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Constrained control for microgrids with constant power loads

Pablo R. Baldivieso-Monasterios1 and George C. Konstantopoulos1

Abstract— This paper analyses the reachability properties of
Microgrids connected to constant power loads subject to input
and state constraints. Constraint requirements in microgrids
are either inherent, i.e. inverter modulation indices limitations,
or imposed, such as current and voltage limitation which are
safety critical. In this paper, we propose an analysis of the
controllability properties of a microgrid using set theoretic
notions; this analysis sheds light on the constraint admissibility
properties of a microgrid with constant power loads in terms
of constraint satisfaction and robustness to changes in power
demands. Lastly, we provide a method of recasting the original
nonlinear microgrid control problem into controlling a linear
system subject to bounded additive disturbances and output
constraints.

I. INTRODUCTION

This paper is concerned with with the reachability prop-

erties for Constant Power Load (CPL) in ac systems using

set invariance. This type of loads can be found, given the

latest advances in Microgrid (MG) technology, in devices

that are tightly regulated such as the ones controlled using

power inverters as mentioned in [1]. In general, inverter

based MGs have acquired a widespread use and are the key

enablers of the smart-grid concept. In this setting, constraints

arise naturally in the form of actuator limits, i.e. modulation

indices and current capacities, see for example [2]. Among

the most successful tools developed that excels in the analysis

of constrained systems is set invariance, see the excellent

survey [3]. Different concepts of invariance can be found in

the literature for different classes of systems; these concepts

have a close link to control Lyapunov functions and stability

notions [4].

On the other hand, CPLs have been thoroughly studied

within the context of dc systems; voltage dynamics of such

load when connected to a current source and in parallel to a

capacitance and admittance are

C
dV

dt
= −gV − P

V
+ i.

A relevant question associated to these dynamics is the

existence of long term equilibrium which have been studied

in [5] and [6]. It is easy to see, when linearising, that a

CPL introduces negative impedance in the resulting circuit

which may cause a voltage collapse in the system. The

voltage stability properties of networks with nonlinear loads

1 This work is supported by EPSRC under Grants No
EP/S001107/1. P.R. Baldivieso-Monasterios and G.C. Konstan-
topoulos are with the Department of Automatic Control &
Systems Engineering, University of Sheffield, Sheffield, UK
{p.baldivieso,g.konstantopoulos}@sheffield.ac.uk.
G. C. Konstantopoulos is with the Department of Electrical and Computer
Engineering, University of Patras, Patras 26500, Greece.

have been studied in [2], and dates back to the works of

[7]. An efficient method for controlling and counteracting

this negative impedance has been proposed in [8] using

passivity based control. These existing approaches, however,

do not take constraints into consideration. The concepts of set

invariance, then, offer avenues of research to study the effect

of constraints on a MG. Set invariance for both deterministic

and uncertain cases, have been widely studied for linear

systems. In recent years, several attempts have been made to

understand the nonlinear case: [9] and [10] proposed methods

for computing maximal invariant sets for nonlinear dynamics

emphasising the potential non-convexities that a nonlinear

approach may have. In particular, the ideas of [4] regarding

the boundary structure of invariant sets of nonlinear systems

characterise the structure of these sets. Several new advances

have applied set invariance concepts, such as the maximal

positive invariant set, to power system transients, see [11].

These set invariance methods provide the necessary tools to

obtain certificates of stability and constraint satisfaction that

are safety critical. These ideas of set invariance, to the best of

the author’s knowledge, have not been applied in the context

of MGs with CPLs. The presence of this type of loads require

tight regulation to keep voltages within pre-specified regions,

in terms of magnitude and angles. The problem of CPL

stabilisation is further exacerbated with the presence of input

constraints, in form of current limitations. The contributions

and structure of this paper are the following:

• In section III, we propose a novel invariance inducing

control law for a node with a 3−phase ac CPL. We

exploit the structure of the load dynamics and its

reachable sets to guarantee that the latter is always

contained within the original constraint set. The proposed

control law is set-valued in nature, and we explore its

properties in terms of robustness to load demand changes,

available selection properties. Section II contains the

MG model together with the necessary concepts of

continuous and discrete reachable sets.

• In section IV, we leverage on the properties of the

proposed set-valued control law to recast the MG control

problem. We also show the multi-stable nature of a MG

when connected to CPLs. Using set invariance on the

load side allows us to bound the voltages at the load

side, provided the line currents are chosen according

the proposed control law. Therefore the remaining MG

dynamics can be understood as, i.e. inverter filters and

lines, as a linear system subject to bounded disturbances

and output constraints. Section V illustrates the proposed

controller properties when applied to several CPLs.



Notation: For an index set I, xi denotes a quantity indexed

by an element i ∈ I, whereas upper case subscripts xI denote

concatenation of elements {xi}i∈I. The 2−norm is denoted

|x| =‖x‖2. A MG can be seen as a graph G = (V,E) where

the set of nodes V represent a collection of inverters VI and

loads VL such that V = VI ∪ VL and VI ∩ VL = ∅; the set

of edges E ⊆ V× V defines the MG topology, characterised

by the node-edge matrix B ∈ R|E|×|V| which for edge e =
(i, j) ∈ E involving nodes i and j can be defined as [B]ei = 1
if node i is the source of e ∈ E, and [B]ej = −1 if node j
is its sink, and zero otherwise. The identity matrix in Rn×n

is denoted In, the complex structure in R2n×2n is

J2n =

[
0 −In

In 0

]

.

A C−set is a compact and convex set, a PC−set is a C-set

set with the origin in its nonempty interior.

II. PRELIMINARIES

A. Microgrid Model

In this section, we aim to describe the model of a MG

composed of |VI | 3−phase power inverters connected to |VL|
loads via inductive lines. Each inverter, which is considered

to be a controllable voltage source, is interfaced with the rest

of the network via LC-filters; the lines are predominantly

inductive and are represented as L filters with parasitic

resistances; while loads can be seen as CPLs in parallel

to an admittance. We consider a dq model in the global

reference frame rotating at a constant frequency ωc such that

Li

dii
dt

= −Ziii − vi + v̄i (1a)

Ci

dvi
dt

= −Yivi + ii −B⊤
i iE (1b)

Le

die
dt

= −Zeie +BIvI +BLvL (1c)

Cl

dvl
dt

= −Ylvl − h(Sl, vl)−B⊤
l iE . (1d)

These different MG components can be characterised as

a feedback interconnection. In this model, vi ∈ R2 and

ii ∈ R2 represent the filter voltage and current for all i ∈
VI ; similarly, ie ∈ R2 and vl ∈ R2 represent line currents

and load voltages for all e ∈ E and l ∈ VL respectively.

The passive components, i.e. impedances and admittances,

can be defined as Zµ = rµI2 + ωcLµJ2 and Yµ = gµI2 +
ωcCµJ2 for all µ ∈ VI ∪VL∪E with resistances, inductances,

conductances and capacitances given by rµ, Lµ, gµ, and Cµ

respectively. The interconnection between inverters and loads

with lines can be characterised using the node-edge incidence

matrix B; BI and BL are columns associated with inverter

and load nodes. The nonlinearity introduced by the load

characteristics Sl = (Pl, Ql) is

h(Sl, vl) =
2

3
(PlI2 −QlJ2)

vl
v⊤l vl

with Pl and Ql are the active and reactive power demands

for load l ∈ VL. The actuation point of the MG corresponds

to the inverter output voltage v̄i for all i ∈ VI . Implicitly, we

consider in (1d) that the CPL current dynamics operate at a

slower time-scale for example if considering thermostatically

controlled loads. The overall state, control, and disturbances

are x = (iI , vI , iE , vL), u = v̄I , and d = SL, a short hand

notation for (1) is ẋ = fc(x, u, d). We invoke the following

assumption with respect to the MG topology:

Assumption 1: For a MG defined by G = (V,E),

i) G has a single connected component.

ii) [B]el = −1 for each l ∈ VL, e = (i, l) ∈ E, and i ∈ VI .

The above assumption implies that no two loads are connected

to each other with a distribution line; the only connections in

the network are between inverters and loads. The MG is sub-

ject to hard actuation and operational constraints constraints,

i.e. inverter modulation indices, regions of operation in terms

of load voltages, and current capacity for distribution lines,

i.e. u ∈ U, x ∈ X. Furthermore, the load demand d : R → D

is a priori unknown but with values in a given set d(t) ∈ D.

Assumption 2 (System constraints): The MG constraint

sets satisfy

i) The constraint sets Ui ⊂ R2 for all i ∈ VI , Xµ ⊂ R2

for all µ ∈ V ∪ E are polytopic C−sets.

ii) For each l ∈ VL, the load demand satisfies dl ∈ Dl =
{dl : R → Dl : d measurable} with Dl is a PC−set.

Remark 1: The overall state constraint set X =
∏

µ∈V∪E
Xµ can be computed using a cartesian product which

implies that there are no coupled constraints present in the

MG. Following Assumption 1, the set of measurable distur-

bances is also the cartesian product of the sets corresponding

to the individual loads, i.e. D =
∏

l∈VL
Dl.

B. Reachability sets

Control sets are an important tool in the analysis and study

of controllability in nonlinear systems. In particular, we are

interested in the region of attraction of given target sets. The

first concept is that of reachable sets as defined in [12].

Definition 1: For a set X ⊂ Rn and a control system

ẋ = fc(x, u, d) with ϕ(t, x, u, d) denoting its solution, or

flow, at time t for a control input u ∈ U and load demand

d ∈ D; the Reachable set from any x ∈ X up to time T > 0
is O

+
≤T (x) = {ϕ(t, x, u, d) ∈ Rn : u ∈ U, t ∈ [0, T ]}.

Furthermore, the reachable set from x ∈ Rn is O+(x) =
⋃

T>0 O
+
≤T (x). These sets are hard to compute in practice,

because the flow corresponding to (1) can rarely be obtained

in explicit form. A way to circumvent these issues is to use

a discretisation1 of (1) to then obtain discrete versions of its

reachable sets. The resulting nonlinear discrete time dynamics

x+ = f(x, u, d) (2)

where x ∈ Rn, u ∈ Rm, d ∈ Rp represent the state, input,

and disturbances for the discretised MG; x+ is the successor

state. The state, control and disturbance dimensions are n =
4|VI |+2|E|+2|VL|, m = 2|VI |, and p = 2|VL| respectively.

The function f : Rn × Rm × Rp → Rn is an absolutely

1In the context of our paper, any method for discretising the ODE may be
applied. The simplest case for this being an Euler discretisation, for further
detail we direct the reader to [13, Chapter 11].



continuous function. Using this discrete approximation we

can define the reachable operator from a target set X ⊂ Rn

for a given disturbance instantiation d ∈ D:

R(X, d) = {f(x, u, d) ∈ R
n : x ∈ X, u ∈ U}. (3)

These operators allow us to define the k−step d−reachable

sets via the following recursions:

R
k+1
d = R(Rk

e , d), R0
· = X, (4)

for any d, e ∈ D. In the above relations, we have considered,

with a slight abuse of notation, different values of disturbances

in D. In other words, by fixing a d̃ ∈ D, for (4) and step

k+1, we have d = d̃(k) ∈ D and for step k, the disturbance

is e = d̃(k − 1) ∈ D. This procedure allows us to define

a correspondence between disturbances and sequences of

sets d̃ 7→ {Rk

d̃(k)
}∞k=0. The initial set of this sequence is not

affected by the disturbance which justifies the notation R0
· .

We note that these k−step reachable sets (4) define discrete

positive orbits passing through the set X ⊂ Rn. Furthermore,

the discretised dynamics satisfy in general f(x, u, d) = ϕ(t+
Ts, t, x, u, d) with constant controls in the interval [t, t+ Ts].
These discrete orbits and its continuous counterparts are

related via the sampling time Ts > 0.

Lemma 1: For each x ∈ X and ǫ > 0 there exists Ts > 0
such that distH(O+(x),R∞

d ) < ǫ.2

We refer the reader to [12, Appendix C] for a proof. Before

proceeding, we recall pertinent definitions from the literature

regarding set invariance for discrete time systems, see [3] for

further details:

Definition 2: A set Ω ⊂ Rn is Robust Control invariant

set if for the controlled system x+ = f(x, u, d) with d ∈ D

if for any x ∈ Ω, there exists a control action u ∈ U such

that for all d ∈ D, the successor state satisfies x+ ∈ Ω.

III. REACHABILITY ANALYSIS

In this section, we propose a controller that uses set

invariance and reachability concepts to guarantee constraint

satisfaction for each load l ∈ VL. From a practical standpoint,

one of the objectives of controlling a MG is to supply the

load with adequate levels of voltage and frequency, while

coping with the corresponding power demands.

A. Load controller

From Assumption 2 each load is constrained to a C-set

which can be represented by nl inequalities, i.e. Xl = {vl ∈
R2 : Ξxlvl ≤ ξxl} with Ξxl ∈ Rnxl×2 and ξxl ∈ Rnxl . On

the other hand, from Assumption 1, the load dynamics have

a diagonal structure, which allow a separate analysis of (1d)

considering the inputs il = −B⊤
l iE such that

Cl

dvl
dt

= −Ylvl − h(dl, vl) + il = fl(vl, il, dl).

We are interested in finding a control law κ(·) such that Xl

becomes an invariant set. To this aim, consider a constraint

2The Hausdorff distance between any two sets C,D ⊂ Rn is
distH(C,D) = max{sup

x∈C

inf
y∈D

|x− y|, sup
y∈D

inf
x∈C

|x− y|}

admissible steady state pair (vss
l , i

ss
l ) ∈ Xl ×Ul such that the

translated state, Xt
l = Xl−vss

l , and control Ut
l = Ul− iss

l sets

are PC-sets; the input constraint set arises from the constraints

imposed on the the line currents connected to the lth load,

i.e. Ul =
⊕

e∈El
Xe with El = {e : (µ, l) ∈ E, ∀µ ∈ V}.

Similarly, using the coordinate transformation xl = vl − vssl
and ul = vl − vssl results in

Clẋ = f t
l (xl, ul, dl) = fl(xl + vssl , ul + issl , dl) (5)

with the origin as an equilibrium point. The desired con-

trol law κ(·) forces the closed loop vector field orbits

f t
l (xl, κ(xl, dl), dl) to be contained within Xl at all times

t ≥ 0 and for all load demands dl(t) ∈ Dl.

As mentioned in Section II-B, the computation of orbits for

nonlinear systems is problematic, in this case the source of

this problem is h(·, ·); however, leveraging on Lemma 1,

we can compute reachable sets for the discrete approxi-

mation of (5). Given a sampling time T̃s > 0, an Euler

discretisation yields x+
l = xl + T̃sC

−1
l f t

l (xl, ul, dl). Any

such discretisation induces computation errors that are linked

with the choice of the sampling time. To avoid any such

error to incur in the computation of the orbits, we further

impose the following condition on the desired control law

xl + Tsf
t
l (xl, κ(xl, dl), dl) ∈ λXl where3 λ ∈ [0, 1] and

Ts = T̃sC
−1
l . For a given state x ∈ Xl and a dl ∈ Dl, the

control action forcing the one-step reachable set to satisfy

R(xl, dl) ⊂ λXl can be characterised by

Ξxl(xl + Tsf(xl, ul, dl)) ≤ λξxl

Ξulu ≤ ξul

}

ul ∈ Ul(xl, dl) (6)

yielding a set valued control law Ul : Xl × Dl ⇒ Ul. Before

proceeding, we state a property of the function g : Xl×Dl →
Rn which will be useful in subsequent developments.

Lemma 2: Suppose Assumption 2 holds, then for d ∈ Dl

g(xl, dl) = (I2 − TsYl)xl + Ts(wl − h(xl, dl))

with wl = Ylv
ss
l + iss

l is locally Lipschitz in Xl.

We, now, explore the properties of our proposed control law:

Theorem 3: For a fixed dl ∈ Dl, Ul(xl, dl) is nonempty

and a PC−set for all x ∈ Xl if

|u| ≥ max
y∈Xl

min
z∈λXl

|g(y, dl)− z|2.

Proof: The proof is constructive, for an x ∈ Xl, its

associated one-step reachable set, which is a convex set

by construction, is R(xl, dl) = g(xl, dl) ⊕ TsUl. We can

distinguish three cases:

i) g(xl, dl) ∈ int Xl: Since int Xl is an open set, it

contains a neighbourhood N(g(xl, dl)). In particular the

largest ball contained in λXl centred at g(xl, dl) has a radius

ρl = d(g(xl, dl), λ∂Xl) > 0. As a result, a set of controls

belonging to the closure of ul ∈ N(0, ρl) ⊆ TsUl ensures

x+
l ∈ λXl.

3The goal of λ is to ensure a degree of ”robustness” with respect to
approximation and discretisation errors.



ii) g(xl, dl) ∈ λ∂Xl: the recession cone RC(g(xl, dl))
of λXl contains the set of directions η ∈ R2 for which

g(xl, dl) + tη ∈ λXl, and its closure satisfies

RλXl
(g(xl, dl)) = lim inf

t→0

λXl − g(xl, dl)

t
.

Since the state constraint set is a PC−set, then it can be

arbitrarily approximated by a polyhedral set composed of nl

inequalities with normal vectors Ξxl. Since g(xl, dl) lies in the

boundary, then there are ñlx > 0 inequalities that are active,

i.e. Ξ̃xlg(xl, dl) = ξ̃xl with Ξ̃xl ∈ Rñl×2 and ξ̃xl ∈ Rñl . By

definition of boundary, for any point z ∈ λ∂Xl there exists

a neighbourhood N of z such that N ∩ λXl 6= ∅. Similarly

to the previous case, we leverage on the fact that Ul is a

PC−set; the intersection TsUl ∩ RC(g(xl, dl)) is nonempty

which yields a nonempty control law Ul(xl) 6= ∅.

iii) g(xl, dl) /∈ λ∂Xl. By the second geometric form of

the Hahn-Banach theorem, given λXl is a PC−set, there

exists a linear functional Γ: R2 → R separating λXl and

g(xl, dl), i.e. Γ(g(xl, dl)) > 0 and Γ(y) ≤ 0 for all y ∈ λXl.

On the other hand, s ∈ λXl is the projection of g(xl, dl) onto

λXl, such that γ = g(xl, dl) − s is a normal vector to the

hyperplane generated by Γ(·). If the hypothesis on the size

of controls is satisfied, then |Tsul| ≥ |g(xl, dl)| − |s| such

that g(xl, dl) + Tsul ∈ λXl.

The control invariance of Xl follows as a corollary.

Corollary 1: Given a constant dl ∈ Dl. The constraint

set Xl is a control invariant set for ẋ = f t
l (xl, ul, dl) with

ul ∈ Ul(xl) ⊆ Ul.

Proof: For a state xl ∈ Xl, by Theorem 3, its

associated control law satisfies Ul(xl) 6= ∅. The successor

state satisfies x+
l ∈ λXl which implies R(xl, dl) ⊂ Xl.

Assuming Rk
d(Xl) ⊂ Xl, then it is clear that Rk+1

d (Xl) ⊂ Xl

is also contained within Xl. As a result, R∞
d (Xl) ⊂ Xl holds

by induction; the discrete orbit is therefore contained within

the constraint set. Our claim follows from a direct application

of Lemma 1.

B. Variation in the power demand

Theorem 3 ensures the proposed control law is nonempty

as long as the control effort available is larger than the

drift caused by the CPL dynamics. This raises an interesting

question, how much of a change in power demand can the

controller handle before U(xl) = ∅?

Consider a state xl ∈ Xl and a constant power demand

dl ∈ Dl for which a control action ul exists within Ul(xl, dl).
When the power demand is different from the one estimated,

i.e. x+
l = xl + Tsf

t
l (xl, κ(xl, dl), dl + δl). Given that the

variation in load demand belongs to a set δl ∈ ∆l such that

dl ⊕∆l ⊂ Dl. Then, the action of the power demand on the

load dynamics can be represented as

h(xl, dl + δl) = h(xl, dl) +
2

3

1

v⊤l vl

[
vd,l vq,l
vq,l −vd,l

]

︸ ︷︷ ︸

Λ(xl+vss
l
)

δl.

The state dependent transformation Λ(xl) depends only on

xl since vl = xl + vss
l . As a result, the successor state lies in

x+
l ∈ R(xl, dl)⊕ TsΛ(xl)∆l. (7)

One of our aims is to characterise the largest ∆l ⊂ Dl

such that R(xl, dl) ⊕ Λ(xl)∆l ⊆ Xl. Following set manip-

ulations, we can readily obtain a condition that guarantees

robustness against variations in dl, ∆l ⊂
(
TsΛ(xl)

)−1(
Xl ∼

R(xl, dl)
)
.4

The above relation is well defined since R(xl, dl) ⊆ Xl

by construction. The amount variation in load power demand

is clearly state dependant, in fact the amount of variation

depends proportionally on T−1
s |xl|. We are interested in

finding the largest possible ∆l ⊂ Dl such that (7) holds

for all xl ∈ Xl.

Proposition 1: Suppose Assumption 2 holds, then the set

Xl is robust control invariant for x+
l = xl + Tsf

t
l (xl, ul, dl +

δl) if the variation in power demand satisfies

∆l =
1− λ

Ts

⋂

xl∈Xl

Λ(xl)Xl (8)

The variations defined in Proposition (1) are conservative,

since the set ∆l considers only a worst-case scenario. As

mentioned previously, the control law can handle different

variation magnitudes depending on the state. If, on the other

hand, a bounded variation is known a priori; then it is possible

to find a subset of the constraint set Xl that is robust to the

given set of variations.

C. Further properties of Ul(·, ·)
In this section, we explore further properties of the

set-valued feedback control law U(·). As a first step, we

investigate the continuity properties of such map which

ensures the existence of a selection map κ : Xl × Dl → Ul

with κl(xl, dl) ∈ U(xl, dl). Central to this developments is

the concept of lower semicontinuous maps:

Definition 3 (Lower semicontinuity [14]): A set-valued

map F : Rn
⇒ Rm is lower semicontinuous at x ∈ Rn iff

for any y ∈ F (x) and for any sequence {xn}n∈N ⊂ Rn

such that xn → x, there exists a sequence of elements

yn ∈ F (xn) → y.

Theorem 4: Suppose Assumption 2 holds. For a fixed

power demand dl ∈ Dl, the set valued map Ul(·, dl) is lower

semicontinuous.

Proof: Consider a sequence of states {xl,n}n∈N that

converges to xl, and a control action ul ∈ Ul(xl, dl). The

images Ul(xl,n, dl) are not empty by virtue of Theorem 3;

these images are characterised by a set of inequalities, see

(6), and is a PC − set. On the other hand, by definition

of a converging sequence, for any open set A ⊂ Rn

with xl ∈ A, then ∃Nx > 0 such that xn ∈ A for all

n ≥ Nx. The sequence of states {xl,n}n∈N generate a

sequence of sets {Ul(xl,n, dl)}n∈N; the limit inferior of

which, see [14, Proposition 1.1.2], contains the limits of all

sequences {un,l}n∈N ⊆ Ul such that un,l ∈ Ul(xn,ldl). What

remains to be proven is5 lim inf
n→∞

Ul(xl,n, dl) = Ul(xl, dl).

4Given two C−sets A and B, the Pontryagin difference of A and B is
A ∼ B = {x ∈ A : x+ b ∈ A, ∀b ∈ B}.

5The limit inferior of a sequence of sets {Kn}n∈N can be characterised
by lim inf

n→∞
Kn =

⋂

ǫ>0

⋃

N>0

⋂

n≥N

(Kn ⊕ ǫB) with B the unit ball [14].



Any u ∈ Ul(x, d) satisfies for each i ∈ {1, . . . , nxl} the

inequality |TsΞ
⊤
xl,iul| ≤ λ|ξxl,i| + |Ξxl,i||g(xl, dl)| holds.

From Lemma 2, g(xl, dl) is Lipschitz with constant L ≥ 0,

this implies that |TsΞ
⊤
xl,iun,l| ≤ λ|ξxl,i|+|Ξxl,i||g(xl,n, dl)|+

|Ξxl,i|Lε with |x− xl,n| ≤ ε. As a result u ∈ Ul(xl,n, dl)⊕
εB.

For the other inclusion, for any u ∈ lim inf
n→∞

Ul(xl,n, dl),

then |u− ul,n| ≤ εu for some Nu > 0 or u ∈ Ul(xl,n, dl)⊕
Bεu. The assertion follows from, mutatis mutandis, the

previous argument. From Definition 3, we conclude that the

map U(·, dl) is lower semicontinuous.

The existence of a continuous selection follows:

Corollary 2: Suppose Assumption 2 holds. There exists

a continuous control law κl : Xl → Ul such that κl(xl) ∈
Ul(xl, dl).
The proof follows from applying the celebrated Michael

selection theorem, see [15], to the set-valued map Ul(·, dl)
Leveraging on the fact that U(·, dl) is lower semicontinuous,

we propose the selection based on minimising the distance of

the successor state x+ to the origin. To this aim, the following

optimisation problem defines the desired control law

Pl : min{1
2
|xl + Tsf

t
l (xl, ul, dl)|2 : ul ∈ U(x, d)} (9)

The solution of this problem yields a control action u∗
l ∈

U(x,dl) such that the continuous selection is κl(xl, dl) = u∗
l .

This controller can be expressed as a nonlinear complementary

problem of the form

κl(xl, dl) =
1

T 2
s

Ξ̃⊤
ulη − 1

Ts

g(xl, dl)

0 ≤ η ⊥ ξ̃ul(xl, dl)− Ξ̃ulκl(xl, dl) ≥ 0

where η is a Lagrange multiplier that is related on the cost of

operating the CPL, the matrix Ξ̃ul = [TsΞ
⊤
xl Ξ⊤

ul]
⊤ defines

the normal vectors of Ul(·, ·), and ξ̃ul(xl, dl) = [(λξxl −
Ξxlg(xl, dl))

⊤ ξ⊤ul]
⊤ define the corresponding half spaces.

IV. INTERCONNECTION WITH A MG

In this section we leverage on the results of Section III-A

to propose a new control setting for a MG that guarantees

constraint satisfaction at the loads and lines. We first proceed

to the analysis of the equilibria and controllability of a MG.

A. Analysis of Equilibria

One of our objectives is to analyse the equilibrium points

of the interconnection of (1a)–(1c) and (1d). The following

proposition characterises these points.

Proposition 2 (MG Equilibria): Suppose Assumption 1

holds. Then, the MG has 2|VL| equilibrium points.

Proof: We begin noting that system (1) can be parti-

tioned into a linear part given by (iI , vI , iE) and a nonlinear

part corresponding to the loads vL such that the steady state

of the latter can be rewritten as:

0 = (Yl +B⊤
l Z

−1
E Bl)vl + (B⊤

l Z
−1
E BIvI)

︸ ︷︷ ︸

il

+h(Sl, vl) (10)

where iE = Z−1
E (BIvI +BLvL), and il can be interpreted

as input current to the lth load. Using the complex repre-

sentation of admittances, voltages, currents and powers6, the

equilibrium pairs (vss
l , i

ss
l ) for (10) can be characterised for

each l ∈ VL by

iss
l (Sl) =

(

Yl +
2S∗

l

3|vss
l |2

)

vss
l .

where the complex representation of the nonlinearity is

h(Sl, vl) = 2
3
S∗

l

v∗

l

. However, for a given il as computed

above, there exist an additional equilibrium point given by

the solution of the following complex quadratic equation:

vlv
∗
l +

il
ãl
v∗l +

2

3

S∗
l

ãl
= 0,

where ã = Y ∗
l +B⊤

l Z
−1
E Bl ∈ C. As a result, for each l ∈ VL

there exist veq

1,l(Sl, il) ∈ C and veq

2,l(Sl, il) ∈ C.

For the linear part of (1), the corresponding equilibrium

pairs are ieq
I = Z−1

I (v̄eq
I − veq

I ) and 0 = −(YI + Z−1
I +

B⊤
I YEBI)v

eq
I −B⊤

I YEBLv
eq
L + Z−1

I v̄eq
I . From the previous

discussion, the load control equilibrium input is uL =
−B⊤

LYEBIx
eq
I which, via Assumption 1, has full row rank.

The equilibrium inputs v̄eq
I depend on existing solutions for

each load l ∈ VL in a one-to-one way. Since we have 2
solutions per load, and |VL| loads in the MG which yield

2|VL| possible combinations of points.

This characterisation of the equilibrium points relies on

Assumption 1 which allows to consider YL + B⊤
LZ

−1
E BL

in (10) to be diagonal. A further observation shows that the

equilibrium points are directly affected by the impedance of

the part of the network connected to the loads. The study of

these equilibrium points sheds light on the global behaviour

of these CPLs, and provides motivation on the developments

of Section III-A.

B. Reformulation of the MG control problem

Following a similar argument from the proof of Proposi-

tion 2, the MG dynamics can be partitioned into two parts,

the loads vL and the rest of the network xn = (iI , vI , iE).
A direct consequence of Corollary 1 and Assumption 1 is

that vL ∈ ∏

l∈VL
Xl as long as the closed loop load currents

satisfy iL ∈ ∏

l∈VL
Ul(vl, dl). Therefore, the interconnection

dynamics between networks and loads can be described as

Mn

dxn

dt
=−Anxn +Bnun + el (11a)

Cnxn ∈
∏

l∈VL

Ul(xl, dl) (11b)

where el = BLvL ∈ BL

∏

l∈VL
Xl is a bounded disturbance;

Cnxn = −BLiE is the output matrix mapping the state xn to

the corresponding load currents. Theorem 3 and its corollary

are instrumental in transforming the problem of controlling

load voltages to that of controlling a linear system subject to

additive disturbances and output constraints. The benefits of

such transformation are twofold: the problem focuses now

6a+ jb ⇐⇒

[

a −b
b a

]

⇐⇒

[

a
b

]

.



on the actuation point, i.e. the inverter side of the MG; the

load voltages are contained within a prescribed range.

Remark 2: The partitioning of the state in two is not

limited to the loads and the rest of the network, in fact, another

possible partition would involve xn = (vL, iE) which are the

states that describe loads and line currents, and xi = (iI , vI)
corresponding to only inverter related variables. The set-

valued control law Un(·, dL) retains the same structure and

goal, i.e. to keep the state xn within a λ scaled version of

the constraint set XL × XE .

V. SIMULATIONS AND EXAMPLES

In this section, we present simulation results pertinent

to Section III, where we apply the set-valued control

law to a CPL with an uncertain load demand with

values oscillating around a mean. The network is

composed of two loads VL = {l1, l2}, four generation

nodes VI = {i1, i2, i3, i4}, the set of edges are E =
{(i1, i2), (i1, l2), (i2, l1), (i3, i1), (i3, i4), (i3, l2), (i4, l1)}.

The active and reactive load power demand has on

average Pl1 = 30 [kW], Pl2 = 20 [kW], and Ql1 = 2
[kVAR], Ql2 = 0.3 [kVAR]. The power rating

for each of the generators is SI = {84, 74, 89, 90}
[kW]. The constraints imposed on the line currents

are Ie = {ie ∈ R2 : |ie| ≤ 65[A]} for all

e ∈ E. The constraints on the node voltages are:

Vl = {vl ∈ R2 : 205 ≤ |vl| ≤ 231, | arctan vql

vdl
| ≤ 0.5}.

Applying the proposed set-valued control law, using the

selection proposed in (9), renders the point vss
l = (220

√
2, 0)

stable. However, the assumption that exact knowledge of the

power demand is not practical, for the simulations we have

introduced noise in the power demand, i.e. dl = d̄l + δl, and

the controller uses only nominal values. To test the robustness

limits of the proposed control law, we introduce changes

in the power demand at time instants t = 3, 5, 7, 10, 15.

In Figure 1, we illustrate these load demand changes; the

response of the controller is to vary the current accordingly

while keeping voltages confined within the desired values.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a set theoretic approach to

guarantee constraint satisfaction for a MG with CPLs. This

method proposes a set-valued control law that renders the

load constraint set to be control invariant. The set valued

map is lower semicontinuous which guarantees the existence

of continuous selections; one of these selections is used to

control a CPL with an uncertain power demand. Leveraging

on set invariance, the proposed method reduces the MG to a

linear system subject to a bounded additive disturbance and

output constraints; this exploits the feedback interconnection

structure between the inverters and the rest of the MG.
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