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Abstract 22 

1. Social network methods have become a key tool for describing, modelling, and testing 23 

hypotheses about the social structures of animals. However, due to the non-independence 24 

of network data and the presence of confounds, specialized statistical techniques are often 25 

needed to test hypotheses in these networks. Datastream permutations, originally 26 

developed to test the null hypothesis of random social structure, have become a popular 27 

tool for testing a wide array of null hypotheses in animal social networks. In particular, they 28 

have been used to test whether exogenous factors are related to network structure by 29 

interfacing these permutations with regression models. 30 

2. Here, we show that these datastream permutations typically do not represent the null 31 

hypothesis of interest to researchers interfacing animal social network analysis with 32 

regression modelling, and use simulations to demonstrate the potential pitfalls of using this 33 

methodology. 34 

3. Our simulations show that, if used to indicate whether a relationship exists between 35 

network structure and a covariate, datastream permutations can result in extremely high 36 

type I error rates, in some cases approaching 50%. In the same set of simulations, traditional 37 

node-label permutations produced appropriate type I error rates (~ 5%). 38 

4. Our analysis shows that datastream permutations do not represent the appropriate null 39 

hypothesis for these analyses. We suggest that potential alternatives to this procedure may 40 

be found in regarding the problems of non-independence of network data and unreliability 41 

of observations separately. If biases introduced during data collection can be corrected, 42 

either prior to model fitting or within the model itself, node-label permutations then serve 43 

as a useful test for interfacing animal social network analysis with regression modelling. 44 

 45 



Introduction 46 

Social structure, defined as the patterning of repeated interactions between individuals (Hinde 47 

1976), represents a fundamental characteristic of many animal populations with far-reaching 48 

consequences for ecology and evolution, including for gene-flow, social evolution, pathogen 49 

transmission, and the emergence of culture (Kurvers et al., 2014). The last two decades have seen 50 

widespread adoption of social network methods in animal behaviour research to quantify social 51 

structure (Webber & vander Wal, 2019). The network framework is appealing because it explicitly 52 

represents the relationships between social entities from which social structure emerges (Hinde, 53 

1976), and thus allows tests of hypotheses about social structure at a variety of scales (individual, 54 

dyadic, group, population). Social networks can be based on direct observations of interactions, or 55 

inferred from other data types, such as groupings of identified individuals (Franks et al., 2010), GPS 56 

tracks (Spiegel et al., 2016), proximity loggers (Ryder et al., 2012), or time-series of detections 57 

(Psorakis et al., 2012). 58 

The analysis of animal social network data presents a statistical challenge. Specifically, two separate 59 

issues must be addressed. First, network data are inherently non-independent, thus violating the 60 

assumptions of independent observations inherent to many commonly used statistical tests. Second, 61 

factors outside of social structure, such as data structure and observation bias, may influence the 62 

structure of observed animal social networks, potentially leading to both type I and type II errors in 63 

statistical tests (Croft et al., 2011). 64 

To address the problem of non-independence, a wide array of statistical tools have been developed, 65 

primarily in the social sciences. These methods include permutation techniques that allow for 66 

hypothesis testing in the presence of non-independence. These permutations normally test 67 

relationships between exogenous variables and network properties, such as the presence and 68 

strength of social ties, or the centrality of nodes in the network. These methods typically build 69 

empirical null distributions by randomly assigning the location of nodes in the network, while 70 



holding the network structure constant (“node-label permutations”), therefore representing the null 71 

hypothesis that the network measure serving as the response is unrelated to the predictor, while 72 

controlling for network structure and non-independence. The resulting null distribution maintains 73 

the non-independence inherent to the network while breaking any relationship that exists between 74 

network structure and potential covariates (Dekker et al., 2007). 75 

While these methods are useful for dealing with the issue of non-independence, they do not address 76 

the second issue, from which studies of animal social systems in particular often suffer.  Because the 77 

methods developed in the social sciences only permute the final constructed network, they do not 78 

inherently account for common biases in the collection of the raw observational data used to 79 

construct the final network. These biases may be introduced by the method of data collection (e.g. 80 

group-based observations), individual differences in identifiability, or demographic processes (James 81 

et al., 2009). For example, consider a situation where researchers are interested in differences in 82 

social position between sexes, but females are more cryptic and thus observed with a lower 83 

probability. This would lead to incorrect inferences due to biases in the observed network structure 84 

that are unrelated to the true social processes of interest (Farine, 2017). To deal with these 85 

problems, a suite of alternative permutation procedures has been developed. Rather than 86 

permuting the final network, these methods permute the raw data used to construct the network. 87 

These methods are therefore sometimes referred to as “pre-network permutations” or “datastream 88 

permutations.” The goal is to construct permuted datasets that maintain structures of the original 89 

data that may influence the observed network structure (e.g. the number of times individuals were 90 

observed and the sizes of observed groups), while removing the social preferences that underpin the 91 

social network (Farine & Whitehead, 2015). 92 

The original datastream permutation technique for animal social data was proposed by Bejder et al. 93 

(1998), based on the procedure outlined by Manly (1997) for ecological presence-absence data. 94 

Bejder et al.’s procedure was designed to test whether a set of observed groupings of identified 95 



animals showed signs of non-random social preferences. This procedure permutes a group-by-96 

individual matrix, where rows are groups and columns are individuals, with 1 representing presence 97 

and 0 indicating absence. The algorithm finds 2 by 2 “checkerboard” submatrices, with 0s on one 98 

diagonal and 1s on the other, that can be “flipped” (i.e. 0s replaced with 1s and vice versa). These 99 

flips maintain row and column totals (the group size and observations per individual, respectively), 100 

but permute group membership. In biological terms, matrices generated with this procedure 101 

represent the null hypothesis that individuals associated completely at random, given the observed 102 

distribution of group sizes and the number of sightings per individual.  103 

Refinements of this method were later developed that constrained swaps within time periods, 104 

classes of individual, or locations (Whitehead et al., 2005). One alteration also controls for 105 

gregariousness, and allows for permutation of data not constructed using group membership 106 

(Whitehead, 1999). Controlling for gregariousness and sighting history is possible when each 107 

sampling period is represented as a square matrix, where 1 indicates that individuals associated in 108 

that period and 0 indicates no association. In this format, the data can be permuted in a way that 109 

maintains the number of associates each individual had in each sampling period (Whitehead, 1999). 110 

In recent years, datastream permutation methods have been developed that can handle more 111 

complex data structures, such as GPS tracks (Spiegel et al., 2016), time-series of detections (Psorakis 112 

et al., 2015), and focal follow data (Farine, 2017). All of these methods have in common that they 113 

essentially randomise raw observations of social association (or interactions) data and thus remove 114 

social structure while maintaining most other features of the data, including features potentially 115 

causing biased measurements of social structure. They thus provide a robust null distribution to test 116 

for non-random social structure in a dataset, which is a key step in understanding the behavioural 117 

ecology of wild populations. 118 

Many empirical studies and methodological guides have suggested interfacing these null models 119 

with other statistical techniques, particularly regression models (including ordinary least squares, 120 



generalized linear models, and mixed-effects models), to test hypotheses about network structure. 121 

The logic of this recommendation is that permutation-based null models allow researchers to 122 

account for sampling issues when testing hypotheses using these common statistical models. 123 

However, it is important to recognize the limitations of this approach, and to think carefully about 124 

the null hypothesis that these methods specify.  In common datastream permutation null models, 125 

the null hypothesis specified is that the population’s social structure is random, once we control for 126 

the structure of the data and other confounds. For a particular quantity of interest, such as edge 127 

weights or node centralities, this null hypothesis can be equivalently stated as proposing that all 128 

variance in a given value or network metric is due to data structure, confounds, and residual 129 

variance. In network terminology, this null hypothesis is a random network, within a set of 130 

constraints. This is precisely the null hypothesis that these permutations were designed to test, as 131 

they were originally intended as a tool for detecting non-random social structure. However, we feel 132 

there has been a lack of consideration about whether this null hypothesis is appropriate in other 133 

contexts, such as regression modelling. 134 

 135 

Regression models in the context of social network analysis 136 

Most regression applications in social network analysis can be broadly considered in two broad 137 

categories: nodal regression and dyadic regression. In the case of dyadic regression, researchers are 138 

interested in determining if the strength or presence of social relationships themselves are predicted 139 

by some dyadic variable, such as kinship or similarity in some trait. Nodal regression, on the other 140 

hand, represents hypotheses linking individual level traits, such as age, sex, or personality, with the 141 

position of nodes within the network, as summarized by any number of centrality measures. Here, 142 

we will investigate whether datastream permutations specify the appropriate null hypothesis for the 143 

typical inferences in these two regression contexts.  144 

Consider the basic linear model: 145 



𝑌 = 	𝛽𝑋 + 	𝜀     (1) 146 

where Y is a response variable, X is a matrix of predictor variables, 𝜀 is the error term, and 𝛽 is a 147 

vector of estimated coefficients. The structure of Y, X, and 𝜀 differ between dyadic and nodal 148 

regression contexts. In dyadic regression, Y is the N x N adjacency matrix (where N is the number of 149 

individuals in the network), X is a p x N x N array of predictors (where p is the number of predictors), 150 

and 𝜀 is a square matrix. In nodal regression, Y is instead a vector of centrality measures of length N, 151 

X is a p x N matrix, and 𝜀 is a vector of length N. 152 

We are typically interested in testing the null hypothesis β = 0, representing no relationship between 153 

the response Y and the predictor(s) X. In permutation based hypothesis testing procedures, this null 154 

hypothesis is tested by calculating a test statistic (such as the coefficient β or the t statistic) in the 155 

observed data, and then repeatedly shuffling either X or Y to build a null distribution of this statistic. 156 

These permutations maintain the distribution of both X and Y, but break the covariance between 157 

them (Anderson & Robinson, 2001). This is the logic behind traditional permutation tests for 158 

regression in social networks, such as node-label permutations and multiple regression quadratic 159 

assignment procedures (MRQAP) (Croft et al., 2011). 160 

Datastream permutations, however, do something very different, which is inappropriate for testing 161 

the null hypothesis of no relationship between the response Y and the predictor(s) X. By permuting 162 

the data underlying network measures and then re-calculating the response variable, these 163 

procedures change the distribution of Y, instead of breaking relationships between the variables 164 

(Figure 1). If the network has non-random social structure, even structure entirely unrelated to X, 165 

then we will typically see a reduction in the variance of Y as we permute the raw data. When Y has a 166 

larger variance in the observed data than in the permutations, more extreme values of β are more 167 

likely to occur in the observed data, even if the null hypothesis is true. This procedure is therefore 168 

likely to result in much higher rates of false-positive (type I) error than is acceptable (Figure 1). 169 



The problem here extends beyond the technical issue of reduced variance in the permuted datasets. 170 

There is a fundamental problem with this approach when it comes to testing hypotheses using 171 

regression models. When researchers fit regression models to predict network properties from 172 

exogenous variables, the null hypothesis they will typically be testing against can be stated as “the 173 

variation in network structure is not related to the exogenous variable.” This, however, is not the 174 

null hypothesis tested by the commonly used datastream permutation methods. Rather, the null 175 

hypothesis that is proposed by these datastream permutations could be stated as “the degree of 176 

variation in network structure and its relationship to the exogenous variable are both due to random 177 

interactions of individuals within constraints.” The researcher cannot disentangle the null hypothesis 178 

of no relationship between the network and the predictor from the null hypothesis of random social 179 

structure. In other words, a significant result from this procedure could be due to a relationship 180 

between the predictor and the network, or because individuals do not interact at random, whether 181 

or not the true social structure is related to the predictor. This fundamental mismatch between the 182 

null hypothesis of interest and that tested by the datastream permutation algorithm makes tests of 183 

regression models using this procedure nearly uninterpretable. 184 

To further illustrate the problems that occur when combining datastream permutations of animal 185 

social network data with regression we provide two simulated scenarios. In these scenarios, we 186 

generate datasets with simple, but non-random social structure. We then introduce a random 187 

exogenous variable that has no relationship to social structure, and test for a relationship between 188 

network structure and this variable with linear models, using datastream permutations to determine 189 

statistical significance. We show that even in the absence of any true relationship between 190 

exogenous variables and social structure, datastream permutations are highly prone to producing 191 

significant p-values when social structure is non-random. We caution against using these datastream 192 

permutations to test the coefficients of regression models, and we discuss possible solutions and 193 

alternative methods for regression analysis in social networks. 194 



 195 

Simulations 196 

General framework 197 

We carried out simulations across two different scenarios, reflecting common research questions in 198 

animal social network analysis. The first scenario simulates a case in which researchers are 199 

interested in whether dyadic covariates (e.g. kinship or phenotypic similarity) influences the strength 200 

of social bonds, which we will refer to as a case of “dyadic regression”. The second scenario 201 

simulates a case when researchers are interested in how a quantitative individual trait (e.g. age or 202 

personality) influences individual network position, which we refer to as “nodal regression.” 203 

While the methods of network generation differ slightly for each scenario, the general steps are the 204 

same: 205 

1. Generate observations of a network in which the quantity of interest (edge weight or node 206 

centrality) has inherent variation. 207 

2. Generate values for a trait that are unrelated to this variation. 208 

3. Fit a linear model with the network property as the response variable and the trait as the 209 

predictor. 210 

4. Create permuted versions of the observed network via a common datastream permutation. 211 

5. Compare the original model’s test statistics to those from the permuted data sets to 212 

calculate a p-value. 213 

For each simulation, we perform 200 runs, with varying parameter values (Table 1). For each run of 214 

both simulations, we produce six outputs. The first two outputs are the p-values from the 215 

datastream permutation test when using either the coefficient or t-value as the test statistic. We 216 

additionally calculate the p-values for the same two test statistics using node-label permutations, 217 

although further analysis showed that the t statistic and coefficient always produced identical results 218 



in these cases. The final two outputs give information about the characteristics of the dataset not 219 

given by the initial inputs. The first is the standard deviation of the response variable (either the 220 

edge weights or strengths), indicating the degree of non-randomness in the social structure, and the 221 

second is the average number of sightings per individual, a common measure of sampling effort in 222 

social network studies. 223 

All simulations and subsequent analyses were performed in R (R Core Team 2020), using the 224 

packages asnipe (Farine 2019), lhs (Carnell 2019), and truncnorm (Mersmann et al. 2018). All code 225 

necessary to reproduce our analysis is included in the online supplementary materials. 226 

 227 

Dyadic regression: Does similarity in a trait predict the strength of social relationships? 228 

In our first simulation, we investigate the case in which the researcher is interested in the influence 229 

of a dyadic predictor (such as similarity in phenotype or kinship) on the rates at which dyads 230 

associate or interact. Our simulation framework is heavily inspired by those of Whitehead & James 231 

(2015) and Farine & Whitehead (2015). We simulate a population of N individuals, and assign each 232 

dyad an association probability pij from a beta distribution with mean μ and precision ϕ (α = μϕ, β = 233 

(1-μ) ϕ). By assigning association probabilities in this way, we create non-random social preferences 234 

in the network, and thus larger variance in edge weights than would be expected given random 235 

association (Whitehead et al., 2005). 236 

We then simulate τ sampling periods. For simplicity, individuals are sighted in each sampling period 237 

with a constant probability o, and associations between dyads where both individuals are sighted 238 

occur with probability pij. We then build the observed association network by calculating dyadic 239 

simple ratio indices (SRI): 240 

𝑆𝑅𝐼!" =
#!"
$!"

     (2) 241 



Where Xij is the total number of sampling periods in which i and j were observed associating, and Dij 242 

is the total number of periods in which either i or j was observed (including periods where they were 243 

observed, but did not associate with any individuals). 244 

We then assign each individual a trait value from a uniform distribution (0,1). We do not need to 245 

specify what this trait represents for our simulation, but it could represent any quantitative trait 246 

used as a predictor in social network studies (age, personality, cognitive ability, dominance rank, 247 

parasite load, etc.). Note that the trait value is generated after the observations of association and 248 

has no influence on any network property. 249 

We then fit the linear model: 250 

𝑆𝑅𝐼!" = 𝛽% + 𝛽&+𝑡𝑟𝑎𝑖𝑡! − 𝑡𝑟𝑎𝑖𝑡"+ + 𝜀!"    (3) 251 

and save the estimate of 𝛽& and the associated t statistic. We compare this coefficient and t statistic 252 

to a null model generated using the sampling period permutation method proposed by Whitehead 253 

(1999). There are several algorithms available to perform these swaps. We use the “trial swap” 254 

procedure described by Miklós & Podani (2004) and suggested for social network studies by Krause 255 

et al. (2009). For each trial, this procedure chooses an arbitrary 2 by 2 submatrix of the lower 256 

triangle within a random sampling period. If a swap is possible, it is performed (and symmetrized), 257 

otherwise the matrix stays at its current state. These steps when the matrix is not changed are 258 

referred to as “waiting steps.” This algorithm is ideal because it ensures that the Markov chain 259 

samples the possible matrices uniformly, while other algorithms that do not include waiting steps 260 

exhibit biases in their sampling of the possible matrices (Miklós & Podani, 2004).  We generate 261 

10,000 permuted datasets for each simulation, with 1,000 trial swaps between each permutation, 262 

and re-fit our linear model to each permuted dataset, recording the coefficient and t statistic. We 263 

then use these distributions to calculate p-values for the linear model’s coefficient. Across the 200 264 

runs, we vary the parameters of the simulation by drawing μ, ϕ, N, o, and τ randomly using Latin 265 

hypercube sampling (Table 1).  266 



 267 

Nodal regression: Do individual traits influence network centrality? 268 

We next investigate the same concept in the context of nodal regression. This form of analysis tests 269 

whether some individual attribute is related to variation in network position. This is perhaps the 270 

most common use of datastream permutation null models for testing the significance of linear 271 

regression coefficients in animal social networks (e.g. Cowl et al., 2020; Poirier & Festa-Bianchet, 272 

2018; Zeus et al., 2018). For simplicity, we focus on strength, which is simply the sum of an 273 

individual’s edge weights. 274 

In this simulation, we consider the case where networks are derived from patterns of shared group 275 

membership (“gambit of the group”). This form of data collection is extremely common in animal 276 

social network studies, and was the basis for the original datastream null model developed by Bejder 277 

et al. (1998). 278 

The framework for this simulation is based on that used by Firth et al. (2017). We simulate G 279 

observations of groupings in a population of N individuals. Each group is assigned a group size S from 280 

a discrete uniform distribution on [1,M]. We assign each individual a preference for a particular 281 

group size P from a truncated normal distribution with mean (1+M)/2, standard deviation σ, lower 282 

bound 0, and upper bound M. Higher values of σ will therefore lead to higher variation in 283 

gregariousness in the population. For each group g, membership is determined by sampling Sg 284 

individuals without replacement, with individual sampling probability determined by the size of 285 

group g and each individual’s group size preference: 286 

𝑃(𝑖	in	𝑔) ∝ &

'(#)*!+
$    (4) 287 

This gives the simulation the property that individuals with higher assigned gregariousness scores 288 

tend to occur in larger groups, and vice versa. This leads to non-random differences in 289 



gregariousness (and thus strength centrality) between individuals. We then calculate the association 290 

network, again using the SRI: 291 

𝑆𝑅𝐼!" =	
#!"

#!",	.!,."
    (5) 292 

Where Xij is the number of groups in which the dyad was seen together, and Yi and Yj are the number 293 

of groups in which only i or only j were seen, respectively. After calculating the network, we 294 

determine each individual’s strength. We again generate a trait value for each individual at random 295 

from a uniform distribution on (0,1) and fit the linear model 296 

∑ 𝑆𝑅𝐼!"" =	𝛽% +	𝛽&𝑡𝑟𝑎𝑖𝑡! + 𝜀!    (6) 297 

and again save the estimate of 𝛽&, along with the associated t statistic. We compare these statistics 298 

to those derived from networks generated using the group-based permutation procedure proposed 299 

by Bejder et al. (1998). This procedure again sequentially permuted the observed dataset, while 300 

maintaining the size of each group and the number of groups per individual. We again use the trial 301 

swap method to perform these permutations, generating 10,000 permuted datasets with 1,000 trials 302 

per permutation, and derived p-values in the same way as above. We vary the parameters of this 303 

simulation by using Latin hypercube sampling to draw values of N, M, G, and V (see Table 1 for 304 

ranges). 305 

 306 

Analysis 307 

We use the outputs of the simulations primarily to derive overall type I error rates (calculated as the 308 

portion of runs in which a p-value less than 0.05 was obtained) when using either regression 309 

coefficient or t-value as the test statistic. We further investigated the sensitivity of these results to 310 

non-random social structure, sampling effort, and population size. Previous work suggests that the 311 

sensitivity of datastream permutation techniques are highly dependent on variation in social 312 

structure and sampling intensity (Whitehead, 2008). We use binomial generalized linear models to 313 



summarize how population size, response variance, and sampling intensity influence the probability 314 

of false positives. We further analyse these relationships qualitatively using conditional probability 315 

plots. We compare these results to those derived from node-label permutation tests on the same 316 

simulated datasets. 317 

  318 

Simulation results 319 

Dyadic regression 320 

The overall type I error rate for the dyadic regression case was high, with 41% (81/200) of runs giving 321 

false positives when using the coefficient as the test statistic, and 21% (42/200) when using the t-322 

value. When using the regression coefficient as the test statistic, the false positive rate increased 323 

with greater sampling effort (β = 0.012 ± 0.004, z = 2.82, p = 0.005) and variance in SRI values (β = 324 

6.35 ± 3.04, z = 2.09, p = 0.03), but was not strongly influenced by the network size (β = -0.007 ± 325 

0.006, z = -1.085, p = 0.278). When the t-value was used as the test statistic, only the sampling effort 326 

significantly influenced the false positive rate (β = 0.014 ± 0.004, z = 3.00, p = 0.003), while neither 327 

the number of individuals (β = 0.0007 ± 0.008, z = 0.091, p = 0.927) or variance in edge weights (β = -328 

0.59 ± 3.72, z = -0.177, p = 0.859) were significantly correlated with the false positive rate. In 329 

contrast, the node-label permutation method had a much lower false positive rate of 6% (12/200) 330 

and was unaffected by sampling effort (β = -0.004 ± 0.008, z = -0.443, p = 0.658), network size (β = 331 

0.001 ± 0.013, z = 0.086, p = 0.931), or edge weight variance (β = 3.574 ± 5.438, z = 0.657, p = 0.511). 332 

 333 

Nodal regression 334 

In the case of nodal regression, type I errors were once again high when using datastream 335 

permutations. When using the regression coefficient as the test statistic, our simulation resulted in a 336 

type I error rate of 43.5% (87/200), and when using the t-value the type I error rate was 28% 337 



(56/200). When using the regression coefficient as the test statistic, both sampling effort (β = 0.029 338 

± 0.012, z = 2.434, p = 0.015) and variance in centrality (β = 1.444 ± 0.479, z = 3.017, p = 0.003) were 339 

positively correlated with type I errors, while the number of individuals was not related to type I 340 

errors (β = -0.005 ± 0.007, z = -0.732, p = 0.464). When using the t-statistic, sampling effort was still 341 

positively related to type I error rate (β = 0.042 ± 0.013, z = 3.265, p = 0.001), however the variance 342 

in centrality was not (β = -0.287 ± 0.498, z = -0.577, p = 0.564), and, interestingly, the size of the 343 

network appears to be positively correlated with type I error (β = 0.017 ± 0.009, z = 1.990, p = 0.047). 344 

As in the case of dyadic regression, the node-label permutations produced an acceptable false 345 

positive rate of 7% (14/200), which was unaffected by sampling (β = 0.014 ± 0.021, z = 0.663, p = 346 

0.507) network size (β = 0.008 ± 0.015, z = 0.579, p = 0.562) or variance in centrality (β = 0.194 ± 347 

0.868, z = 0.224, p = 0.823). 348 

 349 

Discussion 350 

These two simple simulated scenarios show that the commonly used datastream permutation 351 

procedures for animal social network data produce extremely high and thus unacceptable false-352 

positive rates when used as a test of regression models. This is because datastream permutations 353 

represent a null hypothesis that is different from the typical null hypothesis that researchers are 354 

interested in testing when fitting regression models (i.e. that the model coefficients are 0).  355 

It is important here to stress that the permutation procedure is not doing anything “wrong” in these 356 

examples. The permutations are in fact generating a distribution of statistics that is correct for the 357 

null hypothesis that the algorithm is designed to test, which is that the social structure is random. 358 

The “type I errors” that we discuss here are introduced when the rejection of this null hypothesis is 359 

taken as evidence that a relationship exists between the non-random structure of the network and 360 

an exogenous variable, when in fact these rejections in our simulations are simply indicating that 361 

social structure is not in fact random. For this reason, we recommend against datastream 362 



permutations as a test for regression models with social network data. Datastream permutations, 363 

however, will continue to play an important role in animal social network analysis; the results of 364 

datastream permutations can tell us whether a given dataset shows signs of non-random social 365 

structure. This is key, not just for social analyses generally but for regression analyses in particular. If 366 

a dataset does not show signs of non-random social structure, it likely does not make sense to 367 

continue with regression analyses that attempt to uncover the correlates of social network 368 

structure. 369 

In this study, we focused on the case where network measures are the response variable in a linear 370 

model. A different, but related scenario is when we try to predict individual attributes (such as 371 

measures of fitness or personality) using network measures as a predictor. The statistical problems 372 

presented by this scenario are slightly different than those of the network response case. Here, the 373 

non-independence of the network data are not a problem, as linear models do not make any 374 

assumptions about the distribution or covariance structure of the predictors (n.b. there can still be 375 

covariance in the attribute used as a response variable related to network position that, if present, 376 

would need accounting for in the statistical model). The issue of data unreliability, however, may still 377 

be present. As in the simulations used here, datastream permutations alone would not serve as an 378 

adequate test. These models would test the null hypothesis that the relationship between the 379 

response and the network arose due to random social structure, when in fact the researcher is likely 380 

interested in whether the non-random social structure influences the individual attributes. A 381 

significant result from the datastream permutation method could simply indicate that the social 382 

structure is not random, rather than serving as an indicator that a relationship exists between the 383 

network and the response. 384 

The high false-positive rate we describe here is the result of decreased variance in the response 385 

variable after permuting the raw data, as the variation due to social processes has been removed. A 386 

potential “quick fix” that might be mooted is to simply standardize the response variable in the 387 



observed network so that all subsequent permutations to have a constant variance, i.e. using Z-388 

scores. This may reduce the type I error rate. However, we strongly recommend against this as a 389 

solution to the problem. Standardizing the variance does not address the inconsistency at the heart 390 

of the problem. The null hypothesis being specified by the null model, that the social structure is 391 

random, is still not the same as the null hypothesis of interest in the regression. 392 

In the following sections, we highlight some potential ways forward for the application of regression 393 

in animal social network analyses, and give some general recommendations for researchers. We 394 

hope that this discussion will encourage further work that may provide an extended toolkit for 395 

ecologists interested in these kinds of problems. 396 

 397 

Carrying out regression in social networks by separating non-independence and bias 398 

If datastream permutations alone cannot be used to test regression models in animal social network 399 

analyses, how should we conduct these analyses? While there are numerous potential solutions, and 400 

a full accounting of them is beyond the scope of this paper, we suggest that a general way forward is 401 

to recognize that the two issues of non-independence and unreliability of the data are separate 402 

problems requiring distinct statistical solutions. 403 

Not all animal network data will be subject to the issue of unreliability (e.g., in cases where sampling 404 

is balanced across subjects and relevant contexts) and in some instances data may be complete and 405 

unbiased. In these cases, node permutations or other statistical network models will be appropriate 406 

(Croft et al. 2011). When structure or bias in the observations need to be controlled for, we propose 407 

two general approaches that may be useful; other solutions are certainly possible, and we 408 

encourage further work on this matter. 409 

The first method (Figure 4A) would first attempt to remove the bias from the network using 410 

generalised affliliation indices (GAIs; Whitehead & James, 2015) or similar corrections to account for 411 



confounding variables that may influence observed edge weights. GAIs fit the observed associations 412 

or interactions as the response in a binomial or Poisson generalized linear model, with confounding 413 

factors such as space use, sightings frequency, or joint gregariousness as predictors. The residuals of 414 

this model are then used as measures of affiliation, as they reflect the difference between observed 415 

and expected association rates given the confounding factors. While a flexible and appealing 416 

approach, GAIs require that potential confounds be properly specified in terms of dyadic covariates, 417 

and that the relationship between confounds and edge weights be linear. This second issue could be 418 

solved by deriving affiliations from generalized additive models (GAMs), where the relationship 419 

between covariates and the response can be represented by smooth functions. While GAIs 420 

represent the most well developed method for correcting social network edge weights, other 421 

methods are certainly possible. Once corrections are made, researchers can use the corrected social 422 

network to derive responses to use in the statistical model. A potential drawback of GAIs is that 423 

avoidance between individuals is represented as negative edge weights. While this is not a problem 424 

for dyadic regression (in fact it better conforms to the assumptions of traditional linear models), this 425 

complicates the calculation of some centrality measures, requiring that negative edge weights be 426 

ignored or set to zero (Whitehead & James 2015). Inference would be carried out using post-427 

network permutation methods, such as node-label permutations or MRQAP. 428 

A second, different approach (Figure 4B) would be to incorporate confounds in the inferential model 429 

itself. If researchers identify likely confounds and summarize them quantitatively at the same level 430 

as the hypothesis being tested (e.g. dyadic or nodal), these could be used directly in the statistical 431 

model. Where potential non-linearity between confounds and responses exist, data transformations, 432 

polynomials, and smooth functions may present a possible solution. Again, post-network 433 

permutation methods would be employed for inference to correct for the non-independence of the 434 

data. Franks et al. (2020) explore this method in detail. 435 



We feel that these approaches have the potential to address the current issue that we have 436 

identified and we strongly encourage new work to explore and validate these approaches. These 437 

suggestions are general, identifying the ways in which we might approach separately address non-438 

independence and bias. It is important to note that the methods we propose are only useful if the 439 

question of interest is about the structure of social affinity, rather than the empirical pattern of 440 

encounters between individuals. If, instead, researchers are interested in the actual rates of contact 441 

(as is the case in disease research and studies of social learning), this approach may not be 442 

appropriate. Extensions of recent work using hidden state modelling may be more appropriate for 443 

disentangling true association patterns when detections are potentially biased or imperfect 444 

(Gimenez et al., 2019). 445 

 446 

Building better null models 447 

The problems we have identified here arise because the commonly used null models for animal 448 

societies do not generate datasets representing the null hypothesis of interest in a regression 449 

setting. These models were specifically designed to test the null hypothesis of random social 450 

structure, not the null hypothesis that aspects of social structure are unrelated to exogenous factors. 451 

An obvious way forward would be the development of permutation procedures that generate 452 

datasets that correctly represent the relevant null hypothesis. In the case of dyadic regression, these 453 

datasets would maintain the structure of the data (e.g. sightings per individual, associations per 454 

sampling period, spatial patterns of observations), randomise identities of associated individuals, 455 

and simultaneously preserve the variance in edge weights. In the case of nodal regression, permuted 456 

datasets would maintain the same (or at least a similar) distribution of individual centrality within 457 

the network, in addition to structural confounds such as the size of groups, sightings per individual, 458 

and timing of sightings. The design of such procedures is far from trivial, and is beyond the scope of 459 

this paper, but we suspect that the development of algorithms that simultaneously maintain aspects 460 



of data structure and features of the social system will be an important area of methodological 461 

research going forward. This area of research is still in its early days, although there has been some 462 

potentially applicable work in other sub-fields of network science (e.g. Chodrow 2019). 463 

 464 

Conclusion 465 

The development of permutation techniques that control for sampling biases while maintaining 466 

temporal, spatial, and structural aspects of the raw data is an important development in the study of 467 

animal social systems, and we suspect that these procedures will remain a key tool for hypothesis 468 

testing in ecology and evolution. These techniques are particularly crucial when it is not clear 469 

whether a dataset shows signs of non-random social structure. However, a lack of consideration 470 

regarding the matching up of the null hypothesis being tested with the null model being generated 471 

using datastream permutations has led to unwarranted application of these techniques, particularly 472 

in the context of hypothesis testing using regression models. Here, we have shown that significant p-473 

values from applying datastream permutations to regression models cannot be used as evidence of a 474 

relationship between the social network and exogenous predictors. 475 

We recommend that researchers think critically and carefully about the null hypothesis they wish to 476 

test using social network data, and ensure that the null model they specify does in fact represent 477 

that hypothesis (Table 2). We suspect that in most cases, the null hypothesis of random social 478 

structure will clearly not be appropriate in regression analysis, and therefore traditional datastream 479 

permutations will not be a viable approach. We hope that our discussion of this issue and the results 480 

of our simulations will result in reconsideration of how researchers employ null models when 481 

analysing animal social networks, promote further research and discussion in this area, and lead to 482 

the development of procedures that correctly specify null hypotheses and allow robust inference in 483 

animal social network studies. 484 
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Figure Captions 604 

 605 

Figure 1. Example of the mechanism by which datastream permutations may lead to false positives 606 

in linear regression. In the original network, there is variation in strength among individuals driven 607 

by differences in gregariousness (represented by node size in the social networks). Individuals are 608 

assigned a trait value (represented by colour in the social network) unrelated to their network 609 

position. By chance, there is a slight negative relationship between network strength and trait value 610 

in the observed network. After several permutations, there is a reduction in the variance in the 611 

strength of individuals in the permuted network, and thus the magnitude of the relationship is 612 

reduced. The bottom histogram shows the distribution of null coefficients after 10,000 permutations 613 

(black), and the coefficient from the original linear model (red). 614 

 615 

Figure 2. Conditional probability plots from dyadic regression simulation. Lines indicate smoothed 616 

conditional probabilities of a type I error (a p-value less than 0.05) for datastream permutations 617 

using the coefficient (red) or t-value (orange), and node-label permutations (blue) in relation to 618 

three covariates. Dotted line indicates target type I error rate of 0.05. 619 

 620 



Figure 3. Conditional probability plots from nodal regression simulation. Lines indicate smoothed 621 

conditional probabilities of a type I error (a p-value less than 0.05) for datastream permutations 622 

using the coefficient (red) or t-value (orange), and node-label permutations (blue) in relation to 623 

three covariates. Dotted line indicates target type I error rate of 0.05. 624 

 625 

Figure 4. Flowcharts of two approaches for regression analysis in animal social networks. In the first 626 

(A), a network is generated that attempts to adjust for confounding effects (through e.g. GAIs) which 627 

is then used to derive the response. In the second (B), the original network is used to derive the 628 

response variable, with confounds instead being incorporated as covariates in the inferential model. 629 

In both methods, inference is based on post-network permutations (such as MRQAP or node-label 630 

permutations). 631 



Figure 1 632 

 633 

 634 



Figure 2 635 

 636 

 637 

Figure 3 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 



Figure 4 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

Table 1. Ranges for varied parameters used in simulations 657 

Parameter Meaning Dyadic Nodal Range 



N Number of individuals in population ✓ ✓ 20 – 100 

μ Mean association probability ✓  0.01 – 0.5 

t Number of sampling periods ✓  20 – 200 

ϕ Precision of beta distribution for association probabilities ✓  1 – 10  

o Observation probability per sampling period ✓  0.1 – 1  

G Number of observed groupings  ✓ 20 – 500 

M Maximum grouping size  ✓ 5 – 10 

σ Standard deviation of group size preference  ✓ 0.1 – 2.0 

 658 

 659 



Table 2. Comparison of datastream and node-label permutations 660 

 Datastream permutations Node-label permutations 

Dyadic H0 

There is no variation in the strength of 

social ties once data structure, 

sampling noise, and constraints (time, 

location, etc.) are accounted for. 

The observed variation in the strength of 

social ties is unrelated to dyadic 

covariates (e.g. kinship, trait similarity) 

Nodal H0 

There is no variation in centrality once 

data structure, sampling noise, and 

constraints are accounted for. 

Observed variation in centrality is 

unrelated to node characteristics (e.g. 

age, sex, personality) 

Applications 

Testing for the presence of social 

preferences 

Testing for non-random variation in 

social position 

Testing relationships between observed 

social ties and dyadic predictors 

 

Testing relationships between centrality 

and node attributes 

Benefits 

Corrects for bias in data collection 

from differences in detection 

probability and demographic processes 

 

Accounts for complex data structures 

such as focal follows and gambit of the 

group 

Corrects for the structure of the 

observed network 

 

Specifies the null distribution of interest 

for most regression applications 

Drawbacks 

Results in a decrease in variance in 

network measures compared to 

observed data when social structure is 

non-random 

 

Cannot be used to test regression 

models against the null hypothesis of 

zero effect 

Does not account for data collection 

method or complex data structures 

 

Does not correct for bias or uncertainty 

due to sampling 
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