study included in the analysis.
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Following the video, participants completed the Godspeed Questionnaire measures

for perceived likability and capability (Bartneck, Kulić, Croft, & Zoghbi, 2009). They

were then asked about intentions to use the robot and finally demographic details. At

the end of the questionnaire participants could share contact details for a chance to win

gift vouchers. The study took participants approximately 10 minutes to complete.

Materials

HRI Videos. Four videos of user interaction with the robot were filmed ahead

of distribution of the study. The videos represented a typical scenario of using

ROBO-GUIDE: an individual encounters the mobile robot and is led to the room of

their choosing. The location of the videos is the interior of a building likely familiar to

the university staff and students invited to participate in the study, as it is based on

campus and has many teaching facilities; this location was further selected due to its

local notoriety as being difficult to successfully navigate.

ROBO-GUIDE is built using the Pioneer LX platform, manufactured by Adept

MobileRobotics Law et al. (2015). The system is a wheeled platform (approx 50cm

width, 70cm length, & 45cm height) that uses a laser scanner for indoor mapping and

navigation; it also houses proximity and impact sensors and speech synthesis software.

These elements make it a suitable candidate as a prospective assistance or guidance

robot for the HRI scenario. While the robot is equipped to autonomously navigate the

building, researchers pre-programmed its movements and responses through ROS for

the purposes of the video. The Pioneer platform has previously been deployed in studies

using navigation assistant scenarios (Scheggi, Aggravi, & Prattichizzo, 2016; Wang &

Christensen, 2018).

The videos each followed the same general storyboard: a user is greeted by the

robot and instructed to follow it to their target destination. The robot and user then

travel along a corridor to an elevator and the user presses the appropriate elevator

control as instructed by the robot. Robot error was presented as another person

disembarking the elevator at a level differing from the user’s destination; the robot and
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the user also disembark at this point. This type of error is identified as a plausible

outcome from the robot using noisy environmental cues in elevators to detect the

current level (McAree et al., 2015). After a brief exploration of the incorrect level, the

robot identifies that it must return to the elevator. Critically, at this point, the four

videos differ:

i No further dialogue from the robot

ii The robot apologizes for the mistake (See Figure 1)

iii The robot identifies cues that it is on the incorrect level

iv The robot communicates both (ii) and (iii)

All videos then show the robot and user using the elevator to reach the correct

level and arriving at the target destination. The four films have minimal differences as

the same non-critical scenes were used for each and the critical scenes differed only in

the audio of the robot’s speech and subtitles. Each video lasted approximately 110

seconds.

Measures. Participants’ views towards the robot were assessed using the

Godspeed Questionnaire sections for Capability and Likability (Bartneck et al., 2009),

presented in a random order for each participant. Godpseed was chosen for three

reasons; first for its widespread use in HRI studies; second the two subscales used

resemble that of the social cognitive framework (Fiske et al., 2007); and crucially, third,

the scale was not developed to explore trust so conflicts concerning ‘trust’ as an

ontological object are less likely to arise. For both measures of capability and likability,

participants completed five items of five-point semantic differentials (e.g., for capability:

Incompetent/Competent; for likability: Kind/Unkind). Both measures had a high

reliability across items (Cronbach’s α for capability = .81; for likability = .87).

Participants’ descriptions of trust towards the robot were explored using terms

drawn from the scale developed by Jian et al. (2000), which uses a grounded approach

to identify terms strongly associated with trust in automation and clusters these to
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Figure 1 . ROBO-GUIDE apologizing to a user for arriving at the wrong level

form 12 items exploring people’s beliefs about automated systems. Of specific interest

to the current study are the terms associated with the social experience of trust:

capable, competent, confident, deceptive, false, honest, honorable, incapable,

incompetent, loyal, misleading, reliable, trustworthy, unreliable, unsure, untrustworthy.

Participants scored the extent to which they would describe the robot as each of the

terms from 1 (not at all) to 7 (extremely). Principal component analysis was used to

identify construct dimensionality of the measures.

Participants’ intentions towards using ROBO-GUIDE were assessed using a 4-item

measure (Cronbach’s α = .77). Participants rated their agreement with 4 statements

(e.g., I would use a ROBO-GUIDE in an unfamiliar place) on a 7-point scale ranging

from strongly agree to strongly disagree. Items for this measure were presented in

random order and included positive-intention and negative-intention statements. This

measure has been developed and used in similar research concerning intentions to use

mobile robots (Cameron, Loh, et al., 2016).
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Results

Randomization Check

Preliminary testing of demographic data across conditions was conducted before

analysis of the survey data. Participants were evenly distributed across conditions, with

a minimum of 79 participants per cell (χ2(1, N = 326) = .13 p = .66).

There were no observed significant differences in age or gender between the 326

respondents that were included in the analysis and the 223 who were excluded (of which

74 completed demographic data). However, there was a significant difference between

those included and excluded in terms of nationality (χ2(1, N = 399) = 12.79 p < .01).

Regarding participants included in the study, UK nationality was represented

approximately 2:1 compared to overseas representation. For respondents excluded from

the study, UK:Overseas representation was approximately 1:1.

For each condition, there were even distributions of participants in terms of

gender and nationality (Maximum χ
2(1, N = 326) = 4.99 p = .08). There was a

significant difference between conditions for age for the Competency condition only

(F(1,306) = 3.81, p = .05); participants in the Competency conditions were slightly

younger than those in the No-Competency conditions (M = 25.43, SD = 14.05; M =

27.63, SD = 14.05); this was a very small effect observed (Partial eta2 = .01).

Participants’ age shows a weak negative correlation with describing the robot as

capable (r = -.13, n = 310, p = .02); age does not significantly correlate with any other

measures used in the study. While we do not offer a theoretical account for this

correlation, in the interests of transparency, results are presented with and without age

as a covariate for measures of capability.

Liking

There was a significant main effect of the robot stating an apology on participants’

reports of liking the robot (F(1,322) = 11.93, p < .01), supporting Hypothesis 1.

Specifically, participants who observed the robot offering an apology (across scenarios ii

& iv: M = 3.67, SD = .74) reported liking the robot more than those who did not
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(across scenarios i & iii: M = 3.38, SD = .74); this is a small effect (Partial eta2 = .04).

There was no significant main effect of the robot stating its competency on

participants’ reports of liking the robot (F(1,322) = 2.04, p = .15). There was also no

significant interaction effect observed between the robot’s statements of competency

and of apology on participants’ reports of liking the robot (F(1,322) = .60, p = .44).

Capability

There was a significant main effect of the robot stating its competency on

participants’ reports of the robot’s capability (F(1,322) = 6.13, p = .01), supporting

Hypothesis 2. Those who observed the robot stating its competency (across scenarios iii

& iv: M = 3.78, SD = .63) regarded the robot as more capable than those who did not

(across scenarios i & ii: M = 3.60, SD = .64); this is a small effect (Partial eta2 = .02).

There was a further significant main effect of the robot stating an apology on

participants’ reports of the robot’s capability (F(1,322) = 11.12, p < .01), supporting

Hypothesis 3. Those who observed the robot offering an apology (across scenarios ii &

iv: M = 3.56, SD = .64;) regarded the robot as less capable than those who did not

(across scenarios i & iii: M = 3.81, SD = .63), but this is a small effect (Partial eta2 =

.03). There was no significant interaction effect observed between the robot’s

statements of competence and of apology (scenario iv) on participants’ reports of the

robot’s capability (F(1,322) = 1.38, p = .24).

As outlined in the Randomization Check, there was a significant negative

correlation between participant age and perceptions of capability. Controlling for

participant age did not materially affect the outcomes observed for either competency

(F(1,305) = 5.76 p =.02) or apology (F(1,305) = 9.63, p < .01) conditions. There was

no significant interaction effect (F(1,305) = 2.09, p = .15).

Trust

The principal component analysis (PCA) was conducted using SPSS version 25.

For the PCA, all 16 items concerning trust were included in a full data set analysis

using a Direct Oblimin rotation with Kaiser Normalization (delta = 0), given the
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oblique dimensions of warmth and ability in the social cognitive model (Fiske et al.,

2007) and trust and distrust found in Jian et al.’s scale (Spain et al., 2008). Initial

extraction of components was based on Eigenvalues of above 1.0 (see Table 1) and three

components were extracted at this level; examination of the scree plot reflected this

outcome well. The Kaiser-Meyer-Olkin measure of sampling adequacy (.89) and the χ
2

for Bartlett’s test of sphericity (1943.34) indicate that it is suitable to conduct a PCA

on the items (Hair, Black, Babin, Anderson, & Tatham, 2006).

Table 1

Total Variance with all items included

Component Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cum.% Total % of Variance Cum.%

1 5.88 36.77 36.77 5.88 36.77 36.77

2 2.43 15.20 51.97 2.43 15.20 51.97

3 1.14 7.12 59.10 1.14 7.12 59.10

4 .88 5.55 64.65

5 .79 4.98 69.64

6 .64 4.01 73.65

7 .63 3.98 77.64

8 .51 3.23 80.88

9 .49 3.09 83.97

10 .44 2.80 86.77

11 .43 2.73 89.50

12 .38 2.43 91.94

13 .37 2.34 94.28

14 .33 2.10 96.38

15 .32 2.00 98.38

16 .25 1.61 100.00



SOCIAL-COGNITIVE ROBOT INTERACTION 21

Items were considered to load on a component if the loading was greater than or

equal to .50. In the analysis of rotated components, poorly loading items (scoring under

a .50 benchmark) were removed and the PCA repeated. Through this iterative process,

two items were discounted from the first component: confident (.49) and unsure (-.41) 1

and the final variation from extraction of components is shown in Table 2. Inspection of

the three components and the items loaded points towards three latent constructs:

Performance, Integrity, and Deceit. The Pattern matrix for item loadings is shown in

Table 3 and indicates that all included items load with a minimum of .57.

Table 2

Variance after low-loading items removed

Component Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cum.% Total % of Variance Cum.%

1 5.39 38.53 38.53 5.39 38.53 38.53

2 2.17 15.48 54.01 2.17 15.48 54.01

3 1.14 8.11 62.12 1.14 8.11 62.12

4 .83 5.92 68.03

5 .64 4.59 72.62

6 .61 4.36 76.99

7 .53 3.81 80.80

8 .49 3.49 84.29

9 .44 3.15 87.44

10 .41 2.92 90.35

11 .40 2.87 93.22

12 .36 2.60 95.82

13 .33 2.32 98.14

14 .26 1.86 100.00

1 we acknowledge how close to threshold the first item is and how close to threshold the second would

be at the lower threshold of .40 - use of the components with alternative thresholds does not

substantively change trends observed across the experimental conditions
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Table 3

Factor Loadings (Items loading onto factors are shown in bold)

Component

Performance Integrity Deceit

Competent .88 .11 .16

Reliable .81 .11 .05

Capable .75 .19 .04

Incapable -.64 .17 .21

Incompetent -.64 .21 .29

Unreliable -.63 .12 .24

Trustworthy .57 .48 .07

Loyal .02 .83 -.03

Honorable .00 .81 .03

Honest -.09 .67 -.25

Deceptive -.09 -.04 .82

False -.03 -.02 .72

Untrustworthy .10 -.15 .70

Misleading .21 .04 .66

Finally, the internal reliability of the components was evaluated through

calculating Cronbach’s alpha for each of the three components. The standard score for

acceptable alpha is .7 (Hair et al., 2006) and the three components ranged from

acceptable to high scores: Performance = .87, Integrity = .72, Deceit = .75

Participants’ ratings of the robot for each of the three components were as follows:

Performance M = 5.13 (SD = .96); Integrity M = 4.15 (SD = 1.36); Deceit M = 2.32

(SD= 1.03), indicating that participants rated the robot as at least moderately capable

in performance and integrity but not particularly deceitful.

There were no significant main effects or interaction effects from conditions for
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participants’ ratings of the robot’s integrity; this outcome do not support the first part

of Hypothesis 4 - that results for integrity would align with those for Hypothesis 1.

There was a significant main effect for the robot stating its competency on participants’

ratings of deceit (F(1,311) = 7.07 , p < .01). Individuals who observed the robot

highlight its competency rated the robot as showing less deceit than those who did not

(M = 2.16, SD = .99; M = 2.47, SD = .99). This is a small effect (partial eta2 = .02).

There was a significant main effect of the robot stating an apology on participants

rating of their trust in the robot’s performance (F(1,311) = 10.27, p = .001).

Participants who observed the robot offer an apology (across scenarios ii & iv: M =

4.96, SD = .88) described the robot as being less capable in performance than those

who did not (across scenarios i & iii: M = 5.30, SD = .88). This supports the final part

of Hypothesis 4 - that these results would correspond with results for Hypothesis 3.

This is a small effect (partial eta2 = .03). There was no significant main effect for the

robot stating its competence nor interaction effect on participants ratings in their trust

of the robot’s performance.

Intentions

There was a significant main effect of the robot stating an apology on

participants’ reported intentions to use the robot (F(1,309) = 3.94, p < .05).

Participants who observed the robot offer an apology reported greater intention to use

the robot than those who did not (M = 4.57, SD = 1.37; M = 4.24, SD = 1.37); this is

a small effect (Partial eta2 = .01).

There was no significant main effect of the robot stating its competence on

participants’ reported intentions to use the robot (F(1,309) = 1.62, p = .39). There was

also no significant interaction effect observed between the robot’s statements of

competency and of apology on participants’ reported intentions to use the robot

(F(1,309) = .01, p = .96).

A multiple linear regression was calculated to explore participants’ perceptions of

the robot’s characteristics on their intentions to use the robot. A stepwise approach



SOCIAL-COGNITIVE ROBOT INTERACTION 24

including the following measures as independent variables was used: Likablity,

Capability, Trust(Performance), Trust(Integrity), and Trust(Deceit). Before the

regression was conducted, the correlation matrix was inspected for high collinarity

between variables, the strongest correlation was between Capability and

Trust(Performance) where r = .65, scoring below the threshold of .70 for excessive

collinearity; no variables were excluded based on collinearity ahead of conducting the

regression.

The stepwise multiple linear regression identified two variables for inclusion in the

final model: Likability and Trust(Integrity). Taken together these variables significantly

predicted people’s intention to use the guide (F(2,310) = 81.71, p < .001) and

explained 34% of the variance in peoples intention to use the guide. Of the individual

predictors, Likability had a higher standardised beta value (beta = .53, p < .001) than

Trust(integrity) (beta = .13, p = .01). The remaining measures were not identified as

being significant predictors (Capability p = .36; Trust(Performance) p = .14;

Trust(Deceit) p = .17). Collectively these outcomes support Hypothesis 5 - that

perceived likability and warmth-based trust (integrity) have a greater effect on intention

to use than perceived capability and competency-based trust. Collinearity between the

included variables was low (Variance Inflation Factor of 1.15) and no responses from

participants were identified as being outlier data (i.e., all cases scored below the

Mahalanobis Distance critical value of 13.82 for two independent variables).

Discussion

The results indicate that brief, targeted interactions from a robot can significantly

impact individuals’ attitudes and intentions towards it. Specifically, a robot offering an

apology for an error supports individuals’ perceptions of its likability and in turn

individuals’ intentions to use the robot. In contrast, while a robot communicating its

competence supports individuals’ perceptions of its capability and a robot apologizing

diminishes perceptions of its capability, neither appear to impact on individuals’

intentions to use the robot.
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The current findings offer support for the use of particular social approaches to

mitigate potential adverse effects of robot error (RQ2). With regard to hypotheses

offered: an apology offered by the robot after an error supported people’s liking of the

robot (H1); clear identification of how the robot detected the error supported people’s

perceptions of the robot’s capability (H2); an apology offered by the robot after error

limited people’s perceptions of the robot as capable (H3); while people represented trust

for the robot along social cognitive lines, these factors were only partially influenced by

the apology and competency-based strategies: apologies lowered competency-based

trust (H4); last, people’s liking of the robot and their reports of warmth-based trust had

greater positive impact than their perceptions of its capability and competency-based

trust on their intentions to use (H5).

These findings conform to the broad model that people treat autonomous agents

as having social qualities, and that people draw from human-human interaction

experience in scenarios involving non-living agents (Nass & Moon, 2000). Specifically,

the findings that a robot’s use of warmth- or competency-based social cognitive

strategies after an error support people’s views of the robot along these dimensions

align well with related studies in HRI (Honig & Oron-Gilad, 2018) and mirror findings

in the wider literature on apologies in human-human interaction (Kim, Ferrin, Cooper,

& Dirks, 2004) and people’s interaction with non-human agents, such as companies (Xie

& Peng, 2009). Of note, the particular finding that warmth-based strategies can impede

perceptions of competency reflects outcomes in related literature for human-human

interaction (Kim, Dirks, Cooper, & Ferrin, 2006) and HRI research (Kaniarasu &

Steinfeld, 2014). As predicted in models of affiliation (Casciaro & Sousa-Lobo, 2005;

Shazi, Gillespie, & Steen, 2015), liking and warmth had greater influence on people’s

intentions to use than capability and competency. Together, these outcomes suggest

that people’s perceptions of a robot’s competence at a task may be sidelined by other

social factors when it comes to engaging with social robots in assistive contexts.

It further appears that people evaluate the social robot’s trustworthiness in

similar social-cognitive terms (Fiske et al., 2007), as human-to-human interaction
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(RQ1). Specifically, we identify three components relating to trust: Performance,

Integrity, and Deceit. The differing perceptions for these across conditions and relative

impacts on participants’ intention to use the robot suggest participants have evaluated

the robot across social cognitive dimensions and that the PCA outcomes are not simply

a product of semantically grouping similar terms.

While it was not anticipated the PCA would reveal the third component, deceit,

this does align with HRI literature (Spain et al., 2008). Terms used in this study to

explore trust were drawn from scale development in Jian et al. (2000); their final scale

has been indicated to examine two oblique factors of trust and distrust (Spain et al.,

2008). Arguments for distrust as being distinct from trust are also made for

human-human interaction (e.g., Lewicki & Wiethoff, 2000), which may be worth

considering further in HRI contexts.

Looking further at the factors for trust, the term trustworthy is of note for two

related reasons. First, while it loads onto the first component performance it also has a

high cross-loading onto integrity (close to the .50 threshold) and is the only item in

Table 3 for this to occur. Secondly, in a procedurally similar study (Cameron, Collins,

et al., 2016), the item trustworthy loads on to integrity (.69) with no cross-loading onto

performance (.19). The different interaction contexts across the studies may offer

explanation: in the current study, a mistake may prime individuals to consider

trustworthiness in terms of the (error-prone) robot’s reliability; whereas, outside an

error context (i.e., Cameron, Collins, et al., 2016), reliable performance could be much

less pertinent so trust perceptions may more concern a social robot’s integrity.

Together, these issues may point towards a term with high potential for object conflict

(Hess, 2007), as it appears that some individuals group trustworthiness in robots with

the sense of its Performance, while others group it with the sense of Integrity, and

existing measures do not allow researchers to determine which.

This points to an important lacuna in HRI research, in that ‘trust’ is generally

understood within this literature as corresponding to performance-based criteria (e.g.,

Hancock et al., 2011), rather than social criteria such as integrity, and therefore most
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empirical research continues to be situated within that framing (Baker et al., 2018). In

experiments concerning reliability and error during human-robot interaction, the

emphasis on the error context may therefore encourage individuals to consider trust

towards a robot more strongly in technical terms, and subliminate their reaction to it as

a social agent even as this tacitly informs their response. As integrity-related criteria

are in general not part of the tools used for measurement of HRI, their significance may

be missed, and the understanding even of performance-related criteria may be thus

diminished.

Limitations

The results presented here should be interpreted with three limitations in mind.

First, the study was conducted as an online questionnaire in which participants are

responding to video footage of another person’s experience with HRI and addressing a

hypothetical future interaction which may never take place. Current findings point

towards suitable areas for live-study HRI experiments, but these may not necessarily

yield the same positive outcomes (although it should be noted that live-HRI could also

give stronger effects). The large sample size available from the online survey does,

however, serve as a protective factor against finding false positives.

Second, and related to the first, the outcomes found across the study each are

small effect sizes. Nonetheless, it is worth noting that the current effects found do come

from marginally different conditions: the simple communication of one or two brief

sentences. Potentially, these effects could be strengthened with greater or repeated

emphasis made when communicating the themes of capability or warmth. Alternatively,

and as mentioned previously, a live-study HRI experiment may indicate stronger effects

owing to people experiencing the interaction rather than imagining it.

Last, the positive effects on capability do not contribute to intentions to use, in

contrast with our expectations. This outcome may occur because the scenario is very

‘low-stakes’ compared to other HRI studies, and the robot’s capability in navigating

may be relatively unimportant to a user. Introducing a sense of real inconvenience (e.g.,
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Brooks et al., 2016) or potential peril (e.g., Robinette et al., 2015; Robinette, Wagner,

& Howard, 2013) may increase the salience of a robot’s capability, which may in turn

have an impact on people’s intentions to use. However, it should be noted that recovery

of trust may not be possible under sufficiently severe consequences (Correia, Guerra,

Mascarenhas, Melo, & Paiva, 2018b). The findings presented here provide an

opportunity for a further comparative study into circumstances where social based

strategies are applicable.

Future Directions & Applications

The outcomes of the study point towards a potentially fruitful area to explore

regarding trust in social and collaborative robotics. Where various contexts face radical

change due to the emergence of social robotics, such as healthcare(Robinson,

MacDonald, & Broadbent, 2014), education (Mubin, Stevens, Shahid, Al Mahmud, &

Dong, 2013), and wider workplaces or the home (Royakkers & van Est, 2015; Vänni &

Korpela, 2015), issues of acceptance and trust towards robots may persist (e.g.,

Hancock et al., 2011; Savela et al., 2018). An understanding that robots in these

contexts are not just able to perform their roles but that these are done with specific

intention for the benefit of the user may support in these issues, particularly where

trust in others’ capabilities and intentions is key, such as health (Cameron, Sarda Gou,

& Sbaffi, 2020), and education (Brookfield, 2015).

There are many factors that are considered to affect user experience and trust

during HRI (Hancock et al., 2011) - the specific behaviours from a robot during

interaction being just one of them. It remains to be considered how the particular

approaches used in this study are situated amongst these diverse competing or

complementary factors and the comparative impact they may have. Future studies

could focus on the use of multiple strategies from a social perspective to engender trust

and acceptance. This could be done to identify most useful approaches to take or to

compare the influence of these across different morphologies and interaction contexts.

In terms of wider theoretical development, the current research may present a useful



SOCIAL-COGNITIVE ROBOT INTERACTION 29

starting point for experimentally exploring the emerging perspectives of trust in HRI as

being social and multifaceted (e.g., Ullman & Malle, 2019) and its further integration

into models of user acceptance and intentions to use robots (e.g., Razin & Feigh, 2020).

Practical implications may include designers and programmers further considering

the use of social-based strategies to support HRI in collaborative contexts and

understanding the ‘rules’ that people import during interaction (e.g., Nass & Moon,

2000). In navigation assistance contexts this may support with rapid uptake in urgent

circumstances, such as building evacuation (Robinette, Howard, & Wagner, 2017).

Clear indication of a robot’s apparent intention may help users make informed choices

in how to engage with the robot, if at all, and especially in circumstances where errors

occur (e.g., Salem et al., 2015). Interactions could be further explored with

consideration that users are likely to go through trial and error with robots (e.g.,

Hamacher et al., 2016), correct errors together, and potentially build the user

experiences together. Examination of HRI scenarios as collaborative experiences may

further highlight relevant social elements that reflect human-human collaborations, such

as affective trust (Webber, 2008), that may not be revealed using current measures and

approaches towards robot trust.

It is important for the authors to note that we do not view the work we have

described here to be scale development per se. Such a venture will require the same

thoroughness observed in dedicated scale-development papers that form current

landmarks in HRI trust research (Jian et al., 2000; Muir, 1987; Schaefer, 2013), and is

beyond the scope of what we set out to achieve. Rather, we hope this paper serves to

direct further research towards a largely-overlooked aspect of understanding trust in

robotics, particularly in the consideration of robots which will primarily function as

synthetic social agents.

Conclusions

This paper presents novel work addressing the relative benefits that simple

communication from a mobile robot can have on user attitudes after a robot-caused
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navigational error. In line with HRI literature, offering explanations for its error

supports people’s perceptions of the robot as being capable (Correia et al., 2018a),

whereas offering apologies lowers this perception (Kaniarasu & Steinfeld, 2014).

Conversely, a robot’s apologies for an error support its likability (Lee, Kiesler, Forlizzi,

Srinivasa, & Rybski, 2010). These outcomes, in conjunction with our novel findings that

perceptions of likability and integrity but not capability positively affects intention to

use, reflect established social cognitive theory Casciaro and Sousa-Lobo (2005); Fiske et

al. (2007). These further indicate the importance of social aspects for trusting and

using autonomous robots and, more generally, social cognitive models have an

appropriate role to play in exploring HRI.

While the perspective that people have social expectations for synthetic social

agents is historically well-documented (e.g., Foner, 1997; Reeves & Nass, 1996), the

current work further expands the perspective that use of socially empathic behaviours

by embodied synthetic agents may facilitate better user experiences in spite of

imperfection. Socially appropriate recovery strategies deployed by the robot after an

error could thus be a viable means for robots to address errors which they cannot

invisibly self-correct. An attention to warmth in the programming of socially interactive

robots could build user confidence in their operation, and support their earlier and

wider-spread adoption.
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