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Optimal Smooth Paths based on Clothoids for Car-like Vehicles in the

Presence of Obstacles
Edward Derek Lambert, Richard Romano and David Watling

Abstract: Automated Guided Vehicles are increasingly used for material transfer in factory and warehouse envi-

ronments amongst humans and human operated vehicles. Safe and efficient operation is challenging when there is a

mix of human and automated traffic as fixed guide paths can become blocked more frequently. In this work we aim

to show smooth and efficient paths based on clothoid curves can be used to automatically plan diversions which can

be traversed at high speed by automated fork-lift vehicles, which are car-like in the sense they have a limited turning

radius and angular acceleration. The approach, based on numerical optimisation within convex region constraints

is described in detail, and numerical results for curvature and sharpness are compared to a cubic spline on a small

number of simulated environments. The clothoid spline is less affected, in terms of its objective function, by a shift

in the obstacle boundaries than a cubic spline, for obstacle shifts below 0.5m. The clothoid spline takes longer to

converge for but the output path has attractive qualities like lower peak sharpness, enabling high speed operation.

The method is therefore most useful for applications where path quality is important and updates are required less

frequently. Changing the objective function by increasing weighting parameter b allowed the path shape to be tuned

to reduce the peak sharpness, at the cost of increasing the total length. With b > 100, convergence was poor because

parts of the spline were pushed outside the assigned region, an artefact arising from the constraints only being en-

forced at the start and end of each segment. The analytical Jacobian of the constraints was effective at reducing the

number of function evaluations to reach convergence.

Keywords: Continuous curvature path planning, Non-linear, Optimal, Nonholonomic car-like vehicle, Obstacle

Avoidance, Convex Regions

1. INTRODUCTION

Consider a fleet of Autonomous Guided Vehicles

(AGV) moving material in an automated manufactur-

ing plant. A lattice roadmap made up of virtual guide

paths is a widely used solution for planning the motion of

each AGV [1]. This is designed by engineers installing the

AGV system, and may remain in use for many years. In

environments which are shared with humans and human

operated vehicles there is a greater probability of unex-

pected obstructions blocking the guide paths. Automatic

replanning to avoid these obstructions has the potential to

increase performance and robustness of shared environ-

ment AGV systems. Although numerous techniques have

been developed for planning paths of car-like vehicles

around obstacles [2], none has achieved wide acceptance

in industry [3] [4]. The problem addressed in this paper

is finding a smooth path around obstacles which can be

followed exactly by a vehicle with car-like dynamics.

It is important to consider the variety of solutions which

have been developed already in this area. A range of tech-

niques for motion planning are well described with exam-

ples in [5] including graph search methods such as Prob-

abilistic Roadmaps with Dijkstra in addition to incremen-

tal search methods like Rapidly Exploring Random Trees.

[6] goes into more detail for only those techniques suit-

able for on-road autonomous vehicles and [2] gives opti-

mality and completeness results for many in a handy com-

parison table. Recent developments have used gradient de-

scent to modify Bezier curves based on obstacle keypoints

[7], evaluated alternative clothoid tentacles [8] and found

the parameters of interpolating clothoids as an optimisa-

tion [9]. The benefits of clothoids for controlling lateral

acceleration identified in [10] can be exploited by unoc-

cupied vehicles, which can travel faster on smooth paths

without lateral instability [11][12].

Path planning techniques can be divided into spatial

sampling based and continuous methods. Sampling based

planning algorithms operate on a discretization of the

state space. Into this category fall roadmap planners such

as [13] where the graph resulting from discretization is

reused multiple times. The graph for adaptive paths is

likely to be used only once as the obstacle field is likely

to change based on recent sensor data. Roadmap planners

are still extremely useful at the global scale where local

sensor updates are less relevant. One result is the split ar-
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chitecture described by [2] where a roadmap planner is

used for strategic planning (planning over a longer time

scale like a few minutes, extending from one part of the

site to the other) and a different approach is used for tacti-

cal planning (creation of a detailed trajectory for the next

few seconds). [14] describe this approach, using different

techniques for the two time-scales as integration planning.

There are other sampling based methods which can also

be useful for path adaptation where local sensor updates

are important such as Dense Random Trees as described

in [15] and [16] where the discretization is performed as

the search proceeds. Sampling is frequently used to make

problems of high dimensionality feasible, but can only of-

fer resolution completeness. This is the guarantee that if

a solution exists at the sampling resolution, then it will

be found. Sampling from configuration space can result in

paths which must be smoothed before they are traversable,

so the most relevant techniques are based on sampling

from the control space, or using parametrized curves so

that every sample is feasible as in [17]. A frequent issue

with dense random tree sampling methods is the introduc-

tion of artefacts in the solution which are difficult to re-

move by post-processing.

By contrast, the family of solutions based on numer-

ical optimisation which operate directly on the continu-

ous state space offer improved path quality and guaran-

tees. These methods can be divided into parametric for-

mulations which describe the path as some type of curve

such as a polynomial [18] and those where the path is

represented by a series of time samples which satisfy the

differential constraints such as Timed Elastic Bands [19].

Compared to parametric methods, those optimising over a

series of samples must search a much greater number of

variables and also account for more constraints. This leads

to additional computational burden, so they are often lim-

ited to a short time horizon and make use of a reference

path to linearise obstacle constraints as the tactical planner

in [20] which also uses output constraints to turn overtak-

ing into a convex problem. For longer paths which can be

stored in limited memory and reused parametric methods

may be preferable, provided they are able to represent the

dynamic limitations of the AGV.

Path representations which are suitable for the dynamic

constraints of car-like vehicles can be based on differ-

ent types of spline. Splines which are Cartesian can be

calculated conveniently but they are only traversable if

polynomial terms up to 5th order are included [21]. Po-

lar splines have a smoothly varying curvature at first or-

der and above but they are unable to represent a straight

line they must be mixed with other curve types to form

a complete path. Other curve types such as Bezier curves

exist but one representation which is particularly suited to

industrial AGV roadmaps is the clothoid curve or Euler

spiral [22]. Using this parametrization, and constraining

peak curvature and sharpness, the resulting path will be

feasible for a car-like vehicle at non-zero speed. The im-

portance of sharpness limitation is sometimes overlooked

but this is a real physical limit on the motion of a vehi-

cle. This is because the sharpness is proportional to the

angular acceleration at a constant traversal speed. Previ-

ous work on finding clothoid based paths around obstacles

has mostly used spatial discretization to generate a series

of points between the origin and destination, followed by

curve fitting to find the clothoid segments which best fit

to the points. This is a practical solution and variants of it

are used by [23] who generates the key-points from a se-

quence of position samples from a manual drive, and [24]

who fits to a series of predefined manoeuvres: u-turn, lane

change and so on. As with other sampling based methods,

the choice of sample points affects the final solution, lead-

ing to suboptimal solutions. This was made clear in [25]

where sampling and curve fitting was compared to a direct

optimisation method.

An early method for creating continuous curvature

paths based on clothoids, arcs and straight lines was the

CC-Steer algorithm [26]. This local planner could be used

to connect samples from configuration space to create a

probabilistic road map. A similar algorithm from around

the same time from [27] was also able to create CC-paths

without using clothoids by considering curvature continu-

ity while approximating a holonomic path with a heuristic

exploiting the differential flatness of car pulling trailers.

Differential flatness of a dynamical system indicates the

prior states can be determined from the current state with

no exogenous variables [28]. Fraichard et al [26] showed

CC-Steer approximated Reeds-Shepp [29] paths which are

provably the shortest for connecting points with heading

continuity. Using the maximum sharpness and maximum

curvature to produce the shortest path is fundamental to

the operation of CC-Steer, but this is not the only impor-

tant objective. Often it is preferable to minimize the sharp-

ness of turns in order to reduce lateral forces and maintain

high speed.

The contribution of Henrie and Wilde [24] was to de-

scribe an algorithm to join two configurations with the

least maximum curvature and least sharpness to create

comfortable paths similar to those a human driver would

follow. This used symmetric clothoid pairs to assemble

paths with the same structure as [26]. One limitation of

this work is that the clothoid pairs are always arranged

symmetrically which limits the range of manoeuvres. This

was addressed by the bisection method proposed by [23]

which performs a numerical search to find either two or

four clothoid segments, which are not required to be sym-

metrical, only matched so that the curvature at the end is

zero. Another contribution of [23] is to test one approach

for creating smooth global plans by fitting arcs and lines

and clothoids to a series of samples from a GPS trace of

a test vehicle driven by remote control. [30] goes into fur-

ther detail in an Appendix B regarding the reachability of
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clothoid pairs, but does not examine the geometric limits

discussed in Section 2.2. The search procedure is fast at

finding the parameters which meet the constraints but no

algorithm is given for the correct choice of points to inter-

polate given a set of obstacles.

Recent works searching for paths with limited curva-

ture rate such as [31] who used a superset of clothoids to

find the best approximation to a holonomic path with lim-

ited curvature and provide a tuning parameter that could

be tweaked to avoid obstacles. [32] also approximated

holonomic paths but trained a neural network to speed up

generation of the initial parameter guess. A double con-

tinuous curvature (DCC) path planner is a component in

the path tracker described in [12]. The shortest DCC path

from the current pose to the global reference path is found

every control cycle by Nelder-Mead without considering

obstacles. Silva et al [33] found a compact representation

of a smooth road centre line consisting of arcs, lines and

clothoids using existing methods to join certain key poses

e.g.[34], depending whether they would track a round-

about or a straight road. Others such as [35] used a smooth

road centre line as a reference to linearise the obstacle con-

straints and then sequentially minimized maximum curva-

ture and sharpness in addition to deviation from the refer-

ence path.

In this paper we present a numerical optimisation for-

mulation which can be used to find a clothoid spline

which reaches an arbitrary goal through a series of convex

obstacle-free regions. This is distinct from earlier works

such as [9] as in this paper only the start and the goal

poses are fixed, providing freedom to improve the objec-

tive within the natural constraints of obstacle polygons

rather than being tied to heuristically selected waypoints.

It can also be trivially adapted for point-to-point curve fit-

ting similar to that of [23] but with the resulting path min-

imizing an arbitrary cost function over its length as de-

scribed in Section 4.4. The new method is able to take

into account constraints arising from obstacles directly,

and finds a result using highly optimised off-the-shelf non-

linear optimisation algorithms: Interior-Point Method and

Sequential-Quadratic-Programming were tested. Rather

than simulate a path following controller with a specific

dynamic model, we reproduce results from an existing

root finding method for the smoothest (least sharp) path

[23] where the clothoid curve outperformed other primi-

tives. The solution presented improves on current meth-

ods with a way to find an optimal path directly from the

obstacle representation without introducing sampling bias

by selecting waypoints. Constraints and soft objectives are

separated and a weighting parameter introduced which al-

lows control over the trade off between minimum sharp-

ness and path length. This makes adaptive clothoid paths

useful for a multi-AGV site which must have predictable

behaviour and high efficiency.

2. MATHEMATICAL REPRESENTATION AND

PROBLEM DEFINITION

Clothoid curves are widely used and appreciated for

creating smooth drivable paths with limited angular ac-

celeration. They are infrequently within a numerical opti-

misation framework, instead many heuristic methods for

calculating their parameters have been developed. In what

follows we look at the properties of clothoids which are

relevant to numerical optimisation.

2.1. One Clothoid Segment

0.2 0.4 0.6

x(m)

0

0.1

0.2

0.3

0.4

0.5

y
(m

)

=5

Fig. 1. Clothoid spiral with α = 5 for s > 0

The clothoid is defined as a curve whose curvature κ

increases linearly along its length. The rate of increase is

called the sharpness α = dκ/ds. Points on such a curve

are defined by two parameters; the arc length s and the

sharpness α . These two parameters describe a curve spi-

ralling out of the origin along the x axis towards one

asymptote with infinite positive curvature (turning anti-

clockwise) in the positive x− y quadrant for s > 0,α > 0

, and towards a negative asymptote with infinite negative

curvature in the negative x− y quadrant where heading is

decreasing (turning clockwise) for s < 0 or α < 0. The

negative distance curve is just a reflection of the positive

one and all arcs can be joined by appropriate rotation and

translation so we may fix s ≥ 0. The positive part of the

curve with sharpness α = 5 is shown in Figure 1. It can be

evaluated in Cartesian coordinates with the Fresnel inte-

grals which are reproduced in Equations 3-4. The change

in angle over one segment is the deflection δ .

κ = κ0 +αs (1)

δ =
∫ s

0
(κ0 +αu)du = κ0s+

αs2

2
(2)

x =C(α,s,κ0) =
∫ s

0
cos(κ0 +αu)du (3)
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y = S(α,s,κ0) =
∫ s

0
sin(κ0 +αu)du (4)

The symbol ψ will be used for resultant heading angle

after a number of segments. Whereas each δ increases un-

bounded, ψ is an angle measured clockwise from positive

x direction and may be wrapped in the range [0,2π] with-

out consequence. The configuration of a rigid body in a

2D plane with components [x,y,ψ] will be referred to as a

pose. See Appendix 2 for more details. The range of poses

reachable by varying the parameters of a single segment

are limited. Any x and y position can be reached by choice

of parameters α and s - this makes intuitive sense as the

parameter space is two dimensional as are the constraints.

In order to meet heading ψ and curvature κ constraints as

well, a spline composed of multiple clothoid segments is

needed. Note that a clothoid segment with α = 0 will form

either a straight line of length s if the initial curvature is

zero or an arc of length s otherwise.

2.2. Required number of Segments for Interpolation

First we consider G2 interpolation with clothoids of fit-

ting the minimum number of clothoid segments to a se-

ries of points with fixed [x,y,ψ,κ] as addressed in [9][36].

This is helpful to understand the way the required number

of clothoid segments varies depending on the constraints

applied. As we intend to optimise some objective func-

tion of the curve it is required that the solution is under-

determined, that numerous feasible solutions to the inter-

polation problem exist allowing us to search over them to

find the best.

G2 continuity is needed for a smooth path which is

traversable for a car-like vehicle [23] [24]. Its importance

for fork lift operation is detailed in [12]. As explained

in Section 2.1 there are two additional degrees of free-

dom available for each clothoid segment included in a G2-

continuous spline. The requirement to end on a specified

point with [x,y,ψ,κ] provides four constraints. This im-

plies that there is a unique solution for two segments per

point as this gives rise to four parameters and four con-

straints.

x

y

φ ψ

More than
two

Two
Segments

κ

s

Fig. 2. φ is the lower limit on heading ψ at position x, y

reachable from the origin with the blue curve with-

out adding a third clothoid segment to create an S

shape as shown in green. Corresponding curvature

κ arc length s trace is plotted alongside.

In order to connect a clothoid segment with a straight

line keeping G2 continuity, the clothoid must have zero

curvature at the point of connection. A clothoid pair with

zero curvature at the end can be described as ’matched’:

The curvature change κ =α ·L over each segment is equal

and opposite. Such a pair is shown in Figure 2 along-

side a curvature-arc-length plot for illustration. Gim et

al[23] show that the minimum reachable heading with two

matched clothoids is given by Equation 5.

ψ > φ = arctan(
y

x
) (5)

This is because an s-shaped curve cannot be formed with

only two segments as illustrated in Figure 2. In [23]

smaller angles are addressed with a second algorithm

which computes two matched clothoid pairs (four seg-

ments total) instead. The advantage of the method is that

the clothoids do not have to be symmetrical, so the final

position can be reached with a lower sharpness and peak

curvature as well as a shorter path length in some cases

compared to using symmetric clothoid pairs.

h

g

ψ

g

h

ψ

P PX1

x x

X2

X2

X1

Fig. 3. The two limiting positions for an unsymmetrical

clothoid pair without line segments reaching an an-

gle ψ according to the g/h condition in Equation 6.

For ψ = 90,
IC(ψ)
IS(ψ) = 1.7749
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The condition for the existence of an unsymmetrical

clothoid pair to fit three non-collinear points is given by

Equation 6 reproduced from [37].

g

h
+ cos(ψ)

sin(ψ)
<

IC(ψ)

IS(ψ)
(6)

The Fresnel Integrals defining the Cartesian position of

a clothoid given in Equations 3 and 4 in Section 2.1 can

equivalently be expressed as integrals over deflection δ as

defined in Equation 2.

x = a · IC(δ ) = a ·
∫ δ

0

cosu√
u

du (7)

y = a · IS(δ ) = a ·
∫ δ

0

sinu√
u

du (8)

Equation 6 gives a maximum ratio of g/h in terms of

the final angle ψ . The length g is always the distance to

the furthest point from the intersection P and h is the dis-

tance to the closer point, as shown in Figure 3. As the

condition is given in terms of points rather than poses, the

requirement that the points not be collinear is equivalent to

Equation 5 because ψ = φ would indicate collinearity and

ψ < φ would result in the opposite initial heading given

by vector X1 −P. In order to avoid very short, high sharp-

ness segments, straight line segments can be introduced

before or after the clothoid pair as suggested in [37]. This

allows unequal cases beyond the limits shown in Figure 3

to be fitted.

Using six parameters to describe two matched clothoids

with zero curvature at the beginning and end permits the

inclusion of a straight line at either end. The parameters

would be two for each clothoid segment (total four) and

two more for the length of the straight line at either end.

The paths created for automated driving by [23] use a

matched clothoid pair (two segments) for any corner. With

this number of segments, there are certain unreachable

poses as an s-shape cannot be formed within one region.

The limited flexibility of these paths should be sufficient

for executing a turn and returning to zero curvature in each

region.

2.3. Obstacle Field Representation

Any field of polygonal obstacles can be equivalently

represented as a set of possibly overlapping convex re-

gions of free space [5]. The steps of a path planning al-

gorithm utilising convex regions can be divided into the

following steps:

1. Spanning. Convert obstacle representation into a

small number of possibly overlapping convex regions

which span the free space.

2. Assignment. Assign Path segments to a sequence of

connected regions between the region containing the

start to the region containing the goal

3. Curve Fitting. Solve for the best path from the start to

the goal which remains within this sequence over its

entire length

The ‘Spanning’ problem involves calculating a mini-

mum number of spanning regions and is an NP hard prob-

lem in itself. A common representation of an obstacle field

constructed from range data is an occupancy grid [38].

This consists of a 2D array of cells and can be created

from uncertain range measurements from vehicles which

are able to estimate their own position [39]. Each cell rep-

resents an area of the floor, with a number p ∈ [0,1] indi-

cating the probability it contains an obstacle. A threshold

can be used to create a binary map of occupied and un-

occupied cells. The coarse obstacle-free region sets used

in the numerical examples can be generated using the ver-

tical decomposition method [40]. This begins with piece-

wise linear polygons, which can be created by connecting

the cell corners of a binary occupancy grid. More complex

environments and cluttered obstacle fields could be ad-

dressed using Iterative Region Inflation by Semi-definite

Programming as described in [41].

The advantage of the regions being convex is that they

can be solved guaranteeing optimality (that no other pa-

rameter set can minimize the objective further) and com-

pleteness (that if a path exists it will certainly be found).

Given that the polygonal representation is only an approx-

imation to the real obstacle field, it can only offer com-

pleteness within the limits of the resolution used to repre-

sent the obstacles but this provides more freedom than a

series of pose samples chosen heuristically and may per-

mit lower cost solutions in some cases.

Deits and Tedrake [18] use a mixed integer formulation

which addresses ‘Assignment’ and ‘Curve Fitting’ simul-

taneously to achieve optimal results.‘Assignment’ can also

be approached as a graph problem, where there is a node

for each region. Edges are inserted between regions which

are connected. Connected regions can be found easily in

configuration space as the vehicle is reduced to a point and

therefore if any corner of a region is contained within any

other, it is certain one is reachable from the other and they

should be connected in the graph. Using the straight line

distance between region corners to give an edge weight-

ing, results in an approximation of the shortest global path.

In this way the topology can be solved separately, com-

pensating for one weakness of numerical optimisation, the

‘topological blindness’ identified in [42].

2.4. Test Environment 1

The first test environment was created for a hypothetical

item fetch AGV with a payload of 50kg and a top speed of

1m/s.

A simple region shape for exposition is an axis aligned

rectangle extending from xmin to xmax and from ymin to ymax.

Regions for the local avoidance problem are shown in Fig-
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ure 4. We assume the assignment is available between N

regions and N clothoid pairs. Referring to Figure 4, the

first pair will be assigned to the blue region, the second

pair to the red region and the last pair to the amber region.

Fig. 4. Example of an obstacle field represented as a set

of possibly overlapping empty convex regions. The

reference path is a straight dashed line along the

x-axis (to the right). The largest dimension of the

vehicle body used to expand the obstacles d and

the maximum deviation from the path is q.

2.5. Test Environment 2

L

r

W

R

Lb

S0

S0 +R

Fig. 5. Dimensions used to expand the obstacles

Table 1. Dimensions from datasheet [43]. *Stopping dis-

tance R based on top speed 3.22m/s and hypo-

thetical braking deceleration of 4m/s2

Parameter Dimension (mm)

W 1067

L 1583

r 1289

Ls 1001

S0* 1200

R* 1300

Fig. 6. Pallet environment. Obstacles are black with ex-

pansion by the vehicle disk shown in purple.

The second test environment was created for an au-

tomated fork lift AGV research platform which is taken

to be representative [44]. The obstacles are based on

(1.0×1.2)m pallets which are commonly used in the UK

and Netherlands [45]. The datasheet for the manually op-

erated vehicle on which the AGV is based, a Hyster E30-

40HSD [43] gives the dimensions in Table 1. The plan of

the vehicle is given in Figure 5.

The datasheet gives the maximum speed as 7.2 miles

per hour (3.22m/s). Traction is provided by dual 4.8kW

motors. The unloaded weight of the vehicle is 3059kg and

the battery 1043kg for a total of 4201kg [43].

For correct operation it is important to consider the

exclusion zone of the safety rated range sensor fitted to

the front of the vehicle. If an obstacle breaches the ex-

clusion zone the AGV must perform an emergence stop,

or in some cases slow down significantly. To avoid slow-

ing down the path planning must account for not only the

shape of the vehicle but also the shape of this zone. Often

this is a cuboid slightly wider than the vehicle, sufficiently

long that the AGV can come to a complete stop from full

speed before the front makes contact with a static obstacle.

More details are available in the NIST Safety Standards

[46].

In the two simulated environments the obstacle field

is represented in 2D. The bounding circle dimension is

strongly influenced by the stopping distance R. Starting
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from the constant acceleration equation v2 = u2 +2as and

setting v = 0 gives the stopping distance s = u2

−2a
.

2.6. Problem Definition: Clothoid Fitting to Convex
Regions

The core problem is G2 continuous path planning

around obstacles for a point robot. Using a convex span-

ning region approach described in Section 2.3 this can be

divided into a small number of sub-problems. This pa-

per addresses the ‘Curve Fitting’ sub-problem in detail

using the path representation set out in Section 2.2. The

approach is described in Section 3.

The requirement for G2 (curvature) continuity provides

four constraints on each segment similar to the posture in-

terpolation problem [9]. In each region we permit one path

piece consisting of a line segment length s0,i, a matched

pair of clothoid segments defined by α1,i,α2,i,L1,i,L2,i and

the other line segment length sF,i, as explained in Section

2.2. This provides a total of six free parameters per path

piece. As there are only four constraints per region the

problem is under-determined and the length of the straight

lines can be balanced against the length of the clothoids to

find the ideal combination. We consider the start and end

region to always be separate even if they overlap, so there

will be a minimum of four clothoid segments across the

whole spline and s-shapes are feasible.

3. METHOD: CLOTHOID FITTING TO CONVEX

REGIONS

The core routine is a method to find the parameters

of a sequence of G2-continuous (continuous in curvature)

clothoid segments which is contained entirely within a

chain of obstacle-free regions. We minimize the weighted

squared sum of path length and sharpness, over a sequence

of N path pieces assigned to N convex regions. The ob-

jective function is designed to trade off smoothness with

path length such that the best path is one that minimizes

the weighted squared sum of sharpness and path length

to reach the x, y, ψ and κ of the reference path. This is

captured in Equation 9 below:

min
α,L,s0,sF

JT = b ·αTα+LTL+sT
0
s0+sT

F sF

such that

{

ceq(α,L,s0,sF ) = 0

c(α,L,s0,sF )≤ 0

with bounds L≥ 0,s0 ≥ 0,sF ≥ 0

(9)

Bold variables indicate vectors of the parameters defined

in Section 2.1 for every path piece. Scaling parameter b

is discussed in Section 3.1. The equality constraints arise

from enforcing continuity between each piece and of the

first and last segments with the origin and destination re-

spectively. The inequality constraints relate to the require-

ment to remain outside every obstacle. The first deriva-

tives of the objective and constraints are given in Ap-

pendix 1.

3.1. Objective Function

Two important objectives for an alternative path for an

AGV are the total length and the peak sharpness. Both of

these properties are desirable rather than mission critical

so they are useful in resolving the many solutions which

are available to reach a given pose smoothly. Other perfor-

mance measures such as reaching the destination exactly,

limiting the peak curvature and avoiding the obstacles are

better interpreted as hard constraints, as it is not useful to

compromise them in any way for the measures which are

only desirable.

The degree to which smoothness is important com-

pared to path length may depend on the application so

it is left with a scaling parameter b. The units of b are

m2 per radian2/m4 = m6·radian−2. If b is set very high,

smoother paths can be attained, at the cost of increasing

path length. In general there is a trade off between path

length and smoothness (measured by the least maximum

rate of change of curvature as identified by [24]).

Results will be reported with three alternative parame-

ters settings for b, with and without the straight lines, as

described below.

• Equal Weighting with Lines, b = 1, min
αi,Li,s0,sF

JT =

N

∑L2
i +

N

∑α2
i

• Equal Weighting no Lines, b = 1, s0 = 0, sF = 0,

min
αi,Li

JT =
N

∑L2
i +

N

∑α2
i

• Minimum Sharpness, no Lines, b = inf, s0 = 0, sF =

0, min
αi

JT =
N

∑α2
i

3.2. Equality Constraints for Region i

The continuity constraint is to reach the next point given

by [x̂, ŷ, ψ̂,0]T . A straight line s0 before and sF after the

clothoid pair is included while maintaining curvature con-

tinuity by the constraint κ = 0 which forces the clothoid

pair to be matched, smoothly returning the curvature to

zero at the end.

For multiple regions, the continuity constraints are ap-

plied implicitly by integrating each segment starting from

the final pose of the last. As the curvature is zero at the

end of each pair, this can be done by integrating pairwise

from the origin as in Equation 10 followed by a rotation

and translation to the final pose of the last segment using

the ⊕ operator detailed in Appendix 2. This is an example

of single shooting trajectory optimisation as described in

[47]. Each region gives rise to one additional κ = 0 con-

straint, to ensure the straight lines s0,i and sF,i can be added
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with curvature continuity.



































xi

s0,i +C(α1,i,L1,i,0)

+cos(δ1,i) ·C(α2,i,L2,i,km,i)

−sin(δ1,i) ·S(α2,i,L2,i,km,i)

+sF,i · cos ψ̂i

yi

sin(δ1,i) ·C(α2,i,L2,i,km,i)

+cos(δ1,i) ·S(α2,i,L2,i,km,i)

+sF,i · sin ψ̂i

ψi α1,iL
2
1,i/2+α2,iL

2
2,i/2

κi α1,iL1,i +α2,iL2,i



































(10)

The path in local coordinates for one piece given by

Equation 10 can be composed using the ⊕ operator to find

the final position in global coordinates.

[Xi,Yi,Ψi]
T = [Xi−1,Yi−1,Ψi−1]

T ⊕ [xi,yi,ψi]
T , ∀ i ∈ [1,N]

where capital letters indicate global coordinates. The first

region is given the index i = 1. [X0,Y0,Ψ0] indicates the

starting position. This is taken to be the origin of the coor-

dinate system.

3.3. Equality Constraints Vector

Subtracting the goal pose from the Nth pose in global

coordinates gives the equality constraints, where N is the

total number of convex regions under consideration.

ceq =



















XN − X̂

YN − Ŷ

ΨN − Ψ̂

κ1 −0
...

κN −0



















= 0 (11)

Note that the ceq array is length N +3 as there is a con-

straint on curvature at the end of each clothoid pair κi. The

other quantities are scalar and refer to the pose of the final

segment at the end of the spline.

3.4. Inequality Constraints

In order to operate on the obstacle field directly and

avoid spatial sampling, inequality constraints are used to

fix the segments inside their assigned regions. The assign-

ment of curve sections to regions will not be discussed

here, but can be approached as an integer problem to find

the boolean assignment matrix H (N×R) which results in

the lowest cost solution. R is the number of regions in the

map, and N is the number of pieces of the spline between

the start and the goal. A simple region shape for exposi-

tion is an axis aligned rectangle extending from Xmin to

Xmax and from Ymin to Ymax. This leads to the following

eight inequality constraints on every region, ensuring that

both the start and end of each piece are contained.

Based on the assignment H(i, j), indicating path piece

i must be entirely contained in region subscript j. The con-

straints for one region are given by

H(i, j) = 1 ⇐⇒ di =

























Xi −Xmax, j

−Xi +Xmin, j

Yi −Ymax, j

−Yi +Ymin, j

Xi−1 −Xmax, j

−Xi−1 +Xmin, j

Yi−1 −Ymax, j

−Yi−1 +Ymin, j

























≤ 0 (12)

These inequality constraints ensure the start and end of

the curve piece i assigned to region j remain inside the

region. The position at the start of curve i is identical to

the position at the end of curve i−1 by the application of

the continuity constraints. For the first curve the start is

fixed at the origin by the choice of coordinate frame. The

inequality confirms that the initial position must be in a

region of free space for a solution to exist.

The constraints for the entire problem can be con-

structed by stacking di for each region into a partition vec-

tor as follows

cineq =







d1

...

dN






≤ 0 (13)

Constraint Equation 12 only applies to the start and end

of each clothoid pair, not the entire curve. This works quite

well when the curvature remains low but will cause a prob-

lem for certain combinations of region shape and path cur-

vature as discussed in Section 4.2.

3.5. Multiple Shooting Formulation

Alternatively the problem can be posed as a multiple

shooting trajectory optimisation by the terminology of

[47]. The suggestion is that although there are more nu-

merous parameters and more constraints on the multiple-

shooting problem, it may counter-intuitively be easier for

the solver because each parameter-constraint pair is more

independent and closer to linear. This involves extra pa-

rameters X0,i, Y0,i, Ψ0,i which provide a pose offset for

each clothoid pair and explicit continuity constraints be-

tween each clothoid pair and the last. The problem would

then be described as

min
α,L,s0,sF ,X0,Y0,Ψ0

JT = b ·αTα+LTL+sT
0
s0+sT

F sF

subject to

{

c̃eq(α,L,s0,sF ,X0,Y0,Ψ0) = 0

c̃ineq(α,L,s0,sF ,X0,Y0,Ψ0)≤ 0

with bounds L≥ 0,s0 ≥ 0,sF ≥ 0

(14)

Now the coordinates are calculated slightly differently,

using the new offset parameters rather than a recurrence
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relation.

[Xi,Yi,Ψi]
T = [X0,i−1,Y0,i−1,Ψ0,i−1]

T ⊕ [xi,yi,ψi]
T , ∀i ∈ [1,N]

where capital letters indicate global coordinates.

Subtracting the final pose and curvature of the previous

pair from the initial pose each pair, with zero curvature

gives the equality constraints for that region arising from

continuity

q̃i =









X0,i −Xi−1

Y0,i −Yi−1

Ψ0,i −Ψi−1

κ0,i −0









= 0 (15)

There is also a constraint with the goal pose similar to

the single shooting form, which must be included in the

stack.

q̃goal =









XN − X̂

YN − Ŷ

ΨN − Ψ̂

κN −0









= 0 (16)

Here we use the first subscript of X0, i to indicate it is

the X offset for the region given by the second subscript.

The offsets are new search parameters for this formula-

tion. Symbols with a single subscript, the subscript identi-

fies the region and Xi refers to that at the end of the curve

assigned to that region. Again the first region is given the

index i = 1. The start pose is [X0,Y0,Ψ0]. This is taken to

be the origin of the coordinate system.

The inequality constraints for the entire problem can be

constructed by stacking k̃i for each region into a partition

vector as follows

c̃ineq =











q̃1
...

q̃N
q̃goal











= 0 (17)

The inequality constraints for region i are given by

H(i, j) = 1 ⇐⇒ d̃i =

























Xi −Xmax, j

−Xi +Xmin, j

Yi −Ymax, j

−Yi +Ymin, j

Xi−1 −Xmax, j

−Xi−1 +Xmin, j

Yi−1 −Ymax, j

−Yi−1 +Ymin, j

























≤ 0 (18)

The constraints for the entire problem can be con-

structed by stacking d̃i for each region into a partition vec-

tor as follows

c̃ineq =







d̃1

...

d̃N






≤ 0 (19)

4. NUMERICAL RESULTS

First, in Section 4.1 the suitability for finding the

smoothest path subject to obstacle constraints is tested on

an environment similar to Figure 4. Subsequently, an alter-

native formulation, the effect of analytical gradients, tun-

ing parameter b and the objective function are evaluated

for their potential in speeding up the solution. A number

of tests without obstacles are included in Section 4.5 and

4.6 so path parameters can be compared with an existing

heuristic method.

4.1. Motivating Problem

The tested problem concerns the avoidance of a small

obstacle blocking a straight path while remaining within a

set tolerance from it. The allowable distance from the orig-

inal path is used to generate the outer boundary enclosing

[0, 5] and [11, -5]. With the obstacle information available

from sensors this is broken up into three convex regions.

As set out in Section 2.2 this necessitates a path with six

clothoid segments, two at the start, two at the goal and two

at an intermediate region needed to connect the two.

-5 0 5 10 15 20

x[m]

-5

0

5

y
[m

]

X
G

 =[11   0   0   0]

2 4 6 8 10 12

s[m]

-1

-0.5

0

0.5

Sharpness [rad.m-2]

Curvature [rad.m-1]

Fig. 7. Single shooting optimal avoidance path for a ve-

hicle traveling along the x-axis which encoun-

ters a rectangular obstacle at [5,-2.5], extending

to [6,2.5], rejoining the reference path at [11, 0].

Weighting parameter b = 1

The single shooting formulation was solved using

interior-point1method in 36 iterations to produce the path

and curvature profile shown in Figure 7. The region con-

straints are satisfied. This can be seen as each of the four

segments is marked with an open circle. The same points

are marked with open circles in the curvature and sharp-

ness profile shown below the x-y plot in Figure 7. These

can be used to evaluate the quality of the path without ref-

erence to a specific vehicle model. The largest magnitude
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curvature is found at the midpoint with a value of -1.233

[m−1], corresponding to a turning radius of 811mm, suit-

able for a small vehicle with Ackermann steering, hav-

ing a wheelbase less than 811mm. The largest magnitude

sharpness of 0.8388 [radm−2] is seen on the segments be-

fore and after the peak curvature. This path can be tracked

with high accuracy by different AGVs by reducing for-

ward speed to control the lateral acceleration based on the

path curvature, and the angular acceleration based on the

sharpness.

The single shooting formulation reduces the number of

parameters which might be expected to reduce total exe-

cution time. In fact, it took multiple seconds to reach con-

vergence on the small 20m×10m environment made up of

three regions tested.

4.2. Weighting Parameter b Effects

Fig. 8. Convergence time as weighting b between sharp-

ness and length is varied
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Fig. 9. Path comparison for extremes of b

The weighting parameter b has a significant effect on

convergence time as shown in Figure 8. The number of

iterations and function evaluations increased for larger

weights, in the same way as time to convergence.

The two path plots cover both extremes of weighting

tested for the avoidance problem. Figure 9b shows the ef-

fect of a small weighting on sharpness. The path is shorter,

the peak sharpness is higher, but it is not the shortest con-

tinuous path which would pass through the corner formed

by region one and two (the top one). The segments are

close to equal length because, for a set of numbers with

a fixed sum, the sum of squares will be minimized if

the numbers are equal. This provides a bias toward equal

length segments and may contribute to the success of an

equal weighting of the two components.

Figure 9a shows the effect of a large weighting on

sharpness. The path is longer and more meandering but

has lower peak sharpness. The constraints are met as the

start and end are contained but the curve leaves the con-

vex region at the top. Because the region constraint is not

applied to the point of peak curvature, there are a large

number of feasible solutions with similar sharpness. This

makes an objective based on sharpness (b >> 1) very flat

close to the minimum with this set of obstacles. Looking

through the text output of fmincon, a feasible solution ac-

cording to the threshold of 1e-6 is found earlier but the

search continues until the threshold is reached. To solve

this problem, the region constraints need to be be applied

to additional samples along the path.

4.3. Obstacle Avoidance Multiple Shooting Formula-
tion

In the multiple shooting formulation by contrast, the

curve positions in one region are independent of the pa-

rameters of the earlier segments due to the introduction

of a new [X0,Y0,Ψ0] offset parameter for each region and

a new constraint that this offset matches the final pose of

the curve in the preceding region.
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(a) Initial parameter guess
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(b) After convergence

Fig. 10. Multiple shooting initial guess (αi = 1.0, Li =
1.0) showing path continuity constraints are not

met until the optimisation has converged

With the initial guess shown in Figure 10a the solver
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must find offsets which satisfy both continuity and region

containment. This can give better performance than sin-

gle shooting in some cases involving longer splines [47].

In the problem shown in Figure 10b with three regions

the discontinuities have been resolved after convergence,

the execution time is comparable with single shooting,

slightly improved, with around 700 function calls using

interior point method.

This is despite increasing the number of parameters

from six per region to nine per region (18 to 27 with

N = 3), and the number of constraints from 4+N equality

and 8N inequality (7 and 24 with N = 3) to 4+4N equal-

ity and 8N inequality (16 and 24 with N = 3). The number

of inequality constraints could be reduced slightly for the

multiple shooting by fixing the start position at the world

origin, to match the features of the single shooting setup.

4.4. Curve fitting With Two Clothoids With Different
Objectives
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(a) Equal Weighting with Lines
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Fig. 11. Side by side comparison of a path from the origin

to [8,6, 60], curvature profile is shown below.

Table 2. Parameters identified for a path from [0,0,0] to

[8,6,60]. The objectives are explained in Section

3.1

Equal Weighting,

with Lines

Minimum Sharp-

ness, no Lines
α1 [m−2] 0.1472 0.1094

α2 [m−2] -0.1135 -0.0222

L1 [m] 2.4893 1.7981

L2[m] 3.2281 8.8535

s0 [m] 1.5966 0

sF [m] 3.7390 0

Total Length [m] 11.0529 10.6516

κm [m−1] 0.3633 0.1966
interior-point it-

erations
12 2000+

interior-point

funcCount
101 16220+

sqp iterations 15 12

sqp funcCount 130 89

Cartesian path and curvature profile results for a single

region containing two clothoid segments and two straight

lines are shown in Figure 11a for comparison to those re-

ported by [23] for two matched clothoids. For illustration

the parameters identified for the same final pose by our

method with two different cost functions are shown in Ta-

ble 2.

There are two remarks to make here. Firstly, the [8,6,60]

point meets the condition in Equation 6, Section 2.2 and

can be reached exactly with two clothoids and no line seg-

ments. Many nearby points require a line to be included

at the end of the clothoid pair for convergence, partic-

ularly those with lower final angles (closer to the limit

given by Equation 5). Secondly, the initial guess had to

be very close to the minimum in order to reach conver-

gence at all with interior-point method for this problem.

Using the ‘Equal Weighting with Lines’ objective an ini-

tial guess of [1, -1, 1, 1, 1, 1] converged in 12 iterations

with interior-point method. With the same initialisation

vector and the ‘Minimum Sharpness, no Lines’ objective,

interior-point did not converge within 2000 iterations. If

the solver was changed to sqp convergence took 12 it-

erations and 89 function evaluations. The interior-point

method is shown to be slightly faster on some problems

but less stable than sqp on the limited numerical tests per-

formed. These tests only involved three regions, leading to

18 parameters and 16 constraints. It is a notable advantage

of the convex region representation that the number of re-

gions can be strictly limited even in environments with lots

of clutter. The documentation lists sqp as a medium-scale

algorithm, which needs to store and operate on matrices

with the dimension of the parameters [48]. If problems are

encountered in larger tests, interior-point is a large scale-

algorithm which does not rely on dense matrix operations,

and should perform better. Due to the general constrained

form of the problem other highly optimized methods for

specific performance needs could be used depending on

the needs of the application (e.g. limited processing time,

limited memory, embedded platform. . . ).

The ‘Minimum Sharpness, no Lines’ solution would be

expected to be longer with lower peak sharpness than the

‘Equal Weighting, with Lines’ solution, as only reducing

sharpness contributes to the objective. As expected Table

2 shows the peak sharpness is reduced from 0.1472 to

0.1094, around 30%. Surprisingly the total length of the

‘Minimum Sharpness, no Lines’ solution is also less than

the ‘Equal Weighting, with Lines’. In this case sqp is stuck

in a local minimum when additional straight lines are in-

cluded. Line segments must be permitted for convergence

on cases outside the boundary of the existence criteria in

Section 2.2, but it seems that well within the boundary

such as the end point in Figure 11a, considering line seg-

ments may lead to the introduction of local minima.
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4.5. Curve fitting With Two Clothoids with Analytical
Gradient

The impact of analytical gradients was tested on a sin-

gle region containing two segments to the point [8, 6,

40], close to the lower angle limit, as shown in Figure

12b. With an initial guess which did not meet the re-

gions constraints p = [0.1,−0.1,1,1,1,1], interior-point

method1 failed to converge. The alternative algorithm sqp1

converged in 27 iterations with or without derivatives as

shown in Figure 12a. When using analytical derivatives

the number of function evaluations was reduced from 264

total to 123 total but the total execution time increased

from 1.33 seconds to 2.28 seconds2. Therefore the mean

execution time per function evaluation increased from

1.33/264 = 5ms to 2.28/123 = 18ms with the additional

of numerical gradients.

0 10 20 30

Iteration

0

5

10

15

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Function Evaluations Per Iteration

Finite Differencing

Analytical Gradients

(a) Both took 27 iterations so are
shown on the same figure

-5 0 5 10

x[m]

0

2

4

6

y
[m

]

X
G

 =[8           6     0.69813]

0 2 4 6 8 10 12

s[m]

0

1

2

Sharpness [rad.m
-2

]

Curvature [rad.m
-1

]

(b) Both produced exactly the
same path and curvature pro-
file

Fig. 12. Comparison of performance with and without an-

alytical gradients. The number of iterations is

high because the heading angle at the end is close

to the lower limit given by Equation 5 for this po-

sition.

On a similar problem with a different goal heading, pro-

viding analytical derivatives reduced the function count

reported by fmincon from 213 to 55 and the number of

iterations to reach the same optimality threshold from 25

to 24. However the computation time increased by about

50% from 2.35 seconds to 3.00 seconds. If the solver was

changed to sqp2, the effect was similar. Slightly reduced

count of function evaluations but an increased computa-

tion time. This may be due to the numerous integral terms

in the expressions for the gradients taking more time to

evaluate than the function at multiple locations to allow

differencing. There are 22 integrals to evaluate in the Ja-

cobian. Only two integrals are required to evaluate the ob-

jective function. Equations 3 - 4 were evaluated with Vec-

torized Adaptive Quadrature method [49] with a relative

1interior-point and sqp are available as options for the fmin-
con function of MATAB

2Numerical tests ran on a consumer laptop with 16GB RAM
and an Intel(R) Core(TM) i5-8250U CPU @1.60GHz

tolerance3 of 10−6 . No attempt was made to store and

reuse repeated terms in the Jacobian, although there are

several.

4.6. Curve fitting With Four Clothoids With Different
Objectives

In order to enable further comparison with the bisection

method of Gim et al [23], another test was reproduced in-

volving an s-shaped path comprising four clothoids to the

pose [12,10,θ ], where θ varied in increments of 10 de-

grees. This shows clearly the trade off between path length

and peak sharpness.
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Fig. 13. Six lane change paths with objective ‘Equal

weighting, with lines’, each ending at the same

point [12,10] with a heading θ separated by 10

degrees.
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Fig. 14. Six lane change paths with objective ‘Minimum

sharpness, no lines’, each ending at the same point

[12,10] with a heading θ separated by 10 degrees

3Vectorized Adaptive Quadrature is available in MATLAB as
a built in function q=integral(fun, xmin, xmax), the default upper

bound on error is 10−6 ×q
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The ‘Equal Weighting, with Lines’ set of paths is shown

in Figure 13. For the final angle of -30 degrees the key pa-

rameters of the solution are shown in Table 3. The cost is

equivalent to penalizing path length with b = 1[m6rad−2]
but because each segment is squared individually, the cost

is lower if each segment is of similar length. The ‘Min-

imum Sharpness, no Lines’ set of paths for comparison

is shown in Figure 14. For every tested heading the path

is significantly longer than the ‘Equal Weighting, with

Lines’ solution, while the peak sharpness is much lower.

This makes intuitive sense because over longer distances

the shortest path is a straight line. As the sharpness is in-

creased the path comes to resemble the point to point line

more closely.

Table 3. Parameters identified for a path from [0,0,0] to

[12,10,-30]. This is one of the curves plotted in

figure 13. The objectives are explained in Section

3.1 Units α [m−2], κ [m−1], L [m]

.
Equal

Weighting

with Lines

Equal

Weighting,

no Lines

Minimum

Sharpness,

no Lines
α1 0.1707 0.0552 0.0727

α2 -0.1404 -0.0443 -0.0709

α3 -0.2808 -0.0894 -0.0745

α4 0.4582 0.1716 0.0665
Peak

Sharpness

max |αi|
0.4582 0.1716 0.0745

L1 2.4569 4.8616 4.7639

L2 2.9860 6.0572 4.8878

L3 2.7117 5.4077 5.2704

L4 1.6615 2.8180 5.967

s01 1.7170 0 0

sF1 3.2565 0 0

s02 3.2565 0 0

sF2 0.0893 0 0
Total

Length
18.14 19.1445 20.8288

κm1 0.4142 0.2685 0.3464

κm2 -0.7557 -0.4837 -0.3928

Convergence with the ‘Equal Weighting, with Lines’

cost was particularly strong in the experiments attempted

compared to either the more natural absolute sum of the

segment lengths, all squared J = (∑ j |α j|)2 +(∑ j |L j|)2 +
(∑ j |s0, j|)2 + (∑ j |sF, j|)2 or the minimum sharpness with

the line segments fixed at zero so J = (∑ j |α j|)2. Again

the minimum sharpness approach produced paths almost

identical to the bisection method proposed by [23] on the

examples they reported.

The final position was taken from [23] so it can be used

to compare the curvature profile and path trace to the one

produced by the bisection method presented in that paper.

This is a root finding approach which is suitable for meet-

ing the constraint on final position. No objective function

is defined so the first solution which meets the constraint

tolerance will be accepted. The ‘Minimum sharpness, no

Lines’ path trace in Figure 14 looks very similar to the

paths produced by the bisection method. The total length

of both is around 20.8m. The coordinate system differ-

ences make side by side comparison a little challenging, as

they used a start position of [0,0,90] ending at [10,12,120]
which is the same path subject to some affine transfor-

mations. The curvature profile is comparable side-by-side

and shows the sharpness of each section found by bisec-

tion to be close to 0.07125, very close to the average of

the ‘Minimum Sharpness, no Lines’ column in Table 3.

The optimisation method has a clear advantage as it

searches intermediate angles by continuously varying the

length and sharpness of the first two clothoid segments.

Bisection with four clothoids by contrast only searches

very coarsely over intermediate angles (every 10 degrees).

Searching more effectively should be a big advantage of

using optimisation, but in this particular example the im-

provement is very small. The main benefit of the new

method is the ability to take into account obstacle con-

straints at the start and the end and find a path purely from

a polygonal representation of the obstacles.

A range of curves with θ varying from -30 degrees to

20 degrees is shown in Figure 13. The parameters can be

compared to the same range of angles with a cost func-

tion which only penalizes the sum of squared sharpness

of each segment and forces the straight lines at the start

and end of each segment to zero in Table 3. The sharpness

is reduced but the total path length is increased until it is

almost identical to the curve plotted in [23]. The added

value of using four segments over three is questionable as

the middle two take almost the same value.

The expected trade off between peak sharpness and to-

tal path length can be seen in Table 3.

4.7. Effect of Small Changes to Region Boundaries

When the convex regions are constructed based on an

occupancy grid as suggested in Section 2.3 measurement

errors may lead to sudden changes in the size of the free

space as the probability of one cell being occupied crosses

the threshold. In this situation the size of the position shift

would be determined by the cell size of the binary oc-

cupancy grid. The cell size is typically made larger than

the sensor noise by some constant factor. A cell size of

100mm was selected to provide an ample boundary for a

common sensor with zero mean error, 10mm standard de-

viation [50].

The offset error was varied in increments of 100mm,

and the resulting change in objective function is shown

in Figure 15. Both curve types increase linearly with

the position error at first. The cubic objective is the

second derivative of position, while the clothoid mini-
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mized ‘Equal Weighting With Lines’ from Section 3.1 The

clothoid curve objective increases more slowly until the fi-

nal offset of 0.5m which causes a step change in the objec-

tive. This seems to be related to the lack of a constraint on

the midpoint of the curve piece. As the obstacle is shifted

the path must deflect more and in this case the midpoint

leaves its assigned region. The problem of sensor errors

pushing the path planner into a suboptimal local minimum

could be significant. An additional constraint the midpoint

should resolve it in this case, but for real world implemen-

tation some kind of safety checks will be needed before

attempting to drive a new path for situations like this.

0 0.1 0.2 0.3 0.4 0.5

Variation [m]

1

1.2

1.4

1.6

1.8

2

2.2

O
b
je

c
ti
v
e
 V

a
lu

e
 (

N
o
rm

a
lis

e
d
)

Impact of Region Boundary Variation

Cubic

Clothoid  b=1

Fig. 15. Normalised objective function against a linear

shift of the boundary in x and y

4.8. Curvature Comparison with Cubic Spline on En-
vironment 2

Side by side comparison reveals the clothoid curve

in Figure 16 has a higher peak curvature and is much

smoother as measured by the peak sharpness. Cubic

curves are simple to implement and often used for path

planning. The cubic curve only has enough degrees of

freedom to meet the heading constraint at the start and

end by relaxing the constraint on second derivative to zero

at the start and the end. The cubic curve in Figure 17 is

continuous and the peak of 1.5m is feasible with a lim-

ited steering angle vehicle, however the curvature plot re-

veals rapid changes in curvature. The sharpness peaks at

the start and end and is too large to be shown on the figure.

This is will result in the steer-drive wheel actuating rapidly

and likely greater tracking error by an AGV attempting to

follow it. Using a higher order polynomial could improve

on this, but not to the extent of the clothoid curve which

has piecewise constant sharpness and the magnitude is al-

ways less than 2[m−2] so it can be tracked by a real AGV

such as the one described in Section 2.5.
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5. CONCLUSION

The formulation presented in Section 3 is sufficient

to solve the path planning with obstacle constraints us-

ing clothoid curve segments with G2 continuity, using a

generic constrained non-linear solver. The path with three

regions converges reliably and it can be extended to more

complex scenes. Execution time of several seconds in-

dicates a need for further optimisation, but the path is

equally smooth as the interpolation method of Gim et al

[23], without the need for a sequence of points from man-

ual driving or a heuristic for selection of waypoints based

on the obstacle field, likely to be suboptimal.

The key concern of industrial automation which it ad-

dresses is optimal planning with clothoid curves based

on a polygonal obstacle representation which can be con-

structed from range sensors such as LIDAR. The method

is therefore most useful for applications where path qual-

ity is important and updates are required less frequently.

For example, a centralized adaptive replanning module
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which is tightly integrated with a central routing algorithm

which collects information from a number of sensors and

vehicles and makes safety critical path alteration decisions

as discussed in [1]. Interaction with other vehicles may be

based on the allocation of regions at different times. Val-

idating the interactions becomes much easier if the infor-

mation is collected from different sources (around blind

corners for example) and a safe alternative path is gener-

ated which can be followed by the existing vehicle control

system.

Freedom to choose a different objective function or

weighting parameter b to generate different shape paths

is a strength of this formulation but also reveals the weak-

ness of using an optimisation approach. Different objec-

tive functions have different convergence characteristics

for the same boundary conditions. One based on an equal

weighting converges nicely but as b is increased, empha-

sising smoothness convergence takes longer as the con-

straints are only enforced at the start and end of each

segments. The search of infeasible solutions leads to

wasted iterations, especially when b > 100. The appropri-

ate weighting for b might best be addressed using knowl-

edge of the speed controllers to be used for path traversal

in order to plan minimum time paths around obstructions

and minimize the delay from obstructions in a site.

Real-time performance is important for the method to

be useful as part of a AGV control system. The multiple

shooting form was not much faster on the small environ-

ments tested. The analytical Jacobian of the constraints

was effective at reducing the number of function evalua-

tions to reach convergence but not total execution time. An

improved implementation with more reuse of terms could

approach the factor of two reduction in function evalua-

tions recorded. Even with this improvement, the presented

method would be slower than existing heuristic methods

for clothoid parameter estimation. Its strength lies in the

guarantee of optimality given the obstacle polygons (sub-

ject to convergence, which was strong in the limited nu-

merical examples tested). Other avenues to improve per-

formance in further work should explore improving the

initial parameter guess based on the point to point solu-

tion between the corners of the regions, and the use of

alternative numerical methods designed for convex con-

strained problems such as CVX [51]. Finally, even with

execution time of several seconds it is possible to use au-

tomatic adaptive paths in some situations, as the clothoid

shape allows reuse of the same optimal path by vehicles

with differing dynamics by adjustment of the longitudinal

speed to control the steering rate.

Expanding the environment with a disc the size of the

largest dimension of the vehicle is a gross approximation,

which will lead to over cautious paths. It would be better

to represent the obstacles in (2 + 1) dimensions, and plan

in (x,y,ψ). Obstacles can then be expanded based on the

current heading of the path as described in [18] who use a

sum of squares approach to find (2+1)D convex polygons.

Applying these (2+1)D constraints to the optimisation pre-

sented here would be straightforward but the number of

path pieces needed to make the entire space reachable may

be different. This could be investigated in a future study.

Testing a wider range of environments is left to fur-

ther work. This may motivate an increase in the number

of obstacle constraint points on the path to prevent clip-

ping problems seen in Section 4.2. A constraint on the

point of peak curvature may be most helpful before sam-

pling the curve at approximately linear intervals. We were

not able to prove the statement “provided N connected re-

gions can be found between two poses, there always ex-

ists a smooth path between them comprised of line seg-

ments and clothoids in the order L-C-C-L”. A wider range

of test cases would give confidence that this is true in

many cases. Further testing would also be useful to iden-

tify cases where a path exists but the peak curvature is so

high a vehicle would have to slow down unacceptably to

traverse it.

APPENDIX A

1. ANALYTICAL GRADIENTS OF THE SINGLE

SHOOTING FORMULATION WITHIN ONE

REGION

Stacking the parameters for the optimisation de-

scribed in Section 3 into a single vector p1×6 =
[α1,α2,L1,L2,s0,sF ]

T allows the Jacobian of the objec-

tive for one region to be expressed as

∂J

∂p
= 2 · [bα1,bα2,L1,L2,s0,sF ]

T
(A.1)

. The pose at the end of the path piece in the region of in-

terest is [XF ,YF ,ΨF ]. For the derivatives we only consider

one path piece, and drop the i subscript used in Equation

10. The equality constraint vector with goal pose [X̂ ,Ŷ ,Ψ̂]
is given by

ceq =









XF − X̂

YF − Ŷ

ΨF − Ψ̂

κF −0









= 0 (A.2)

and the inequality constraints to remain within a square

region bounded by [Xmax,Xmin,Ymax,Ymin] is given by

cineq =









XF −Xmax

−XF +Xmin

YF −Ymax

−YF +Ymin









≤ 0 (A.3)

. The matrix derivatives
∂ceq

∂p

(6×4)
and

∂cineq

∂p

(6×4)
were con-

structed from scalar partial derivatives listed below. Each
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element is defined in terms of the parameters p in the fol-

lowing sections. The symbols are introduced in Section

2.1, the starting pose is taken to be the origin, so the end

pose in global coordinates is given by Equation 10. Func-

tions C(α,s,κ) and S(α,s,κ) are defined by Equation 3

and Equation 4 respectively. The peak curvature where the

two clothoids meet is given the symbol κm = α1L1 and the

final heading at the end of the second clothoid is given by

ΨF =
α1L2

1

2
+

α2L2
2

2
.

A.1. Components with respect to α1

∂XF

∂α1

=
∫ L1

0
−u2

2
sin

(

α1u2

2

)

du

+ cos(δ1)
∫ L2

0
(−L1 ·u)sin

(

α1L1 ·u+
α2u2

2

)

du

+(−sin(δ1)L
2
1/2)

∫ L2

0
cos(α1L1 +α2u)du

− sin(δ1)
∫ L2

0
(L1 ·u)cos

(

α1L1 ·u+
α2u2

2

)

du

−
(

cos(δ1)L
2
1/2

)

∫ L2

0
sin(α1L1 +α2u)du

+ sF(L1L2 +L2
1/2)(−sinΨF) (A.4)

∂YF

∂α1

=
∫ L1

0

u2

2
cos

(

α1u2

2

)

du

+ sin(δ1)
∫ L2

0
(−L1 ·u)sin

(

α1L1u+
α2u2

2

)

du

+(cos(δ1)
L2

1

2
)
∫ L2

0
cos

(

α1L1u+
α2u2

2

)

du

+ cos(δ1)
∫ L2

0
(L1 ·u)cos

(

α1L1u+
α2u2

2

)

du

+(−sin(δ1)
L2

1

2
)
∫ L2

0
sin

(

α1L1u+
α2u2

2

)

du

+ sF(L1L2 +L2
1/2)cos(ΨF) (A.5)

∂ΨF/∂α1 =
1

2
L2

1 +L1L2 (A.6)

∂κF/∂α1 = L1 (A.7)

A.2. Components with respect to α2

∂XF

∂α2

= cos(δ1)
∫ L2

0

(−u2

2

)

sin

(

α1L1u+
α2u2

2

)

du

− sin(δ1)
∫ L2

0

(

u2

2

)

cos

(

α1L1u+
α2u2

2

)

du

+ sF(−sinΨF)

(

L2
2

2

)

(A.8)

∂YF

∂α2

=

sin(δ1)
∫ L2

0
−u2

2
sin

(

α1L1u+
α2u2

2

)

du

+ cos(δ1)
∫ L2

0

u2

2
cos

(

α1L1u+
α2u2

2

)

du

+ sF(cosΨF) ·
(

1

2
L2

2

)

(A.9)

∂ΨF

∂α2

=
1

2
L2

2 (A.10)

∂κF

∂α2

= L2 (A.11)

A.3. Components with respect to L1

∂XF

∂L1

= cos(α1L2
1/2)

+ cos(δ1)
∫ L2

0
(−α1 ·u)sin

(

α1L1u+
α2u2

2

)

du

+(−sin(δ1)α1L1)
∫ L2

0
cos

(

α1L1u+
α2u2

2

)

du

− sin(δ1)
∫ L2

0
(α1 ·u)cos

(

α1L1u+
α2u2

2

)

du

− (cos(δ1)α1L1)
∫ L2

0
sin

(

α1L1u+
α2u2

2

)

du

− sF(α1L1 +α1L2)sin(ΨF) (A.12)

∂YF

∂L1

= sin(α1L2
1/2)

+ sin(δ1)
∫ L2

0
(−α1 ·u)sin

(

α1L1u+
α2u2

2

)

du

+(cos(δ1)α1L1)
∫ L2

0
cos

(

α1L1u+
α2u2

2

)

du

+ cos(δ1)
∫ L2

0
(α1 ·u)cos

(

α1L1u+
αu2

2

)

du

+(sin(δ1)α1L1)
∫ L2

0
sin

(

α1L1u+
α2u2

2

)

du

+ sF(α1L1 +α1L2)cos(ΨF) (A.13)

∂ΨF

∂L1

= α1L1 +α1L2 (A.14)

κF

∂L1

= α1 (A.15)
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A.4. Components with respect to L2

∂XF

∂L2

= cos

(

α1L1L2 +
α2L2

2

2

)

cos(δ1)

− sin

(

α1L1L2 +
α2L2

2

2

)

sin(δ1)

+ sF · (−sinΨF)(α1L1 +α2L2) (A.16)

∂YF

∂L2

= cos

(

α1L1L2 +
α2L2

2

2

)

sin(δ1)

+ sin

(

α1L1L2 +
α2L2

2

2

)

cos(δ1)

+ sF · (cosΨF)(α1L1 +α2L2) (A.17)

∂ΨF

∂L2

= α1L1 +α2L2 (A.18)

κF

∂L2

= α2 (A.19)

A.5. Components with respect to s0

∂XF/∂ s0 = 1 (A.20)

∂YF/∂ s0 = 0 (A.21)

∂ΨF/∂ s0 = 0 (A.22)

∂κF/∂ s0 = 0 (A.23)

A.6. Components with respect to sF

∂XF/∂ sF = cos(ΨF) (A.24)

∂YF/∂ sF = sin(ΨF) (A.25)

∂ΨF/∂ sF = 0 (A.26)

∂κF/∂ sF = 0 (A.27)

2. POSE OPERATORS

These operators are defined to simplify working with

rigid bodies in two dimensions. A rigid body in a plane has

2+1 parameters, two for translation in the plane and one

for heading angle. The position in metres and the heading

in radians can be assembled into a three vector, called the

pose.

p1 = [x1,y1,ψ1]
T (A.28)

p2 = [x2,y2,ψ2]
T (A.29)

Working with higher dimensional spaces it is common

to use homogeneous coordinates to simplify operations on

rigid bodies. The two operators defined here are conve-

nient for working in 2D without the complexity of homo-

geneous notation. They are inverse operators in the sense

that p3 = p1⊕p2 → p3⊖p2 = p1. The decompose oper-

ator ⊖ is order dependent like ordinary subtraction. They

are defined below using the algebra of homogeneous coor-

dinates given in [14] Part A Robotics Foundations, Section

2.2.3 Homogeneous Transforms p16.

A.1. Compose ⊕
This operator takes the second pose and rotates it into

the frame of the first before vector addition of all three

components.

p3 = p1⊕p2 =





x1 + x2 cos(ψ2)− y2 sin(ψ2)
y1 + x2 sin(ψ2)+ y2 cos(ψ2)

ψ1 +ψ2



 (A.30)

. If each pose is expressed in homogeneous 3x3 form,

T1 =





cos(ψ1) −sin(ψ1) x1

sin(ψ1) cos(ψ1) y1

0 0 1



 (A.31)

the same operation is a matrix multiplication

T3 = T1T2 (A.32)

A.2. Decompose ⊖
This operator finds the pose of p3 expressed relative to

pose p1

p1 = p3⊖p2 (A.33)

If each pose is expressed in homogeneous 3x3 form,

the same operation is a matrix multiplication by the the

inverse

T1 = T3T
−1
2

(A.34)
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