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Abstract 7 

Honey bees forage on diverse flowers which vary in the amount and type of rewards they offer, 8 

and bees are challenged with maximising the resources they gather for their colony. That bees 9 

are effective foragers is clear, but how bees solve this type of complex multi-choice task is 10 

unknown. Here we set bees a five-comparison choice task in which five colours differed in 11 

their probability of offering reward and punishment. The colours were ranked such that high 12 

ranked colours were more likely to offer reward, and the ranking was unambiguous. Bees’ 13 

choices in unrewarded tests matched their individual experiences of reward and punishment of 14 

each colour, indicating bees solved this test not by comparing or ranking colours but by basing 15 

their colour choices on their history of reinforcement for each colour. Computational modelling 16 

suggests a structure like the honey bee mushroom body with reinforcement-related plasticity 17 

at both input and output can be sufficient for this cognitive strategy. We discuss how 18 

probability matching enables effective choices to be made without a need to compare any 19 

stimuli directly, and the utility and limitations of this simple cognitive strategy for foraging 20 

animals.  21 

Key words. colour learning, ecological rationality, Multi-armed bandit task, mushroom body, 22 

probability matching, reinforcement learning.  23 

  24 
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Introduction 25 

Foraging honey bees must gather concealed pollen and nectar from many cryptic and variable 26 

flower species, all of which vary in the quality and amount of reward. None of these 27 

probabilities are known to the foraging bee. This kind of problem has been described as a multi-28 

armed bandit task [1, 2] since there are multiple options available all with unknown potential 29 

for payouts. Here we challenged honey bees with a controlled learning task that offered five 30 

options differing in the probability of offering reward and punishment to examine how bees 31 

solved this type of multiple-comparison task. 32 

One solution would be to identify the option that offered the highest probability of reward and 33 

always pick that option (probability maximising) [3]. For example, if a bee learned that blue is 34 

rewarded 60% of the time and yellow 40% of the time, and if the bee could compare and rank 35 

these alternatives then she would maximise her return by picking blue all the time. An 36 

alternative solution involves no comparisons at all. Bees could simply learn the reinforcement 37 

properties of each option and match their choices accordingly (probability matching) [4-6]. In 38 

the above example, trained bees would choose blue 60% of the time and yellow 40% of the 39 

time. This would still result in bees preferring one colour over another, but this could be 40 

achieved without comparing or ranking them. 41 

Probability maximising is economically rational since it offers the maximum possible reward 42 

where probabilities of different options are known and fixed. In scenarios where the reward 43 

probabilities are not known a-priori and have to be estimated from sampling and/or change 44 

during sampling probability matching offers a better solution to the trade-off of exploiting 45 

current resources while exploring other alternatives [2, 7]. In situations that demand 46 

simultaneous sampling of different alternatives while harvesting from the best estimated option 47 

(a problem faced by many generalist forager animals), probability matching may be the best 48 

foraging strategy [1, 2, 7, 8]. 49 

Probability maximising requires comparing and ranking different options [7, 9]. Bees do have 50 

the capacity to learn abstract relationships between stimuli [10-12]. A recent study showed 51 

Polistes wasps could pass a behavioural test considered indicative of the capacity for transitive 52 

inference [13]. This requires arranging stimuli in a ranked order [13] suggesting that Polistes 53 

dominula and Polistes metricus at least have a capacity for ranking stimuli. Probability 54 

matching involves no comparisons: it involves learning the reinforcement properties of each 55 
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stimulus only. In foundational comparative cognition Bitterman considered probability 56 

matching to be “less intelligent” than probability maximising [4, 14]. While that interpretation 57 

is open to debate, it is true that probability matching is computationally simpler than probability 58 

maximising [2, 7]. 59 

Whether honey bees choose by ranking stimuli by probability of reinforcement (probability 60 

maximising) or whether they learn the probability of reinforcement for different stimuli 61 

(probability matching), is presently unclear. Greggers and Menzel [15] trained honey bees to 62 

four different artificial feeders that varied in rate of sucrose delivery, and showed evidence of 63 

both probability matching and probability maximising strategies [15]. Fischer et al [16] and 64 

Keasar et al [2] tested honey bees and bumblebees (Bombus terrestris) and found that bees 65 

imperfectly matched their preferences to feeder probability of reward. Here we examined 66 

honey bees’ choice strategy in a complex multi-option choice test in which bees were punished 67 

for wrong choices. 68 

We set honey bees a five-armed bandit task. We challenged honey bees with a colour learning 69 

task in which five coloured stimuli were organised in a rank order such that when trained with 70 

pairwise presentations of colours only the higher ranked colour was rewarded, with the lower 71 

ranked colour being punished. The ranking was unambiguous, and it influenced the probability 72 

of each colour being rewarded or punished during training. Tests then explored whether honey 73 

bees demonstrated learning of the ranking of the colours (probability maximising), or whether 74 

they instead learned the reinforcement history of each separate colour (probability matching). 75 

Our data supported a probability matching strategy. To explore how bees might achieve a 76 

probability matching strategy we developed a neural network model capable of probability 77 

matching inspired by the bee brain. We discuss the consequences of these findings for our 78 

understanding of insect choice behaviour.  79 

Material and methods  80 

Animals and testing arena. Experiments were conducted at the Sheffield University Research 81 

Apiary containing four standard commercial hives of honey bees (Apis mellifera). To attract 82 

bees for our experiments we placed a gravity feeder of 20% sucrose solution (w/w) 83 

approximately 15m from the hives. Bees visiting this feeder were given individually distinctive 84 

marks on their abdomen and/or thorax using coloured Posca marking pens (Uni-Ball, Japan). 85 
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5 m from the gravity feeder (and further from the hives) we established the testing arena: a box 86 

(100 x 80 x 80 cm) of white expanded PVC foam boards with a UV-transparent Plexiglas roof. 87 

Bees could enter the arena through a transparent Perspex corridor (20 x 4 x 4 cm). Interior 88 

walls and floor were covered with a pink random dot pattern to provide a contrast between the 89 

colour of the bees and the background to assist video analysis (figure 1a). 90 

Stimuli. Bees were trained to visit coloured stimuli inside the arena. These were disks (2.5 cm 91 

in diameter) of coloured paper covered with transparent laminate (figures 1b and S1). The 92 

colours of stimuli were selected to cover the range of visible and discriminable colours for 93 

bees. (Figures S1d and S1e). Stimuli were placed on small inverted transparent plastic cups to 94 

raise them from the arena floor. 95 

Pre-training phase. Marked bees were attracted from the gravity feeder by offering them a 96 

cotton bud soaked with 50% sucrose solution (w/w). Bees feeding from the cotton bud were 97 

gently moved to the entrance of the arena and given more 50% sucrose to drink to satiation. 98 

This was repeated until the bee flew independently to the entrance of the arena. Bees were 99 

trained to fly into the arena via the entrance tube to find drops of 50% sucrose placed on 100 

transparent disks of laminate on top of the plastic cups. Bees were released from the arena by 101 

lifting the roof. Once a bee flew by herself into the arena to feed, she was selected for the 102 

training phase.  103 

Task and training. Bees were trained with five different coloured stimuli in a colour 104 

discrimination task. The five different colours were assigned an arbitrary rank (C1-5). Multiple 105 

stimuli were presented to them at each trial so that bees could visit a number of different colours 106 

in a trial before returning to the hive (capturing the ecology of bees foraging on patches on 107 

flowers). In each trial a bee was presented with eight stimuli: four of one colour and four of a 108 

different colour (figure 1a). For any given pair of colours in a trial the colour with the lower 109 

rank was rewarded and the colour with the higher rank was punished, (table S1). To prevent 110 

bees from learning any configural cues, feeders were placed randomly within the arena. 111 

Feeders were rewarded with 10 µl sucrose solution 50% (w/w) and punished with 10 µl of 112 

saturated quinine hemisulphate solution. 113 

In each trial bees were able to freely land on stimuli and to feed. 10 μl drops of 50% sucrose 114 

solution were replaced on depleted rewarded stimuli until the bee had fed to satiation and left 115 

the arena via the roof. Bees returned to the arena by their own volition. Typically, the inter-116 
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trial interval was 5-10 minutes. After each trial, all stimuli were cleaned with 70% ethanol and 117 

water to remove any possible pheromonal cues left by the bee., then air-dried before reuse [17, 118 

18]. 119 

Bees were assigned at random to one of two groups: A and B. For group A colours were 120 

assigned as: blue = C1, yellow = C2, pink = C3, orange = C4 and green = C5 with white used 121 

as a novel colour for testing. For group B the colour assignment was: green = C1, orange = C2, 122 

white = C3, yellow = C4 and blue = C5 with pink used as a novel colour in testing. Colours 123 

were pseudo-randomly selected to cover the range of colours from green to orange (figure S1). 124 

Note that similar colours in hexagon coordinates (figure S1) were not close to each other in the 125 

order of the protocol. For example, green and orange in group B were the first and second 126 

highest-ranked (C1 and C2) while they are far apart in the hexagon colour space (figure S1c). 127 

Moreover, the stimuli C2 and C4 were chosen such that they were not similar to C1 and C5, 128 

respectively. This does not let the bees use a similarity rule in responding to stimuli. Comparing 129 

behaviour of bees from groups A and B allowed us to explore for possible innate colour biases 130 

influencing choice. 131 

Bees were randomly assigned to one of two protocols P1 and P2 (tables S2, S3). Although the 132 

pairs of stimuli were randomly ordered in both protocols, the number of presentations of each 133 

pair was consistent in both protocols (table S1).. Comparing performance between protocols 134 

allowed us to examine whether training sequence influenced performance. In training each bee 135 

was therefore assigned to one colour group (A or B) and one training protocol (P1 or P2). Over 136 

18 training trials bees experienced all combinations of the five colours twice, with the 137 

exception that bees in training never experienced C2 paired with C4 (table S1). This pairing 138 

was excluded so that in the post training transfer test we could examine how bees responded 139 

to a colour pair they had never previously encountered. The 18 bouts of training presented bees 140 

with reward from C1 in eight out of eight trials; from C2 in 4 out of 6 trials, from C3 in 4 out 141 

of eight trials, from C4 for two out of six trials, and never from C5 (table S1).  142 

Testing. Immediately following the training phase each bee was given three learning tests. The 143 

learning test presented bees with C1 and C5 – a colour combination they had previously 144 

experienced and that had the greatest difference in reinforcement history. The transfer test 145 

presented bees with C2 and C4 – a combination they never experienced in training. The novel 146 

test presented bees with white and pink, which was a choice between a colour they had 147 
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experienced to be rewarded and punished equally often in training trials and a colour they had 148 

not experienced in training.  149 

During all tests all stimuli offered 10 ul water. During tests bees were video recorded for 120 150 

s and their landings on stimuli recorded, after which bees were released from the roof of the 151 

arena. The sequence of the tests was randomised for each bee. Between tests bees were allowed 152 

to feed in the arena on 10 ul sucrose drops placed on disks of transparent laminate so that we 153 

maintained their motivation to visit the arena. As in training, stimuli were cleaned between 154 

tests. 155 

Colour selection. In this study we used colours that are distinguishable for bees [17, 19-22] 156 

(figure S1a ). We measured the spectral reflectance of the all colours used in the experiment 157 

(figure S1b) following methods of the honeybees’ receptors model demonstrated by Chittka 158 

[23] and using the spectral sensitivity functions of the honeybees [24] (figure S1c). We 159 

calculated the Euclidean distance between all pairs of colour in the bee colour space (figure 160 

S1d). It has been established that colours differing by a Euclidian distance of 0.1 or more in 161 

the hexagon coordinates are discriminable for bees [19, 22, 25]. Thus, bees were able to 162 

distinguish all colours used in this study (figure S1d.) All used colours evoke different levels 163 

of the activity from the visual receptors of honeybees (figure S1e). Bees also can use colour 164 

contrast for target detection [26] and the colour contrasts for all stimuli are high enough to be 165 

distinguishable by bees (figure S1e). In addition to these models, The bees’ performance in the 166 

training phase confirms that the bees could distinguish all pairs of colours (see tables S2&S3 167 

for training bout order and figure S2 for results).  168 

 169 

Observation and video recording. To record bee behaviour inside the arena iPhone 6 cameras 170 

were positioned above the entrance viewing into the arena, and on the top of the arena viewing 171 

down. The cameras were configured to record at 30 fps at a resolution of 720p (1,280x 720 172 

pixels) in the training phase, and 240 fps in the testing phase. During training we recorded from 173 

when the bee entered the arena until she was released from the roof. During tests we recorded 174 

for 120 s from when she entered the arena. We developed an algorithm to analyse the flight 175 

paths of bees from the videos. Bees’ flight path was determined by extracting the x-y 176 

coordinates of the bee’s body and their direction of flight frame by frame (Video S1). The 177 

algorithm was used to calculate the number of rewarding and punishing experiences each bee 178 

had with each colour during the training and testing.  179 
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Only bees that completed the entire training and test sequences were included in the results. Of 180 

our 20 bees, only one bee did not complete the entire paradigm due to rain stopping the 181 

experiment on that day. We noted each time a bee landed on a stimulus in training, from which 182 

we determined how many times each bee encountered each colour as rewarded or punished. 183 

Given the spatial information of the stimuli in the view of the camera, we used a threshold 184 

flight speed classification to evaluate if bees had landed on a stimulus. This was considered a 185 

choice (correct or incorrect) if the bee’ s body was located on the stimulus’ border and her 186 

speed is less than the threshold obtained from all flight information (ref).   187 

Data analysis and statistics. To evaluate bees’ performance in the three different unrewarded 188 

tests, we analysed the proportion of correct choices estimated as landings on the rewarded 189 

stimuli divided by the total number of landings during the 120 s test. We examined the effect 190 

of colour group (A or B), protocol (P1 or P2), test type and colour ranking on performance 191 

using Wilcoxon signed rank and Wilcoxon rank-sum tests. In addition, Generalised linear 192 

mixed models (GLMM) were applied to the performance of the bees in the learning, transfer 193 

and novel tests to examine the effects of the protocol, the colour sets and the interaction 194 

between these factors on the bees’ responses (table S4). Further, to evaluate the homogeneity 195 

of the behaviour of different groups of bees, the Brown-Forsythe test was used.  196 

To further examine whether individual experience of the history of reward and punishment 197 

associated with each colour influenced degree of colour preference we calculated the number 198 

of visits to each colour that was rewarded and punished for each bee (figure S3). In our protocol 199 

bees freely visited and chose multiple feeders within each training bout and therefore each 200 

individual bee experienced a unique history of rewards and punishments for each colour. 201 

For each bee we calculated a reinforcement index (R index) for each colour (!!) as: 202 

""! = (#&'()&*'*	,ℎ./,'0	.1	!! − #345/0ℎ'*	,ℎ./,'0	.1	!!) #	7.7)8	,ℎ./,'0	⁄  203 

This index has a scale from -1 to +1, and colours that were experienced as punished more often 204 

than rewarded had negative R indices. Since the total number of choices both within and 205 

between trials varied between bees, the reinforcement index was normalised to the total number 206 

of choices each bee made across all of its trials. Hence, the reinforcement index as defined is 207 

independent of the motivation of bees to respond to stimuli, but also shows the relative 208 

preference of bees for all the colours. We evaluated the relationship between bees’ R indices 209 
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and bees’ performance in the transfer test using a Spearman’s correlation test. All statistical 210 

tests were performed in MATLAB 2018 (MathWorks, Natick, MA, USA).  211 

Results 212 

In the learning test bees preferred C1 (always rewarded in training) to C5 (always punished) 213 

(figure 1c; Wilcoxon rank-sum test, z = 5.77, n = 20, p = 7.47e-10, chance level = 0.5). The 214 

transfer test presented bees with a colour combination not used in training (C2 vs C4). Here 215 

bees preferred C2 to C4 (figure 1c: Wilcoxon rank-sum test, z = 5.19, n = 20, p = 2.09e-07) 216 

demonstrating that bees preferred a stimulus with both a higher likelihood of reward and a 217 

higher ranking in a novel colour comparison. The total numbers of choices during the first 120 218 

s of tests differed between bees and between tests (figure S3a; Kruskal-Wallis test, df=62, chi-219 

chq=6.78, p=0.03) but we do not think this impacted the results. We obtained the same result 220 

even if the same number of choices was standardised across bees’ and tests when calculating 221 

performance (figures S3b and S3c). This indicates the number of choices did not have any 222 

effect on bees’ performance.  223 

The degree of preference differed between the learning test and transfer tests (Wilcoxon signed 224 

rank test, z = 3.92, n = 20, p = 8.79e-05). The preference for C1 in the learning test was greater 225 

than the preference for C2 in the transfer test (figure 1c). This indicates that the degree of colour 226 

preference was not absolute (as would be expected if bees were probability maximising). The 227 

degree of preference was influenced by the probability of reward and punishment for different 228 

colours during training, which is consistent with probability matching.  229 

The training protocols gave bees different numbers of rewarded and punished trials for each 230 

stimulus, and within a trial bees differed in how many visits they made to coloured stimuli 231 

before departing the arena. The R index was calculated from visit numbers, and R indices 232 

differed significantly for different colours (figure 2a,b, Wilcoxon rank-sum test, z > 3.74, n = 233 

10, p < 1.82e-4). The R index for C3 was greater than zero (Wilcoxon rank-sum test, z = 4.16, 234 

n = 10, p = 3.07e-5 for group A; z = 5.21, n =10, p = 1.82e-7 for group B). Therefore even 235 

though C3 was paired with reward and punishment in 50% of the training trials, on average 236 

bees experienced C3 as rewarded more often than punished, indicating that bees visited C3 237 

more in rewarded trials than punished trials. In the novel test bees preferred C3 more than a 238 

novel colour (figure 1d: Wilcoxon rank-sum test, z = 5.76, n = 20, p = 7.93e-09), perhaps as a 239 

consequence of this experience in training.  240 
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There was no difference in performance in the learning, transfer and novel tests of bees that 241 

had been trained with different colour contingencies (Groups A and B, figure S3d; Wilcoxon 242 

rank-sum test, z = -1.32, n = 10, p > 0.18; Generalized linear mixed model, p > 0.08; see table 243 

S1 for more details). There was also no difference in performance between bees from different 244 

training protocols in the learning, transfer and novel tests (P1 and P2, figure S3e; Wilcoxon 245 

rank-sum test, z = -1.32, n = 10, p > 0.18; Generalized linear mixed model, p > 0.16, table S4). 246 

The Dimulated data generated from a Monte Carlo algorithm (See Supplementary methods) 247 

confirmed that the result of the GLMM would be consistent for a larger sample size with 60 248 

observations (table S5). Also, to make sure each group of 5 bees that were trained to a specific 249 

colour set and a protocol showed statistically homogenous behaviour in terms of performance 250 

in the tests, the Brown-Forsythe test was applied. All four groups of bees were statistically 251 

homogenous (Brown-Forsythe test, df1=3 , df2=16; in the learning test: F=1.25, p=0.32; in the 252 

transfer test: F=0.08, p=0.96; in the novel test: F=1.82, p=0.18). Further, for all three tests there 253 

was no significant effect of the interaction between the protocol and the colour set used in the 254 

experiment on bee performance (p > 0.14, tables S4 and S5). In addition to the homogeneity 255 

of the data, power analyses of the statistical tests were calculated for the bees’ performances in 256 

the tests (figure S3f). The power analyses support that an appropriate number of bees were 257 

chosen for the experiment.  258 

Bees’ performance in the transfer test was positively correlated with the difference in their R 259 

indices for C2 and C4 (figure 2c; Spearman’s correlation test, rho=0.4, n=20, p=0.046). This 260 

finding is consistent with each individuals’ degree of preference in the transfer test being 261 

influenced by their specific experience of reward and punishment for the two colours in 262 

training. It is not consistent with bees comparing and ranking colours by reward likelihood to 263 

make a choice. 264 

A simple neural network model sufficient for learning history of reinforcement, 265 

consistent with the neuroanatomy of the bee brain. 266 

To explore how learning of the history of reinforcement of colours in this 5-colour learning 267 

task might be achieved by honeybees we developed a neural network model inspired by the 268 
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neurobiology of colour coding and colour learning in bees [29-32] (figure 3a). Full details of 269 

the model are given in Supplementary Methods. 270 

In this model, three different types of receptors, Short (S)- ,medium (M)- and long (L)-271 

wavelength-sensitive photoreceptors are stimulated by the light reflected by each colour 272 

stimulus, which we quantified as the spectral reflectance function of each stimulus (figures S1b 273 

and S1e). Axons from colour receptors project to the medulla and make inhibitory connections 274 

with transmedullary (TM) neurons [33-36]. In bees the L-receptors project to the lamina also, 275 

[37] but in this model we consider medulla processing only. 276 

We considered a simple circuit such that one transmedullary neuron is activated by one type of 277 

receptor only. Transmedullary neurons exhibit high spontaneous activity and receive inhibitory 278 

signals from receptors, therefore the three different types of transmedullary neurons respond 279 

to colours by decreasing their firing rate from the spontaneous rate [33]. The transmedullary 280 

neurons send either excitatory or inhibitory signals to the third order neurons (amacrine or large 281 

field neurons) in the next layer of the medulla [33, 38, 39] (figure 3a). Following the algorithm 282 

presented in Vasas et al. [30], in the model their synaptic weights (L) were estimated from 283 

empirical neurophysiological data to reproduce the diverse activity of colour sensitive neurons 284 

reported by Kien and Menzel [31, 32] (figure S5).  285 

W in figure 3a describes the matrix connectivity between the third-order neurons and Kenyon 286 

cells (KCs) of the mushroom body in the collar region. Kenyon cells output to a single 287 

mushroom body output neuron (MBON) in the alpha lobe of the mushroom body :(,)	through 288 

a vector of synaptic weights, ;. The protocerebral-calycal tract feedback pathway (figure 3a, 289 

red) takes inputs from all Kenyon cells and sends a feedback inhibitory signal to the collar 290 

region [40-44]. In the model this pathway is represented as a single neuron that contributes 291 

feedback gain control to the system and maintains sparse coding across the Kenyon cell 292 

population.  293 

In the model, a single reinforcement neuron (figure 3a, yellow) modulates strengths of synaptic 294 

connectivity at both the input and output of the Kenyon cells in response to both reward and 295 
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punishment. This is responsible for the changes in activity of the network during training with 296 

rewarded and punished coloured stimuli (supplementary methods, Equations 6-8). 297 

The output of the MBON :(,)	was used to evaluate the performance of the model. :(,)	has a 298 

tonic firing rate, which is decreased by punishment, and increased by reward. Following 299 

training, maximal performance of the model was judged as an increase in firing rate of :(,)	to 300 

maximum to a colour that had been rewarded in training, or a decrease in firing rate of :(,)	to 301 

minimum to a colour that had been punished in training.  302 

 303 

We assessed the performance of the model in a simple colour discrimination task. The model 304 

was presented with any pair of monochromatic colours between 300 to 700nm, one was 305 

rewarded and one punished. Prior to training the model did not differentiate between any two 306 

colours (no difference in output from :(,)).	Following 10 training trials with the rewarded and 307 

punished colours the model was able to discriminate different colours (figure 3b) [26, 45]. We 308 

then trained the model using protocol P1 or P2 (table S2). Performance of the model closely 309 

matched responses of bees in the learning test (figure 3a; compare with figure 1c). Following 310 

training the model also successfully discriminated between a novel pair of colours and 311 

preferred the colour that had been more often associated with reward in training, similar to that 312 

of honey bees (figure 3c; compare with 1c).  313 

 314 

The model did not differentiate between a novel colour and a colour that had been equally 315 

reinforced and punished during training (figure 3c). Honey bees, by contrast, preferred a colour 316 

that had been paired with reward in 50% of trials (C3) over a novel colour (figure 1d). But, as 317 

we noted above, bees made more visits to C3 when rewarded than when punished and hence 318 

the mean R index for C3 was positive (figures. 2a,b). In this respect training of bees differed 319 

from training in the model. When training the model the R index of a colour paired equally 320 

with punishment and reward was zero. We therefore added an additional test, and found that 321 

the model was able to successfully discriminate a colour that had been paired with reward on 322 

66% of trials during training from a novel colour (figure S6, Wilcoxon rank-sum test, z = 5.31, 323 

n = 20, p = 5.62e-8).  324 

 325 

The model allowed us to examine which elements of our network were necessary for this form 326 

of colour discrimination learning. Sparseness of colour coding in the KCs strongly affected the 327 
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performance of the model: Dense coding of colours in the KC population reduced the ability 328 

to learn to discriminate colours by reward and punishment (figure S7).  329 

 330 

Plasticity at both the input (W) and output (V, figure 3a) of the Kenyon cells was essential for 331 

the model to correctly discriminate all colours by their history of reinforcement. In training if 332 

the weights in connection matrix W (between the third-order neurons and Kenyon cells) were 333 

fixed bees could learn to prefer a colour that was always rewarded over a colour that was always 334 

punished in training (figures S7b,c), but their performance in the transfer test (a comparison 335 

between one stimulus reinforced at 66% and one reinforced at 33%) was reduced when 336 

compared to the full model (figure 3c and figures S7b,c), and depended on both the perceptual 337 

similarity and the reinforcement history of the colours. Plasticity in connection matrix W 338 

decorrelates the activity of KC for any two presented colours that differ in reward history, even 339 

if the population activity of third-order neurons are highly correlated (figure S5). Hence, post 340 

training distinctive groups of KCs separately encode the colour information of each colour. 341 

This increases the ability of KCs activated by different colours to drive different levels of 342 

activity in the MBON from :(,)	due to changes in connectivity resulting from different 343 

reward/penalty ratios associated with each colour during training.  344 

 345 

If connection weights in W were fixed the degree of difference between the pattern of KC 346 

activation to two different colours correlated with the perceptual difference between the two 347 

colours (figure S1). With this limitation the response of the model to any specific colour post 348 

training was sensitive to both the reinforcement history of that colour during training, and the 349 

reinforcement history of similar colours during training (figures S7b,c).  350 

 351 

Discussion 352 

Our data show that in a five-armed bandit task bees matched their colour choices in tests to the 353 

probability of each colour being rewarded in training (figure 1c, 2c). This behaviour can be 354 

explained simply by them learning the properties of each stimulus, and does not require 355 

comparison between options. 356 

Probability matching may be the ecologically optimal solution to this kind of task if 357 

reinforcement probabilities for each option are unknown or could change [1, 2, 7]. Matching 358 

choice probability to the history of reinforcement offers a simple and effective solution to the 359 
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explore/exploit trade off in which an animal must optimise across exploiting a current resource 360 

type or patch, or moving to and sampling alternatives [1, 7]. Under some circumstances, a 361 

probability matching strategy could appear as floral constancy if one flower type were 362 

significantly more rewarded than others in a patch, or as floral majoring and minoring if two 363 

alterative flower types differed strongly in reward likelihood [2, 7].  364 

Probability matching as a solution to a five-armed bandit task is computationally parsimonious. 365 

Niv et al [7] have argued that reinforcement learning is sufficient for probability matching.  366 

The mushroom body is an important brain region for learning [46-48], and octopaminergic and 367 

dopaminergic neuromodulatory neurons are essential for plastic adjustment of connection 368 

strengths in the mushroom body circuit in response to reinforcement [49-54]. Distinct but 369 

interacting dopaminergic and octopaminergic neurons encode reward and punishment in the 370 

fly brain [50], and it is likely that something similar occurs in honey bee brains [51, 52]. 371 

In our model we considered the insect mushroom body and its visual inputs (figure 3a) as a 372 

very simple reinforcement learning system to explore the feasibility of learning to probability 373 

match in insects. In the model plasticity at both the input (calyx) and output (lobes) of the 374 

mushroom body was necessary for the model to effectively learn the history of reinforcement 375 

for different colours. Plasticity at the mushroom body input was needed for the system to be 376 

able to decorrelate the neural representations of perceptually similar colours in order to learn 377 

independent reinforcement histories for them (figure S7). Reinforcement-related plasticity at 378 

the mushroom body calyx and lobes is feasible for insects. Hammer [55, 56] argued the 379 

modulatory neuron VUMmx1 mediates learning of sugar reward in honey bees. This neuron 380 

innovates both the calyx and lobes of the mushroom body [55]. There are other modulatory 381 

inputs (both inhibitory and excitatory) to the calyx of both bees and flies [52-54]. Strube-Bloss 382 

[47] has also argued plasticity in the calyx may be important for learning to distinguish different 383 

stimuli by reward and punishment.  384 

Our model also emphasised the need for sparse coding of colour across the Kenyon cell 385 

population for efficient learning (figure S7). Our mushroom body model is equivalent to a 386 

three-layer associative network. Sparse coding in the middle layer of a three-layer network is 387 

recognised to be an important feature for effective classification in such types of network [57, 388 

58]. In honey bees sparse coding is supported by the GABAergic inhibitory feedback PCT 389 

pathway from the mushroom body outputs to the calyx [29, 52, 59-61], and such feedback is 390 

essential for complex discrimination in bees [41, 62]. 391 
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We can explain bee’s behaviour in this complex task without requiring the bees to compare the 392 

properties of any of the stimuli offered. This is perhaps a counter-intuitive way of thinking 393 

about behaviour in a choice test, but probability matching will give the appearance of choice 394 

and preference without the animal effecting any choice. This is, of course, not evidence bees 395 

or other insects cannot rank. As we noted above, Polistes wasps have solved a transitive 396 

inference task that controlled for reinforcement history [13] suggesting a capacity to compare 397 

and rank. Honey bees, however, failed at a similar task [63]. We note that the speed at which 398 

bees learn reinforcement history, and the effectiveness of this strategy in optimising 399 

performance in most foraging tasks may obviate the need for more complex choice strategies 400 

in most circumstances. 401 

We also propose that given its simplicity, plausibility and ubiquity probability matching should 402 

be considered a most parsimonious explanation of behaviour in animal ‘choice’ assays.  Under 403 

many circumstances in assays offering a binary-choice probability matching can give the 404 

appearance of overt comparison or even ranking of options to form a preference, when no 405 

comparison may be involved. Considering and controlling for the reinforcement history of 406 

different options would help to distinguish probability matching strategies from true ranking 407 

or comparison strategies.  408 
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Figures  570 

 571 

Figure 1. a) The experimental paradigm. Each bee received 18 training trials. In each training 572 

trial, stimuli of one colour offered 10 ul sucrose solution and the other offered 10 ul of quinine 573 

hemisulphate. b) Five different colours were used in this study. The colours differed in the 574 

proportion of training trials in which they offered reward and punishment (rewarded at 100%, 575 

66%, 50%, 33%, 0% of trials, table 1). Following training bees received three unreinforced 576 

tests. In the learning test bees were presented with the colours that had always been rewarded 577 

and always punished in training. In the transfer test bees were tested with a colour combination 578 

that had not been used in training. In the novel test bees were presented with a novel colour 579 

and a colour that had been rewarded in 50% of training trials. c, d) Performance on the tests. 580 

Bars show mean frequency with which bees landed on stimuli they had experienced as more 581 

rewarded during training. d) In the novel test, bees chose the trained colours (C3) more than 582 

the novel colour. Values for each individual bee are shown by small empty circles in different 583 

colours: Red: group A, Protocol P1; Green: group A, Protocol P2; Blue: group B, Protocol P1; 584 

Yellow: group B, Protocol P2 (table S6). N = 20. Vertical lines: s.e.m. Dashed line indicates 585 

performance expected at random. * indicates p<0.05 and ** indicates p<0.005.  586 
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 587 

Figure 2. a,b) Mean R index for bees for each colour (a = group A, b = group B). Bars show 588 

mean and s.e.m. of the 10 bees experience of each colour in the training phase. * indicates 589 

p<0.05 for comparing the R index of a pair of colours used in the learning test (C1 vs C5) and 590 

the transfer test (C2 vs C4). c) Relationship between performance in the transfer test and 591 

difference in R index between the two colours in the transfer test. Line indicates the linear fit 592 

to the data (Spearman’s correlation test, rho = 0.4, n = 20, p = 0.046).  593 
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 594 

Figure 3. a) Network topology of the model of colour learning in the bee brain. Colour 595 

information is transferred from the three different types of photoreceptors to the medulla. Each 596 

receptor sends an inhibitory signal to only one type of transmedullary neuron (TM). Next, TM 597 

neurons randomly connect with the third order neurons via a connection matrix L. The vector 598 

connectivity of L was estimated from empirical data to produce a wide diversity of colour 599 

sensitive neurons. Colour information was transferred from the medulla to the Kenyon cells of 600 

the mushroom bodies (MB) via connection matrix W. Kenyon cells output to a single neuron 601 

(MBON) in the alpha lobe of the mushroom bodies via connection matrix V. The inhibitory 602 

feedback PCT pathway (red) maintains low excitability and sparse coding across the Kenyon 603 

cell population. A neuromodulatory neuron firing in response to both reward and punishment 604 

projects to both the input and output of the MB. There it acts to alter synaptic connectivity in 605 

both regions (W and V) in response to reward and punishment according to the proposed 606 

learning rule (see Supplementary Material and Method). b) The performance matrix of the 607 
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model in a simple colour discrimination task. The colour at each matrix’s element displays the 608 

performance of the model to two monochromatic colours whose wavelengths are presented on 609 

the x and y axes. Following 10 trials with one colour associated with reward and one with 610 

punishment the model is able to discriminate all combination of colours if their wavelength 611 

distances are larger than 5 nm. c) Model’s performance following training with protocol P1 or 612 

P2 (tables S2&S3). Bars were calculated from the performance of the model for 50 different 613 

initial parameters that simulated 50 different model bees that were trained to the training 614 

stimuli. 615 

 616 
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Supplementary!Method: 

A neural network model for learning the history of reinforcements in bees 

a)! Model of colour coding in the visual sensory system of bees  

 

Three different types of photoreceptors (i.e. short, medium and long wavelength sensitive) are 

simulated by the light reflected by the stimulus. The amount of light absorbed by these 

photoreceptors was estimated as  

 !! = #$ I"('))!(')*(')+'#$$

%$$

 Eq. 1 

where # describes the overall sensitivity of the receptor, ,"(') is the spectral reflectance 

function of the stimulus, -, )!(') is the spectral sensitivity function of each receptor (short, 

medium and long), and *(') is the illumination. Based on prior research on bees’ 

photoreceptors, in this study we set perfectly uniform illumination (*(') = 1	at	all	') and the 

sensitivity factor # = 6. 

Because of the reported non-linearity in the response of photoreceptors, the receptors’ response 

to a colour	- , 4!(-) is calculated from the quantum catch, 4!(-) = !! (!! + 1)⁄ . 

Next, each photoreceptor sends an inhibitory signal to only one type of transmedullary cell in 

the medulla (TM). Hence the firing rate response of 7 − 9ℎ	TM neurons is calculated with  

 ;!&'(-) = ;$ + <!4!(-) Eq. 2 

where ;$ is the high spontaneous activity of TM cells. <! is the inhibitory synaptic weights of 

pre-synapse TM cells which take values between [-1, 0]. 

The TM cells send either excitatory or inhibitory signals to the third-order cells in the next 

layer (figure 3!) of the medulla through the matrix of synaptic weights = = >=!,)?. The 

response of the @ − 9ℎ	 third-order cells is modelled as 

 ;)*(-) = A BC =!,);!&'(-)
%

!+,

+ D*; 	F, HI Eq. 3 

where A(J; F, H	) = K$ >1 + L-.(0-1)?⁄  is the activation function and D*	represents the 

spontaneous activity of third-order neurons. The parameters F, H control the sensitivity of the 

third-order neurons to the total presynaptic input. Following Vasas et al [1], the synaptic 

weights of the these third-order cells, >=!,)?, were fitted to the empirical data [2, 3] (figure S5) 

using a gradient descent algorithm as described in Vasas et al [1]. Previously, Vasas et al. [1] 

showed that in a similar model random connectivity between transmedullary neurons and third-
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order neurons was sufficient to describe all the documented types of colour sensitive neurons 

in medulla: narrow or broad-band neurons that respond to a small or large range wavelength of 

the light and colour opponent neurons that respond to multiple ranges of light wavelengths with 

either excitation or inhibition [1].  

 

b)! Model of learning in the mushroom bodies  

After fitting the third-order cells’ responses to the empirical data, the firing rate of Kenyon 

cells (KC) of the mushroom bodies (figure 3!) is modelled as: 

 ;345(-) = A BCM3,),;)*(-) − ,677

)+,

; 	F, HI Eq. 4 

where M3,) is the synaptic connectivity between @ − 9ℎ third order neurons and N − 9ℎ KC in 

the mushroom bodies. The outputs of all KC stimulate a single mushroom body output neuron, *(-) through a vector of synaptic weights, O = (<,, <7, … <8); 	Q = 1:S)". The activity of this 

neuron in response to the colour -  is expressed by   

 ;9(-) = A TC O!. ;!45(-):!"

!+,

; 	F, HV		 Eq. 5 

For simplicity, we set the same activation function,	A(J; W, D)	for all firing rate models of third-

order cells, KC and the decision neuron (Eqs. 3, 4 and 5) with fixed parameters: K$ = 100 

spike/ sec and F = 	0.05 and H = 50. 

,6+ 	∑ [!. ;!45(-):!"
!+,  is the input of the inhibitory feedback pathway to the KC that is obtained 

from the average activity of Kenyon cells. The synaptic weights [!  control the sparseness of 

activity of the KC. Higher values of [! increase inhibitory input to the KCs (Eq. 4). This 

results in reduced or no activity in some KC. Hence, the population activity of KC becomes 

more sparse. Setting [! to 0 effectively models the system without any inhibitory feedback to 

the KC, which produces dense activity in the KC population. 

We propose that the difference in responses of *(-) to the rewarding and punishing stimuli 

must be increased during the training phase. Hence, the optimal synaptic weights, O;3<and M;3< , could be obtained from maximizing the cost function that represents the difference 

between the activity of *(-) to all pairs of the positive (-3) and negative stimuli (-=) 

 〈M, O〉;3< = W;^7WJ
〈5#,5$〉

	[;9>-3? − ;9(-=)]. Eq. 6 

If we assume 4 = ;9>-3? − ;9(-=) in the equation 6, as the cost function, we have  
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 a4aO8 = ;845>-3?b TC O!;!45>-3?:!"

!+,

; W, DV
− ;845(-=)b TC O!;!45(-=):!"

!+,

; W, DV 

Eq. 7 

 

and  

 !"!#!,#

= %# 	'!$()%)+ ,-#%,&,'&$()%)''

&()

− /*; 1, 34 + 5- %+'+,-6)%7; 1, 3.!"

+()

	8
− %# 	'!$()/)+ ,-#%,&,'&$()/)''

&()

− /* ; 1, 34+ 5- %+'+,-()/)	; 1, 3.!"

+()

8 

 

Eq. 8 

 

where b(. ) is the derivation of the activation function A.  

Finally, the reinforcement neuron (figure 3!) makes a reward- or punishment- modulated 

connection with *(-) and KC. c(9) presents the reinforcement signal that depends on whether 

a stimulus is paired with reward or punishment (c(9) = 1), or c(9) = 0 for when no 

reinforcement is presented with the stimulus. Hence, the synaptic weights of the last two layers, O and M might increase or decrease from stimuli presented at step 9  to 9 + 1 according to the 

following learning rules:  

 O8<@, = O8< + d	 a4aOA 	c(9) Eq. 9 

and  

 M8,A
<@, = M8,A

< + d	 a4aM8,A

	c(9)	 Eq.10 

where d is the time constant that controls that learning rate at which the weights change. 

 

Power Analysis  

To assess the effect of sample size on the outcomes of GLMM (table S4), a simulated data 

based on the bees’ performance in the experimental tests was generated using a Monte Carlo 

algorithm. The number of observations within groups was artificially increased to 15 bees (60 



 5 

bees in total) through the simulation (there were 5 observations at each group in the current 

data). The R Packages SIMR and LME4 were used to simulate and evaluate the extended data 

[4, 5]. !

 

References  

[1] Vasas, V., Peng, F., MaBouDi, H. & Chittka, L. 2019 Randomly weighted receptor inputs can 

explain the large diversity of colour-coding neurons in the bee visual system. Scientific Reports 9, 8330. 
[2] Kien, J. & Menzel, R. 1977 Chromatic properties of interneurons in the optic lobes of the bee. I. 

Broad band neurons. Journal of Comoparative Physiology 113, 35-53. 

[3] Kien, J. & Menzel, R. 1977 Chromatic properties of interneurons in the optic lobes of the bee. II. 
Narrow band and colour opponent neurons. . J Comp Physiol 113, 17-34. 

[4] Green, P. & MacLeod, C.J. 2016 SIMR:anR package for power analysis of generalizedlinear mixed 

models by simulation. Methods in Ecology and Evolution !, 493-498. 

[5] Bates, D., Mächler, M., Bolker, B. & Walker, S. 2014 Fitting Linear Mixed-Effects Models using lme4. 

(doi:https://arxiv.org/abs/1406.5823). 

 

  



 6 

Supplementary!Figures:  

 

Figure S1. Colour information for stimuli used in this study. a) The stimuli used in this 

experiment with RGB values, and the hexagon loci in the honey bee visual space. b) Relative 

spectral reflectance plot of the stimuli used in the training phase and the tests. c) Loci of colours 

in a model of bee colour space, describing the range of colours a bee can see given their three 

photoreceptors maximally sensitive to UV, blue, and green wavelengths. Dots indicate each of 
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the stimuli coded by colour as perceived by humans. d) The Euclidean distance between each 

pair of coloured stimuli was calculated in the hexagon colour space. Smaller distance indicates 

more similarity between colours for a bee. e) The activity of each honeybee receptor (UV, blue 

and green) evoked by each colour. Darker cell shadings indicate higher activation of the 

receptor.   
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Figure S2. Bees’ responses to different pairs of colours at the end of the training phase. 

Bees’ responses to each pair of stimuli on the last presentation of each pair of colours during 

training. The responses of bees trained to protocol A and B are presented in panels a and b, 

respectively. For group A (panel a) the colours were assigned as: C1=blue, C2=yellow, 

C3=pink, C4= orange and C= green. For group B (panel b) the colour assignment was: 

C1=green, C2=orange, C3=white, C4=yellow and C5=blue. The left bar-graphs shows the 

proportion choosing C1 over colours C2 (at bout 10 in protocol P1 and at 17 in protocol P2), 

C3 (at bout 15 in protocol P1 and at 14 in protocol P2) and C4 (at bout 12 in protocol P1 and 

at 16 in protocol P2). The second left graphs shows the proportion selecting C2 over C3 (at 

bout 17 in protocol P1 and at 12 in protocol P2) and C5 (at bout 13 in protocol P1 and at 15 in 

protocol P2). The third graph shows the proportion choosing C3 over C4 (at bout 14 in protocol 

P1  and at 11 in protocol P2)  and C5 (at bout 11 in protocol P1 and at 18 in protocol P2). 

Finally, the last bar-graph shows the performance of bees in choosing C4 over C5 at bout 16 

in protocol P1 and at bout 18 in protocol P2. This figure confirms that the bees were able to 

discriminate between all pairs of colours used in the experiment. Bars show mean and standard 

error. Asterisks show the rewarding colours was chosen more than the chance level. * indicates 

p < 0.05 and ** indicates p < 0.005.  
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Figure S3. Bees’ performance in the tests. a) the bar-graph shows the total choices of the 

bees during the first 120 sec of the learning, transfer and novel tests. b, c) Bees’ performance 
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calculated from the first 10 choices only of each bee in the learning test, transfer and novel test. 

Bars show mean frequency with which bees landed on stimuli they had experienced as more 

rewarded during training. Dashed line indicates performance expected at random.  c) In the 

novel test, bees chose the trained colours (C3) more than the novel colour. Values for each 

individual bee are shown by small empty circles in different colours: Red: group A, Protocol 

P1; Green: group A, Protocol P2; Blue: group B, Protocol P1; Yellow: group B, Protocol P2. 

There was no significant difference between (d) groups of bees trained with different colours 

(A vs B) and (e) groups of bees trained with different order of colour presentation (P1 vs P2). 

Further GLM analyses confirm that bees’ responses in the three tests did not differ between 

protocols or the colour sets used in the experiment (Tables S1). Vertical lines: s.e.m.  * indicates 

p<0.05 and ** indicates p<0.005.(f) Results of power analyses for each behavioural test 

assuming mean and variance in performance seen in this study. Our sample size was 20 and 

these power analyses suggest we had more than acceptable power (80% is a threshold power 

that is commonly accepted).  
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Figure S4. Number of visits to stimuli that were reinforced and punished in the training trials. 

The stacked bars show the average number of punished and rewarded visits that bees 

experienced from each colour in the training phase a) Group A; b) Group B).  
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Figure S5. Diverse activities of medulla neurons generated by the model. Plots show the 

spectral tuning curves of third-order neurons. The red curves show the empirically measured 

spectral tuning curves reported in [2, 4]. The blue curves show the model responses of the third-

order neurons in the medulla to different colours.  
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Figure S6. Model’s performance in discriminating 66% rewarded colour from the novel 

colour. Mean ± SE of the model’s performance in discriminating a colour rewarded 66% of 

time in training from a novel colour. Data generated from 50 different initial parameters that 

simulated 50 different model bees following training with protocol P1 or P2 (Table !).  
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 Figure S7. a) The performance of the model with low sparseness in the Kenyon cell 

population. The matrix shows the performance of the model in the colour discrimination task. 

The colour of each matrix element displays the performance of the model to two 

monochromatic colours whose wavelengths are presented on the x and y axes. The performance 

of the model in colour discrimination is reduced when the number of KCs activated by any 

colour is increased (compare with figure 3b). b & c). Performance of the model with connection 

plasticity in layer V only (figure 3). The model was trained in the history of reinforcement 

paradigm with two different colour sets, shown beneath panels b and c. This model with no 

plasticity in connection matrix W (figure 3) is not able to reproduce the performance of bees 

in the transfer test (compare with figures 1c and 3c). The performance of the model in the 

transfer test is sensitive to the set of training colors. The model chose a 66% rewarded colour 

more than a 66% punished colour if the five training colours were ordered from low wavelength 

to high wavelength by reinforcement history during training (b). However the model did not 

learn to prefer the 66% rewarded colour if training colours were randomly assigned a 

reinforcement history (c). Bars were calculated from the performance of the model for 50 

different initial parameters each initial parameter provides the responses of a model bee. 
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Supplementary Tables  

Stimulus 
% trials 

rewarded 

%  trials 

punished 
    Colour Pairs 

C1 100 0 

C1 vs C2 

C1 vs C3 

C1 vs C4 

C1 vs C5 

C2 66 33 

C2 vs C1 

C2 vs C3 

C2 vs C5 

C3 50 50 

C3 vs C1 

C3 vs C2 

C3 vs C4 

C3 vs C5 

C4 33 66 

C4 vs C1 

C4 vs C3 

C4 vs C5 

C5 0 100 

C5 vs C1 

C5 vs C2 

C5 vs C3 

C5 vs C4 

(Novel colour) 0 0 

… 

 

Table S1. Summary of training trials. Each colour was paired with all others, except for 

pairing C4 with C2. This pairing was excluded from the training procedure to use as a novel 

pair in the transfer test. In each pairing the higher ranked colour (red) was rewarded and the 

lower ranked colour punished (blue).   
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Protocol P1 Protocol P2 
!

# Bouts Stimuli at each bout 

1 C1 vs C2 

2 C3 vs C5 

3 C1 vs C4 

4 C2 vs C5 

5 C3 vs C4 

6 C1 vs C3 

7 C4 vs C5 

8 C2 vs C3 

9 C1 vs C5 

10 C1 vs C2 

11 C3 vs C5 

12 C1 vs C4 

13 C2 vs C5 

14 C3 vs C4 

15 C1 vs C3 

16 C4 vs C5 

17 C2 vs C3 

18 C1 vs C5 

!

# Bouts Stimuli at each bout 

1 C3 vs C5 

2 C1 vs C2 

3 C1 vs C4 

4 C2 vs C5 

5 C1 vs C3 

6 C3 vs C4 

7 C1 vs C5 

8 C4 vs C5 

9 C2 vs C3 

10 C1 vs C5 

11 C3 vs C4 

12 C2 vs C3 

13 C4 vs C5 

14 C1 vs C3 

15 C2 vs C5 

16 C1 vs C4 

17 C1 vs C2 

18 C3 vs C5 

Tables S2 & S3. Training sequences. Two different protocols for training were used. Each 

protocol was created by ensuring bees experienced each pair of colours in each half of the 18 

training bouts. Otherwise colour pairings were ordered randomly. 10 bees were trained with 

P1, and 10 with P2. 
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Table S4. Summary of generalised liner mixed models (GLMM) of original data. GLMM 

exams the effect of the training protocol, the colour set and their interaction on bees’ responses 

in the learning, transfer and novel tests. The dependent variables for each GLMM were the 

performance of the bees in the learning test, transfer test and novel tests (proportion of correct 

choices, figure S3). Bee index was included in the models as random factors.  

  

Dependent 

variable 
Fixed factors Estimate SE tStat DF pValue 

Bees’s 

performance in 

the learning test 

Intercept 0.0154 0.0025 6.1524 16 1.3909e-05 

Protocol -0.0022 0.0015 -1.461 16 0.16 

Colour set -0.0028 0.0015 -1.824 16 0.08 

Protocol:Colour set 0.0014 0.0009 1.5208 16 0.14 

Bees’s 

performance in 

the transfer test 

Intercept 0.0183 0.0056 3.215 16 0.005 

Protocol -0.00017 0.0036 -0.049 16 0.96 

Colour set -1.28e-05 0.0036 -0.003 16 0.99 

Protocol:Colour set -0.0010 0.0022 -0.449 16 0.65 

Bees’s 

performance in 

the novel test 

Intercept 0.0108 0.0036 2.990 16 0.008 

Protocol 0.0012 0.0023 0.517 16 0.61 

Colour set 0.0012 0.0023 0.548 16 0.59 

Protocol:Colour set -0.0004 0.0014 -0.314 16 0.75 
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Table S5. Summary of generalised liner mixed models (GLMM) of simulated data. 

GLMM evaluates the effect of the training protocol, the colour set and their interaction on 

simulated data that was generated from the original bees’ responses in the learning, transfer 

and novel tests assuming the sample size was 15 bees per groups per protocol (60 bees in total). 

The simulated data was obtained from Monte Carlo simulation based on the bees’ performance 

in the test for more sample size (see supplementary methods). The dependent variables for each 

GLMM were the performance of the bees in the learning test, transfer test and novel tests 

(proportion of correct choices). Bee index was included in the models as random factors.  

 

  

Dependent 

variable 
Fixed factors Estimate SE tStat DF pValue 

Bees’s 

performance in 

the learning test 

Intercept 0.0158 0.0027 5.777 16 7.62-09 

Protocol -0.0017 0.0017 -1.036 16 0.30 

Colour set -0.0029 0.0017 -1.674 16 0.09 

Protocol:Colour set 0.0011 0.0010 1.091 16 0.27 

Bees’s 

performance in 

the transfer test 

Intercept 0.0162 0.0057 2.815 16 0.004 

Protocol -0.0014 0.0036 -0.391 16 0.69 

Colour set -0.0018 0.0036 -0.4949 16 0.62 

Protocol:Colour set -0.0022 0.0023 -0.984 16 0.32 

Bees’s 

performance in 

the novel test 

Intercept 0.0132 0.0039 3.338 16 0.008 

Protocol -0.0002 0.0025 -0.082 16 0.93 

Colour set -0.0001 0.0025 -0.053 16 0.95 

Protocol:Colour set 0.0006 0.0015 0.405 16 0.68 
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Bee 
index 

Protocol Group 
learning 
test (%) 

Transfer 
test (%) 

Novel 
test (%) 

1 P1 A 90 57 87 

2 P1 A 77 56 89 

3 P1 A 85 68 77 

4 P1 A 100 62 71 

5 P1 A 72 52 64 

6 P1 B 84 51 65 

7 P1 B 94 84 75 

8 P1 B 100 86 77 

9 P1 B 100 47 68 

10 P1 B 100 63 80 

11 P2 A 93 72 62 

12 P2 A 100 66 73 

13 P2 A 100 52 88 

14 P2 A 93 75 71 

15 P2 A 69 56 73 

16 P2 B 95 88 80 

17 P2 B 87 70 89 

18 P2 B 86 73 63 

19 P2 B 85 60 70 

20 P2 B 96 76 56 

Table S6. Bees’ performance in the experiment tests. The table shows the responses of each 

individual bee to the learning, transfer and novel test (see figure 1). 

 

Supplementary Video 

Video S1: Sample video of honey bee in transfer test. 


