UNIVERSITY OF LEEDS

This is a repository copy of *When you are born matters: An age-period-cohort analysis of multimodality*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/165186/

Version: Accepted Version

Article:

An, Z orcid.org/0000-0003-2577-761X, Heinen, E orcid.org/0000-0001-8428-5709 and Watling, D orcid.org/0000-0002-6193-9121 (2021) When you are born matters: An ageperiod-cohort analysis of multimodality. Travel Behaviour and Society, 22. pp. 129-145. ISSN 2214-367X

https://doi.org/10.1016/j.tbs.2020.09.002

© 2020, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

When you are born matters: An age-period-cohort analysis of multimodality

Zihao An^{a*}, Eva Heinen^a, David Watling^a

^a Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, United Kingdom

Corresponding author at: Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, United Kingdom. Tel: +44 0113 343 5325; Fax: +44 0113 343 5334.

Email address: <u>tsza@leeds.ac.uk</u> (Zihao An) <u>e.heinen@leeds.ac.uk</u> (Eva Heinen); <u>D.P.Watling@its.leeds.ac.uk</u> (David Watling);

Acknowledgements

The Special Licence versions (SNs 7553 and 7804) of the 1995-2001 and 2002-2017 NTS data sets (Department for Transport 2019a, b) were kindly provided by the Economic and Social Data Service (ESDS) through the UK Data Archive at the University of Essex, Colchester. The responsibility for the analysis, interpretation, and all conclusions drawn from the data lies entirely with the authors.

Abstract

Multimodality – the behavioural phenomenon of using multiple modes of transport – has been suggested to be a useful indicator of an individual's willingness to adopt more sustainable transport alternatives. Analysing temporal patterns in multimodality provides the opportunity to understand the formation of multimodal practices. Yet the existing studies on this topic share one limitation: they fail to simultaneously incorporate into their analysis the three interconnected temporal dimensions: age, period, and (birth) cohort. Given that age, period, and cohort are mathematically intertwined, the omission of any of these three variables may lead to biased explanations.

Using the National Travel Survey in England, from 2001 to 2017, this research explored the extent to which individual multimodality varied by age, period, and cohort. We adopted the hierarchical age-period-cohort model to estimate the net effects of age, period, and cohort on multimodality. Our analyses showed that travellers tend to be less multimodal as they get older. The age effects may be moderated by work or physical mobility constraints, which accelerate the decrease in multimodality before or after reaching 30 years old, respectively. Individual multimodality exhibited significant variation across periods and cohorts. The total variance in multimodality accounted for by cohorts was larger than that explained by periods. Multimodality reached the lowest level for cohorts born between 1945 and 1969. This may be partially explained by the joint influence of multiple spatial mobility constraints as well as by the distinctive early life conditions and formative experience of baby boomers in terms of driving.

Keywords: Multimodality; Intrapersonal modal variability; Age-period-cohort analysis; Generation; Temporal Pattern; Travel behaviour

1 **1. Introduction**

2 Making transport more sustainable has been on the policy agenda for decades and is gaining 3 momentum in light of current climate change awareness and the link with transport emissions. To 4 achieve this, multimodality - the behavioural phenomenon of using multiple modes of transport -5 has recently emerged in academic discourses (e.g., Nobis (2007); Heinen and Chatterjee (2015); Klinger (2017)). Although being multimodal does not necessarily result in less car use, indications 6 7 of the nexus between multimodality and more sustainable transport could be drawn from the existing 8 literature. Studies revealed that individuals with more multimodal travel behaviour patterns are more 9 likely to change their travel behaviour over time (e.g., Heinen (2018); Heinen and Ogilvie (2016); 10 Kroesen (2014)), which allows an easier transition to sustainable transport if the right conditions are provided (Heinen and Ogilvie (2016). It has also been highlighted that a higher level of 11 12 multimodality may be conducive to reducing CO2 emissions if travel distance remains constant (e.g., 13 Heinen and Mattioli (2019b)).

14 The majority of the literature on multimodality has shed light on its correlates. It has been 15 demonstrated that multimodality is unequally distributed across subpopulations in terms of their 16 sociodemographic characteristics and residential environments (e.g., Heinen and Mattioli (2019a); Lee et al. (2019); Mehdizadeh and Ermagun (2018); Scheiner et al. (2016); Heinen and Chatterjee 17 (2015); Diana and Mokhtarian (2009); Nobis (2007)). Briefly, multimodal travellers are more 18 19 prevalent amongst women, white ethnic groups, young people, students, part-time employees, 20 people with limited car availability, people who do not hold a car license, individuals with higher 21 income, individuals living in urban areas, and individuals who travel more often. Nevertheless, these 22 findings have been primarily drawn from cross-sectional studies (see Heinen and Mattioli (2019a) and Scheiner et al. (2016) for exceptions). Less is known about how multimodality is distributed 23 24 across different points in time. The understanding of temporal patterns in multimodality could 25 provide useful information for policy-making to encourage multimodal transport. Recently, several 26 longitudinal works have sought to fill this gap. Most of these studies have found that travellers/car 27 users were more multimodal over past decades in developed countries (e.g., Kuhnimhof et al. 28 (2012a); Kuhnimhof et al. (2012b); Streit et al. (2015); Buehler and Hamre (2016)), the exception 29 being Heinen and Mattioli (2019a) who observed a shift towards more monomodal daily travel 30 between 1995 and 2015 in England.

31 Yet, the existing studies on temporal patterns in multimodality share one limitation: they fail 32 to simultaneously incorporate three interconnected temporal dimensions, namely, age, period, and 33 (birth) cohort into the temporal analysis. The existing literature has explicitly associated multimodality with age (e.g., Nobis (2007); Scheiner et al. (2016); Buehler and Hamre (2014)) or 34 period (e.g., Kuhnimhof et al. (2012b); Streit et al. (2015); Heinen and Mattioli (2019a)), whilst the 35 36 nexus between cohort and multimodality still remains unclear. Evidence has suggested that cohort 37 effects could contribute to the intergenerational disparity in multimodality-associated factors, such as levels of daily mobility (e.g., Frändberg and Vilhelmson (2011)), driver license acquisition (e.g., 38 39 Delbosc and Currie (2013)), and availability/use of cars (e.g., Kuhnimhof et al. (2011)). It is, 40 therefore, reasonable to hypothesise that multimodality may vary between cohorts. Given that age, 41 period, and cohort are mathematically intertwined (e.g., age plus cohort is equal to period), the 42 omission of any of these three variables may lead to biased explanations (Yang and Land, 2016). 43 For instance, changes in historical contexts are inevitably accompanied by generational membership 44 replacement. The variations in multimodality reported by previous studies could, therefore, 45 potentially be attributable to cohort rather than period effects.

46 This paper aims to explore the extent to which individual multimodality varies by age, period, 47 and cohort. To this end, we adopted the hierarchical age-period-cohort (HAPC) model, which allows 48 us to estimate the net effects of age, period, and cohort on multimodality. We used data from the 49 National Travel Survey (NTS) for England that spans 17 consecutive years, from 2001 to 2017. The 50 consistency of the travel surveys over the years of observation, the large sample size, and the 51 collection of a 7-day travel diary are three elements of the NTS that allow us to infer a relatively 52 comprehensive picture of the levels of multimodality over time in England. The research findings 53 and methods may be used to help policymakers monitor temporal patterns in multimodality, make 54 ex-post evaluations of policies, and, thereby, craft targeted strategies for promoting multimodal 55 transport.

56 The remainder of the paper is organised as follows. Section 2 clarifies the definitions of the

effects of age, period, and cohort, followed by the review of the studies on the nexus between
multimodality and these three time-related variables. The data source and analytical approaches are
expounded in Section 3. Section 4 is dedicated to the findings drawn from the HAPC models,
followed by Section 5 in which these findings are further discussed.

Definitions and interrelationships between age, period and cohort effects and their relationship with multimodality

63 Age effects, also called life-course effects (Robinson and Jackson, 2001), refer to the changes in 64 individuals during ageing in any given length of time period, regardless of which (birth) cohort 65 groups they appertain to (Blanchard et al., 1977). These changes subsume a series of social and 66 biological transformation processes (Yang and Land, 2016). Some of them are deemed to be associated with the variability in individual mode choices, such as the occurrence of key age-67 68 associated life events (e.g., driving license acquisition, education-to-employment transition, new household formation, and childbirth) (e.g., Scheiner et al. (2016)) and the decline in physical 69 70 mobility (e.g., Heinen and Chatterjee (2015); Heinen and Mattioli (2019a)).

71 Period effects refer to the consequences of changes in contextual factors over time that 72 simultaneously influence individuals with different age and cohort groups (Yang and Land, 2016). 73 The changes in contextual factors contain a complex set of economic, social, and environmental 74 dimensions, within which individuals are embedded, such as economic fluctuations, expansions and 75 contractions of the labour market, urban growth and shrinkage, and in recent decades, the 76 introduction of new mobilities. Against this backdrop, individuals correspondingly respond to these 77 changes in terms of their income, employment status, size/density of residential settlement, and 78 mode choice set, which in turn potentially contribute to variations in individual multimodality (e.g., 79 Blumenberg and Pierce (2013); Buehler and Hamre (2014); Heinen and Mattioli (2019a); Heinen 80 and Chatterjee (2015)).

81 (Birth) cohort effects represent temporal variations across groups of individuals whose births 82 fall in the same interval (Blanchard et al., 1977). In demography, a cohort is defined as a collection 83 of people who experience a certain event in a given time period (Newell, 1990). Individuals with 84 the same birth cohort move through life together and are confronted by the same historical, social, 85 and economic events at the same age and same point in time. Accordingly, cohort effects are deemed to reflect the effects of formative experience acquired via the influence of early life conditions and 86 87 via the continuous exposure to these events in the remainder of the lifespan (Yang, 2008). Because older cohorts die off and are replaced by younger cohorts with different birth background and life 88 trajectories – a phenomenon termed 'demographic metabolism' by Ryder (1965) – society 89 90 continuously renews its population composition, and thereby maintains its flexibility, and may, on 91 these bases, experience induced changes (Ryder, 1965). Along this line, insights into cohort effects help to understand not only current pictures of different subpopulations but also future trends in 92 93 society. The substantive influence of cohorts largely underlines the necessity of an age-period-cohort 94 (APC) analysis. To date, very little is known about how multimodality varies by cohort, yet as we 95 explain later in Section 2.3, variations in some of the correlates of multimodality could be strongly 96 embedded in cohort succession.

Figure 1 illustrates the structural relationship between the effects of age, period, and cohort. The vertical and horizontal axes represent a series of cohorts and periods, respectively. At each point on the same diagonal line (i.e., the pink line), same-aged individuals may belong to different periods and cohorts. The shaded area bounded by pink lines reflects the 18-19 age group, and the pink arrow, therefore, indicates the effect of age from 18 to 19 averaged over periods and cohorts (supposing our diagram could be extended indefinitely). Likewise, the effects of period and cohort can be depicted by changing the vertical and horizontal axes.

Figure 1 Nexus between age, period, and cohort (based on <u>Yang and Land (2016)</u>).

106 **2.1. Age**

107 A plethora of studies has observed the significant association between age and multimodality. The 108 majority of the studies found evidence that was supportive of the belief that younger travellers tend 109 to be more multimodal (e.g., Heinen and Mattioli (2019a); Heinen (2018); Klinger (2017); Molin et al. (2016); Buehler and Hamre (2016); Circella et al. (2019)). Yet the age-multimodality relation 110 appears to be more complicated; it may not be depicted by linear or even monotonic relationships. 111 112 The findings on this topic also seem to vary by countries. For example, Heinen and Mattioli (2019a) 113 categorised individuals into three groups according to their age (i.e., 16 to 30, 31 to 64, and over 65 114 years old) and found that individuals in the older age group were associated with a lower level of 115 multimodality in England. Moreover, the difference in multimodality between the 16-30 and 31-64 age groups was more pronounced than that between the 31-64 and over 65 age groups. Buehler and 116 117 Hamre (2014)'s research in the US observed that, compared with their older counterparts (aged over 118 65), younger travellers were more likely to be multimodal car users than monomodal car users. 119 However, they also showed that there were no regularities within the younger age groups in terms 120 of the relation between age and the propensity of being multimodal or monomodal car users. 121 Moreover, using the data from Mobility in Germany (MiD) and German Mobility Panel (MOP), 122 Nobis (2007) investigated the prevalence of various predefined multimodal groups in different life 123 stages in Germany and found a steep decline in the percentage of multimodal travellers during the 124 education-to-employment transition. Nevertheless, it was also shown that this trend was largely 125 reversed in older adults, even amongst those with a high car availability. This research is partially 126 in line with the research by Streit et al. (2015), which observed that multimodality was the lowest 127 for 26-35, 36-50, and 51-60 age groups. Thus, multimodality may not necessarily decrease with age. Nobis (2007) and Streit et al. (2015) suggested that there is a U-shaped association between age and 128 129 multimodality, while some studies did not find a relationship (for example, Blumenberg and Pierce 130 (2013), reported an insignificant correlation between age and the probability of multimodal travel in the US). 131

132 **2.2. Period**

Limited studies to date have focused on the temporal trends in multimodality over time. Two studies, which we describe in detail below, have looked into trends in the modal share shift from car use to other modes over the decades. On this basis, they made a conclusion as to whether there had been changes in multimodality over a long period, yet the degree of such changes remained relatively 137 unclear. The multi-country research by Kuhnimhof et al. (2012a) analysed trends in the travel 138 behaviour amongst young adults in six developed countries (i.e., Germany, France, Great Britain, Japan, Norway, and the US) by use of national travel surveys. Four years extracted from each of the 139 1970s, 1980s, 1990s, and middle 2000s were compared. The authors concluded that all countries 140 141 except Japan had experienced a slightly shift in the modal share from the car to public transport 142 since the 1990s, which may have been indicative of an increase in multimodality in those countries. 143 However, for young adults with car availability, the long-term upward trends in multimodality were only observed in Germany and Great Britain. Kuhnimhof et al. (2012b) explored travel trends 144 145 among young German adults (18 to 29 years) using the Kontiv (i.e., Kontinuierliche Verkehrserhebung) 1976 survey and the MOP 1999-2008. They compared three discontinuous years, 146 i.e., 1976, 1997, and 2007. For travellers with a car available, a dramatic decline was observed in 147 148 the share of trips made by driving, whilst the use of public transport and non-motorised modes 149 escalated, albeit to varying degrees. Nevertheless, only the share in car passengers showed a stable downward trend for those without car access. On this basis, the authors concluded that 150 151 multimodality had increased among young adults with car availability in Germany.

152 Another three studies have shed light on the trends in multimodality characterised by predefined groups or indices. Indicated by the changes in the indices and shares of groups, these 153 154 studies reveal the extent to which the level of multimodality has changed over time. However, due 155 to data restrictions, the time span and waves of the data are limited (exception: Heinen and Mattioli 156 (2017)). Buehler and Hamre (2014) looked into the differences in shares of multimodal/monomodal groups between 2001 and 2009 using the US National Household Travel Surveys. Three groups, 157 namely, multimodal car users, monomodal car users, and travellers who do not use cars, were 158 159 differentiated at the chained trip, day, and week levels. The authors found that monomodal car users 160 accounted for a smaller share at all three levels in 2009 relative to 2001; the share in travellers who 161 do not use cars and multimodal car users increased between 2001 and 2009, yet the magnitude of 162 changes was fairly small. Streit et al. (2015) used the MOP data to study variability in individual travel behaviour between two time slices (1998-2002 and 2010-2012) in Germany. Indicated by the 163 164 changes in customised multimodal indicators (MM), they concluded that multimodality increased 165 for young adults aged between 18 and 35, regardless of their gender. For travellers between 35 and 50 years old and living in big cities, men tended to be become multimodal, whereas women showed 166 167 an inverse trend. Heinen and Mattioli (2017) made a substantial contribution to this topic by looking 168 at a relatively large number of years and adopting various multimodality indices. They investigated trends in multimodality across various socioeconomic groups in England over 21 consecutive years 169 170 (1995-2015) by use of the NTS. Looking at changes in multimodality indicators and estimating multivariate models (with year treated as a continuous variable), they concluded that multimodality 171 172 decreased in England between 1995 and 2015.

173 **2.3. Cohort**

174 To the best of our knowledge, the notion of a cohort had been largely untouched in relation to the 175 topic of multimodality until the recent research by Lee et al. (2019). They looked into the discrepancies in daily travel patterns between millennials and GenXers using the California 176 Millennials Dataset 2015. Treating age as an inactive covariate in their latent analysis, the authors 177 analysed the estimated distributions of travel patterns across ages, ceteris paribus. It was observed 178 179 that monomodal drivers were disproportionately prevalent in the 46-50 age group, whilst the share of transit riders and active travellers peaked before reaching an age of 40 years and then decreased. 180 On this basis, a conclusion was drawn that millennials tend to be, on average, more multimodal than 181 182 GenXers. Nevertheless, this research used cross-sectional data, and thus it was unable to distinguish 183 whether the findings were attributable to a generational shift or ageing *itself*.

The existing literature has also shed light on the intergenerational differences in general travel behaviour, particularly in availability and the use of a car (see, e.g., <u>Goodwin and Van Dender (2013)</u> and <u>Van Wee (2015)</u> for the review and discussion on peak car). In light of the dominant role of the car in daily travel in developed societies, studies on this topic may provide us with a deeper understanding of the cohort-multimodality nexus.

For example, <u>Kuhnimhof et al. (2011)</u> observed that young Germans born in the late 60s, 70s, and early 80s were, relative to the earliest cohort (born 1955-1964), associated with a higher level of car ownership, more intensive car use, and a greater growth rate in car travel before reaching their 192 middle adulthood (i.e., 30 years old). In contrast, the post-1985 cohort noticeably lagged behind the 193 older cohorts in terms of car ownership and car travel distance. Similarly, Garikapati et al. (2016) found that, in early adulthood (18-24 years old), 'younger' American millennials (born 1988-1994), 194 compared to the 'older' millennials (born 1979-1985), spent considerably less time on car travel and 195 outdoor activities. Although millennials exhibited increasing similarities as they aged with their 196 197 same-aged predecessors (i.e., GenXers) in terms of their activity-time use patterns, millennials 198 remained less car-oriented. The generational decline in car use was also recognised in the non-199 western context. Zhou and Wang (2019) used a propensity score matching method to compare the 200 daily travel patterns of similar-aged individuals between 2002 and 2011 in Hong Kong. The authors found that younger generations, compared to the older counterparts with similar socioeconomic 201 202 characteristics, undertook fewer car trips and spent less time on travel. Some studies have tried to 203 shed light on the causes behind these observations. For example, Grimal (2020) looked into the 204 potential mechanism by which French millennials became less car-oriented (characterised by more regular transit use and less car ownership) and found that the generational differences in cars could 205 206 be mainly attributed to the shift in residential patterns and to some extent to increasing work pressure, 207 degraded transport conditions, and changes in desired lifestyles over recent decades.

It is not only in car use and ownership that we may see evidence of such patterns, but also in the acquisition of a driving license, with this tending to become less prevalent for more recent generations. <u>Delbosc and Currie (2013)</u> summarised the existing empirical evidence on international trends in driver license acquisition amongst same-aged young adults (18-30 years old) over time (1983-2010). It was found that the percentage of youth licensing universally decreased in nine out of fourteen analysed countries – Australia, the US, Canada, Norway, Sweden, Great Britain, Germany, France, and Japan – with an average annual rate of decline of 0.6%.

215 It appears that recent generations, particularly millennials and subsequent generations, have 216 seen a decline in car availability and car use. Nevertheless, recent research by Krueger et al. (2019) suggested that cohort succession (or the replacement of generations) may not play a critical role in 217 explaining the observed downward trend in car use in young Germans. Using a hierarchical 218 219 Bayesian model, Krueger et al. (2019) analysed the trend in frequencies of using different modes, from 1996 to 2016, whilst simultaneously taking into account both period and cohort effects. 220 221 Though in line with most studies, in that young Germans were found to make fewer daily trips by 222 car in 2016 than their counterparts 20 years ago, they found that only one-sixth of such a decline 223 could be ascribed to cohort effects. By contrast, period effects explained two-thirds of the decline 224 in car use between 1996 and 2016.

225 Finally, going beyond car use, Frändberg and Vilhelmson (2011) explored spatial mobility 226 across cohorts over a period of 28 years (i.e., 1976-2008) using data from the Swedish National Travel Survey. Since the level of daily mobility is closely connected with opportunities to use 227 228 different modes, their research potentially provides a novel perspective into the understanding of 229 the cohort-multimodality relation. The authors found that the more recent cohorts of young males showed a substantial decline in the daily travelled distance. The authors discussed that the reduction 230 231 in daily mobility for new-cohort young males might be attributed to their distinct life trajectory (e.g., 232 a longer study time before entering into the labour market) and increased 'virtualisation' (i.e., 233 spending more time on activities conducted through the internet).

234 **2.4. Research gaps**

235 In summary, it appears that multimodality increased in most developed countries over the last 236 decades, especially for young travellers. England seems to be an exception. Nevertheless, limitations 237 exist in the methodology and data used by most of the aforementioned studies on temporal patterns in multimodality. The majority of these studies are descriptive, focusing on the temporal patterns 238 239 across the population or specific subpopulations. Given the mathematical coupling between age, period, and cohort, it follows that the conclusions of these studies may not be robust. Moreover, 240 241 although some look at a relatively long-time span, the majority of studies were conducted based on longitudinal data with limited waves of observations, which limits the ability to investigate cohort 242 243 effects.

244 **3. Research Design**

245 **3.1. Data**

The research reported in this paper was based on data extracted from the special licensed National Travel Survey (NTS) for England, 2001 to 2017 (<u>Department for Transport, 2019a</u>, <u>b</u>). The NTS is a nationwide repeated cross-sectional survey designed to monitor trends in travel behaviour within England¹ (<u>NatCen Social Research, 2018</u>). The NTS was firstly conducted in 1965/1966, and it became an annual survey in 1988. From 2002 onwards, the NTS used weights to offset the influence of non-response bias; the weighting methodology was retrospectively applied to data back to 1995.

252 The NTS has several strengths for investigating temporal patterns in multimodality across age, 253 periods, and cohorts. Firstly, the data structure of the NTS is well-suited for our purpose. The 254 repeated cross-sectional survey, owing to its high representativeness, can be applied to the synthetic 255 cohort approach that traces essentially the life trajectories of groups of people born in the same year 256 or range of years (Preston and Guillot, 2000). Compared to a panel survey, such a survey also has 257 the advantage that it spans a longer period with more waves, due to its robustness against drop-out 258 of samples (Crossley and Ostrovsky, 2003). These advantages enabled us to disentangle the 259 confounding effects of age, period, and cohort. Secondly, this survey has adopted a relatively 260 consistent sampling method and survey technique since 1995 (see NatCen Social Research (2018) for detailed information). Thirdly, the NTS uses high-quality seven-day travel diaries to collect 261 262 personal travel information that covers a wide range of modes and the intensity of using these modes, which allows us to accurately capture individual multimodality. Fourthly, the NTS is highly 263 264 representative of the population of England, allowing us to draw conclusions for the entire country.

We limited our analyses to the years 2001 to 2017 in order to ensure the consistency of weighting methodologies and the considered variables². Our research was restricted to the individuals living in England, as Scotland and Wales were no longer covered by the NTS from 2013 onwards. We restricted our main analyses to the individuals aged 16 and over (n=203,329). Alternative sample sets with different age groups were also used for our sensitivity analyses (see Section 3.4).

271 **3.2. Multimodality measurement**

272 We used a continuous index, namely, the objective mobility personal index (OM PI), to measure 273 multimodality. The existing literature has developed a relatively wide range of multimodality 274 measurements, which can be generally distinguished into several categories of individual 275 multimodality: (1) predefined categorisations (e.g., Klinger (2017)); (2) data-driven classifications 276 (e.g., Kroesen (2014)); and (3) continuous indices (e.g., Heinen and Mattioli (2019a)). The former 277 two measurements provide intuitive results by categorising individuals into distinct groups 278 regarding multimodality. However, they overlook, to a certain extent, the intragroup differences and 279 the levels of variability. The continuous indices, while not explicitly able to describe the use of a 280 specific mode, are more effective in gauging the level of individual multimodality (Heinen, 2018). 281 This is well-suited to the aim of our research by enabling us to capture the changes in the level of 282 multimodality at the individual level.

283 The OM PI, as proposed by Diana and Mokhtarian (2007), is regarded as one of the 284 potentially desirable continuous indices for measuring multimodality. This index is developed based 285 on the Shannon entropy formula, which has been extensively acknowledged as a reliable measure 286 of diversity and inequality. Moreover, Diana and Pirra (2016) suggested that the OM PI is preferable in depicting multimodality in cases where individuals in question are not equally accessible to 287 288 specific modes. The OM PI ranges from 0 to 1; a value of 0 indicates the exclusive use of only one 289 mode, whilst a value of 1 stands for the circumstance where all modes in the considered mode choice set are equally used at the same intensity. The OM PI is calculated based on the modal share by 290 291 considered modes.

¹ The NTS only covers England for the full time span (2001-2017) we studied.

² Several potential correlates of multimodality, e.g., ethnicity, bicycle ownership, and locations of work, are not consistently available for the 1995-2000 NTS data.

292

$$OM_{PI} = \sum_{i=1}^{n} \left[\frac{f_i}{\sum_{j=1}^{n} f_j} \ln \left(\frac{\sum_{j=1}^{n} f_j}{f_i} \right) \frac{1}{\ln n} \right]$$
(1)

In Eq. (1) *n* stands for the total number of modes considered, and f_i denotes the number of trip stages made by mode *i* by a given individual during the travel diary week.

In the NTS, a *trip* refers to a one-way course of travel with one main purpose. A trip can be constituted of several trip stages, for example, for one commute trip, someone could cycle to the train station, use the train, and walk to work from the train station. To include the full individual modal mix, we use the mode choice data at a *trip stage* level.

299 Following the existing studies on multimodality using the NTS (e.g., Heinen and Mattioli 300 (2019b); Heinen and Chatterjee (2015)), we considered a total of eight modes for measuring the OM PI: (1) walk; (2) bicycle; (3) car driver; (4) car passenger; (5) bus^3 ; (6) railway⁴; (7) taxi; and 301 (8) other⁵. Since the calculated level of multimodality is connected with the definition of the mode 302 303 choice set, a more aggregated three-mode-based choice set was also considered for the purpose of sensitivity analysis, with the composite modes defined as: car transport (car driver and car 304 305 passenger), and public transport (bus, railway, taxi, and other) and active travel (walk and bicycle). 306 As suggested by the NTS Data Extract User Guide (Department for Transport, 2018a), we applied 307 weights to calibrate the number of trip stages made by different modes. For short walks (i.e., walking 308 trip stages of less than one mile) a weight known as SSXSC was used to adjust for the fact that such 309 trips were only recorded on the last day of the survey week. Also, a trip/stage weight known as W5 was applied to offset the 'drop-off' phenomenon of the recorded number of trips/stages declining 310 over time during the week⁶. These weighting methodologies have been applied consistently across 311 312 the NTS surveys from 1995 onwards (NatCen Social Research, 2018).

313 In the 2001-2017 NTS data, individuals made on average 23.3 (S.D.=16.6) trips stages during 314 the travel diary week. Car driver trip stages accounted for the largest share 45%, whilst walk (20%), 315 car passenger (19%), and bus (8%) trip stages made up most of the remainder. We examined the 316 correlations between the (eight-modal-based) OM PI and the shares in mode choice. Car diver 317 modal share was negatively correlated (r=-0.393) with OM PI at a significance level of 0.01. By 318 contrast, significantly positive correlations were observed between OM PI and the shares in trip stages made by walking (r=0.328), cycling (r=0.102), bus (r=0.117), rail (r=0.248), taxi (r=0.069), 319 320 and other modes (r=0.044). Car passenger modal share was not significantly correlated with OM PI 321 (|r| < 0.001; p = 0.909). Our examinations indicated that travellers with a higher level of multimodality, 322 on average, drove less; this is in the context of England, where driving is the dominant mode of 323 transport.

324 3.3. Correlates

325 Heinen and Chatterjee (2015) applied a systematic framework of correlates of individual 326 multimodality, derived from the perspective of spatial mobility constraints of Hägerstraand (1970), 327 and found that multimodality can be simultaneously shaped by multiple types of such constraints. 328 Drawing on their conceptual framework, we focused on the correlates of multimodality that covered 329 six dimensions of mobility constraints as follows: (1) social role constraints; (2) physical mobility 330 constraints; (3) work constraints; (4) economic constraints; (5) accessibility constraints; and (6) mobility resource constraints. The descriptive statistics for these variables in different age, period, 331 332 and cohort groups is provided in Appendix A.

³ 'Bus' covers bus in London as well as other local and non-local (coach) services.

⁴ 'Railway' covers London Underground and surface rail.

⁵ 'Other' covers motorcycle, other private (mostly private hire bus) and other public transport (mostly light rail).

⁶ Short walks weight (SSXSC) multiplies the number of short walk trip stages by seven to ensure a representative weekly report. This is to control for the fact that such trip stages are only asked to be reported in the last day of the survey week to reduce the burden for the respondents (NatCen Social Research, 2018). Similar to other multiday travel diary surveys, in the NTS, there is a gradual reduction in the number of trips reported during the travel diary week. To reduce the drop-off bias, the trip/stage weight (W5) is developed. The drop-off rates differ slightly across the survey years; detailed information on this issue can be found in the NTS technical report of each year.

333 **3.4. Statistical analyses**

This research adopted a contextual approach - the HAPC model (Yang and Land, 2006) - to explore 334 335 the age, period, and cohort effects on multimodality. The principle of the APC analysis is to 336 statistically partition age, period, and cohort, and estimate the net effects of these three variables 337 (Smith, 2008). Nevertheless, there exists a well-known 'identification problem' that these three time-338 related variables necessarily fall in perfect multicollinearity, e.g., cohort plus age equals period, 339 which makes it impossible to use classic linear regression in the estimation. Yang and Land (2016) 340 systematically summarise conventional approaches to this identification problem that have been 341 developed since the 1970s, such as the reduced two-factor models, constrained generalised linear 342 models, nonlinear parametric transformations, and proxy variable approaches (see, e.g., Kupper et 343 al. (1983), Fienberg and Mason (1979), and O'Brien et al. (1999) for applications and reviews). Yang 344 and Land (2016) argue that each of these approaches has its own drawbacks. Most importantly, they 345 note, such approaches fail to conceptualise and quantify the contextual effects of social-historical 346 transformations embedded in the changes of time periods and birth cohorts.

The HAPC method can be seen as an extension of the mixed effects model to the APC analysis. In light of the multihierarchical nature of such a method, it does not trigger the identification problem, and so is able to explicitly distinguish in the estimation the contextual (random) effects of periods/cohorts from the (fixed) effects of individual attributes. Specifically, the HAPC herein consists of two levels as follows:

Level 1, namely the within-group model, which is adopted for the fixed effect estimation of all individual-level correlates:

$$Y_{ijk} = \alpha_{jk} + \beta_1 AGE_{ijk} + \beta_2 AGE_{ijk}^2 + \sum_{n=3} \beta_n X_{nijk} + e_{ijk}$$
(2)

where Y_{iik} denotes the level of multimodality (measured by the OM-PI) for individual *i* within the 355 356 jth period and kth cohort. AGE and AGE² represent the age and age squared, respectively. Following Bell (2014), we centred the age of each individual around the grand mean (i.e., 48.3 years old) to 357 358 reduce potential multicollinearity. As AGE and AGE^2 can be disproportionally large in relation to 359 the other correlates, the original value of centred age was divided by 10 to calculate these two variables. X_{nijk} stands for the other correlates of multimodality. α_{ik} is the intercept at level one; it 360 361 reflects the average level of multimodality in the *j*th period and *k*th birth cohort when the values of 362 all correlates are zero. β_{nj} is the coefficient of the corresponding correlate X_{nijk} . e_{ijk} stands for the 363 random error at level 1.

Level 2 is the between-group model, wherein the level-1 intercept is assumed to vary across periods and cohorts:

377

354

$$\alpha_{jk} = \gamma_0 + u_{0j} + v_{0k} \tag{3}$$

367
$$u_{nj} \sim N(0, \tau^2), v_{nk} \sim N(0, \psi^2), n \ge 1.$$
 (4)

368 In Eq. (3), γ_0 is the grand mean of the level of individual multimodality across all periods and 369 birth cohorts when the values of all level-1 correlates are zero. Periods are defined by the seventeen 370 waves of the NTS between 2001 to 2017; cohorts are defined by five-year intervals (except the pre-371 1930 and post-1990 cohorts based on the consideration of the sample size of each cohort) of the 372 birth year. u_{0j} is the slope of the *j*th period that explains the residual random effect of the *j*th period 373 averaged over all cohorts. v_{0k} is the slope of the kth cohort that explains the residual random effect 374 of the kth cohort averaged over all periods. u_{ni} and v_{nk} follow a normal distribution with variance τ^2 375 and ψ^2 , respectively (Eq. (4)).

According to **Eqs. (2)-(4**), the combined model is established as follows:

$$Y_{ijk} = \gamma_0 + \beta_{1jk} AGE_{ijk} + \beta_{2jk} AGE_{ijk}^2 + \sum_{n=3} \beta_{njk} X_{nijk} + u_{0j} + v_{0k} + e_{ijk}$$
(5)

A multistep estimation strategy was used to improve the interpretability of our results. We changed level-1 components (spatial mobility constraints except for social role constraints) for different estimations, yet kept the level-2 components (period and cohort) constant. The social role constraints (i.e., age, gender, and ethnicity) were retained in each estimation, as these constraints (except for age) are relatively stable over the life course for most individuals. First, we estimated 383 the maximally adjusted model with all spatial mobility constraints accounted for. Second, five 384 models – with the spatial mobility constraints excluded one type at a time from the maximally 385 adjusted model - were tested. Third, the spatial mobility constraints (except for social role 386 constraints) were removed one at a time from the maximally adjusted model. As such, a total of 26 (i.e., $C_5^2 + C_5^3 + C_5^4 + C_5^5$) models were examined in this step. We report the maximally adjusted 387 model as the main model to interpret the changes in multimodality across ages, periods, and cohorts. 388 By comparing all models, we looked into the extent to which the age-, period-, and cohort-specific 389 390 changes in multimodality could be moderated by spatial mobility constraints. Given the richness of 391 the potential input variables, we assessed the multicollinearity of the HAPC models using the classic 392 variance inflation factors (VIFs). The VIF values of all variables lay within an acceptable range 393 (VIF<4; see, e.g., Hair et al. (2010)), indicating the absence of problematic multicollinearity.

394 Sensitivity analyses were conducted to ensure the interpretability and robustness of the results. 395 First, we included the number of trip stages in the main model as an explanatory variable 396 (Sensitivity test 1)), as more trip stages travelled potentially offer more opportunities to use 397 different modes (Heinen, 2018). Second, we repeated the analyses adopting the three-mode-based 398 OM PI as the dependent variable (Sensitivity test 2). Third, the HAPC models were separately 399 estimated using three additional sets of samples aged 30 and over (Alternative Sample Set A), 35 400 and over (Alternative Sample Set B), and between 30 and 70 (Alternative Sample Set C) (Sensitivity 401 tests 3-5). The reason is that repeated cross-sectional data are necessarily unbalanced in the age-by-402 cohort (or cohort-by-period) distribution. Therefore, individuals in some recent cohorts, such as 403 1980-1984, 1985-1989, and post-1990 cohorts, are associated with younger-than-average ages. In 404 light of the correlations between multimodality and age and between multimodality and some age-405 related attributes, the estimated effects of these cohorts could be potentially overstated, despite the 406 fact that the HAPC model is able to peel the age effect off the cohort effect effectively.

407 **4. Results**

408 The HAPC models were applied to examine the net effects of age, period, and cohort on multimodality. We first examined the fixed effects (Table 1). In the maximally adjusted model (main 409 410 Model, Model 1), age was negatively associated with multimodality, whilst age squared has only 411 an insignificant effect on multimodality. As the ageing process involves a wide range of social and biological changes, we then examined the extent to which spatial mobility constraints may impact 412 413 the age-multimodality relation. The age effects were, therefore, tested by removing one type of these 414 constraints at a time from the main model. As indicated by the changes in coefficients of age and 415 age squared (Model 2-6), we found that all types of spatial mobility constraints might potentially 416 moderate the association between age and multimodality, albeit to a varying extent. In particular, 417 the negative effect of age squared turned to be significant after the physical mobility, work, and 418 economic constraints were excluded. This is similar to the examination of the extent to which the 419 combinations of these constraints were related to the temporal patterns in multimodality across ages. 420 It was found that after the data were simultaneously uncontrolled for physical mobility, work, and 421 economic constraints, the age-squared variable became significant (results were not shown for 422 brevity).

To illustrate the degree of age-specific changes in multimodality, we calculated the predicted mean value of OM_PI according to the aforementioned models⁷. The OM_PI predicted by Model 1 dropped from 0.276 to 0.183 from the age of 16 to 80, *ceteris paribus*. To intuitively illustrate this, consider a traveller who makes 100 trips a week, with driving, walking, and the use of public transport accounting for 50, 25, and 25 trips, respectively. The decrease of 0.093 in the OM_PI indicates roughly 10 trips made by either walking or public transport will turn to driving trips, and such a 10% mode change would be a considerable effect if replicated across the population⁸. We

other variables are set to zero: $\hat{y} = \hat{\gamma}_0 + \hat{\beta}_1 ((Age_i - 48.3)/10) + \hat{\beta}_2 ((Age_i - 48.3)/10)^2$

⁷ The predicted OM_PI for specific age i averaged over periods and cohorts is calculated based on Eq. (5), when

⁸ This hypothetical case was posed considering the average level of modal shares in England. It should be noted that a lower level of multimodality does not necessarily mean more car trips/use. For example, the decrease of 0.093 in the OM_PI can also indicate roughly 10 trips made by either walking or driving will turn to public transport trips for an individual who had 50, 25, and 25 trips that are respectively made by public transport, driving, and walking.

430 then successively compared the temporal patterns in the predicted OM PI across ages between 431 Model 1 and Models 2-6 (Figure 2). Figure 2 contains five subfigures (A-E), each of which 432 successively displays the comparison between the OM PIs predicted by Models 2-6 (purple-to-pink 433 lines) and Model 1 (blue lines). By examining the slope of these predicted lines, it was suggested 434 that physical mobility and work constraints, compared to other constraints, might have a stronger 435 influence in moderating the age-multimodality nexus, particularly in specific age groups (work 436 constraints for age under 30 and above 60; physical mobility constraints for age above 30). Figure 437 3 shows the difference in the predicted value of OM PI between the maximally adjusted model and 438 the model with only physical mobility and work constraints excluded. The value of OM PI predicted 439 by the latter model is greater yet decreases faster than that predicted by the former one, before the 440 two predicted lines intersect at the age of 30. After the age of 30, the two predicted lines diverge at 441 first and then converge. Combining these findings, it appears that changes in work constraints (e.g., 442 the change from student to full-time employee) and physical mobility constraints (e.g., developing 443 walking difficulties) has accelerated the decline in multimodality before and after reaching middle 444 adulthood, respectively.

In addition to age, we also found that multimodality was associated with the vast majority of the variables we considered, at a significance level of 0.05 (**Model 1**). These identified correlates belong to different domains of mobility constraints. In summary, it was observed that females, Asian/Asian British, students, people who do not have walking difficulties, do not have a full-time job, work at one location, do not work at home, have higher household income, live in self-owned housing, live in a densely populated urban area, and those who do not have access to a vehicle in the household, own a bicycle, and do not hold a full car license, tended to be more multimodal.

We then focused on the random effects. It was found that individual multimodality exhibited significant variation (p < 0.05) across periods and cohorts (**Table 2**). It was also observed that the variance for the cohort was larger than that for the period, regardless of models, 0.000121 and 0.000016, respectively. This implies that the total variance in individual multimodality accounted for by differences in cohort is more than six times of that accounted for by differences in period. Therefore, the cohort effects, compared to the period effects, more effectively explain the observed changes in multimodality over time.

459 Figure 4 illustrates the predicted mean value of OM PI across periods after the effects of age 460 and cohort were accounted for9. The solid blue, solid grey, and dash red lines represent the predicted mean value of OM PI, grand mean of OM PI, and 95% confidence interval, respectively. From 461 2001 to 2009, the OM PI showed a gentle increase of 0.006, followed by a decrease between 2009 462 463 and 2010 (from 0.239 to 0.230). This figure remained rather stable since 2010, except for the slight 464 rebound in 2017. It should be noted that, in addition to the decrease between 2009 and 2010, the 465 magnitude of changes in the predicted OM PI over the entire observed period and over specific consecutive years is rather small. The predicted OM PI in 2017 (0.231) was fairly similar as in 2001 466 467 (0.232), and it fell between 0.238 and 0.228 over the past 18 years (except for 2009 and 2010).

Figure 5 displays the predicted mean value of OM PI across cohorts after the effects of age 468 469 and period have been accounted for¹⁰. The solid blue, solid grey, and dash red lines represent the 470 predicted mean value of OM PI, grand mean of OM PI, and 95% confidence interval, respectively. 471 The overall temporal pattern in multimodality could be roughly divided into three stages. At first, 472 along with the replacement of generational membership, earlier cohorts have exhibited a continuous 473 increase in individual multimodality until peaking for the cohort born between 1945 and 1949 (predicted OM PI: 0.251). Subsequently, there was a slump in multimodality before the OM PI 474 reaches its minimum of 0.222 at the cohort born between 1965 and 1969. This figure dropped by 475 0.029 from 1945-1949 to 1965-1969 cohort. This decline is quite substantial; if we compare it with 476 477 the age effects, 0.029 is almost equivalent to the level of decline in multimodality during the 478 transition from adolescence to middle adulthood (from 16 to 38 years old; estimated by Model 1).

⁹ The predicted OM_PI for a specific period *j* averaged over ages and cohorts is calculated based on Eq. (5), when the other variables are set to zero: $\hat{y} = \hat{y}_0 + \hat{u}_{0i}$

¹⁰ The predicted OM_PI for a specific cohort *k* averaged over ages and periods is calculated based on Eq. (5), when the other variables are set to zero: $\hat{y} = \hat{\gamma}_0 + \hat{v}_{0k}$

479 In other words, a 16-year-old traveller born in 1965 would be at the same level of multimodality as 480 a 38-year-old traveller born in 1945, if they could exist in an identical year. Finally, multimodality rose slightly for the remaining cohorts, followed by a falling trend for the cohort born in or after 481 482 1980. Furthermore, our multistep analyses showed that when one specific type of spatial mobility constraint was removed from the main model, the magnitude of the changes in cohort variance 483 484 components was quite similar across models (except the model with work constraints excluded), ranging from 0.000046 to 0.000071 (Model 2-5). This indicates that the cohort-specific changes in 485 multimodality could be partially explained by the joint influence of multiple spatial mobility 486 487 constraints, with the exception of work constraints.

488 Finally, our sensitivity test 1 (including the number of trip stages; Model 7) resulted in a 489 decrease in the magnitude of the estimated random coefficients for specific periods and cohorts 490 (particularly the cohort born at and after 1980). This implies that the number of trip stages may 491 partially explain the estimated temporal patterns in multimodality across periods and cohorts. The sensitivity analysis performed by adopting the three-mode-based OM PI as a dependent variable 492 493 (sensitivity test 2) showed similar findings to our main model (Table 1 and Table 2 in Supplementary Material). We found that, similar to our findings derived from the estimations 494 495 using the eight-mode-based choice set, the total variance in multimodality accounted for by cohorts 496 was larger than that explained by periods, although the gap between them was smaller (Model 1 in 497 Table 2 in Supplementary Material). The patterns in multimodality across periods and cohorts 498 also remained fairly similar using the more aggregated choice set. Sensitivity tests 3-5 (using the 499 alternative sample sets A, B, and C) produced results that were largely consistent with the those derived from the original sample set in terms of the significance of correlates (Table 3, 5, 7 in 500 Supplementary Material) and the temporal patterns in multimodality (Appendix B). 501

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	
Fixed Effects	Coef. (SE)	Coef. (SE)	Coef. (SE)	Coef. (SE)	Coef. (SE)	Coef. (SE)	Coef. (SE)	
Social Role Constraints				· · ·		· · ·		
Age	-1.460E-02 (1.132E-03) ***	-1.783E-02 (1.184E-03) ****	-1.155E-02 (1.108E-03) ***	-1.365E-02 (9.540E-04) ***	-1.532E-02 (1.282E-03) ****	-1.355E-02 (9.490E-04) ***	-8.290E-03 (1.096E-03) ***	
Age squared	-3.000E-04 (2.540E-04)	-5.400E-04 (2.580E-04)*	1.701E-03 (2.450E-04) ***	-5.600E-04 (2.490E-04) *	-1.500E-04 (2.590E-04)	1.170E-04 (2.470E-04)	6.350E-04 (2.440E-04) **	
Gender								
Female	3.778E-02 (9.020E-04) ***	3.851E-02 (9.060E-04) ***	4.436E-02 (8.580E-04) ***	3.842E-02 (9.040E-04) ***	3.829E-02 (9.080E-04) ***	3.589E-02 (8.950E-04) ***	3.664E-02 (8.650E-04) ***	
Male (reference)								
Ethnicity								
White	-1.304E-02 (4.399E-03) **	-1.198E-02 (4.418E-03) **	-1.143E-02 (4.412E-03) **	-1.343E-02 (4.411E-03) **	3.490E-04 (4.422E-03)	-1.170E-02 (4.440E-03) **	-1.304E-02 (4.219E-03) **	
Mixed Multiple Ethnic	-5.476E-02 (1.996E-03) ***	-5.324E-02 (2.004E-03) ***	-5.344E-02 (1.996E-03) ***	-5.518E-02 (2.001E-03) ***	-3.089E-02 (1.956E-03) ***	-6.496E-02 (2.000E-03) ***	-4.686E-02 (1.915E-03) ***	
Groups								
Asian/Asian British								
(reference)								
	-2.394E-02 (2.869E-03) ***	-2.197E-02 (2.881E-03) ***	-2.268E-02 (2.875E-03) ***	-2.631E-02 (2.875E-03) ***	2.032E-03 (2.823E-03)	-2.545E-02 (2.890E-03) ***	-1.843E-02 (2.752E-03) ***	
Black/African/Caribbean/Black								
British								
Other Ethnic Group	-3.090E-02 (4.107E-03) ***	-2.927E-02 (4.125E-03) ***	-2.978E-02 (4.118E-03) ***	-3.239E-02 (4.118E-03) ***	-1.173E-02 (4.112E-03) **	-3.360E-02 (4.145E-03) ***	-2.614E-02 (3.940E-03) ***	
Physical Mobility Constraints								
Having Walking Difficulties								
Yes	-6.300E-02 (1.485E-03) ***		-6.534E-02 (1.464E-03) ***	-6.397E-02 (1.489E-03) ***	-6.603E-02 (1.495E-03) ***	-6.348E-02 (1.494E-03) ***	-5.100E-02 (1.428E-03) ***	
No (reference)								
Work Constraints								
Economic Status								
Full-time (reference)								
Part-time	3.066E-02 (1.329E-03) ***	3.065E-02 (1.335E-03) ***		2.513E-02 (1.322E-03) ***	3.021E-02 (1.340E-03) ***	3.105E-02 (1.340E-03) ***	2.205E-02 (1.277E-03) ***	
Unemployed	1.770E-02 (2.834E-03) ***	1.804E-02 (2.846E-03) ***		6.865E-03 (2.819E-03) *	1.474E-02 (2.855E-03) ***	2.450E-02 (2.854E-03) ***	2.312E-02 (2.719E-03) ***	
Retired	4.193E-02 (1.887E-03) ***	3.861E-02 (1.895E-03) ***		3.289E-02 (1.867E-03) ***	4.184E-02 (1.903E-03) ***	4.285E-02 (1.901E-03) ***	4.392E-02 (1.810E-03) ***	
Student	3.635E-02 (2.579E-03) ***	3.551E-02 (2.592E-03) ***		2.915E-02 (2.572E-03) ***	3.999E-02 (2.600E-03) ***	4.380E-02 (2.588E-03) ***	3.743E-02 (2.474E-03) ***	
Other inactive employment	-3.980E-03 (1.594E-03)*	-1.581E-02 (1.576E-03) ***		-1.347E-02 (1.567E-03) ***	-7.510E-03 (1.602E-03) ****	-1.950E-03 (1.597E-03)	5.095E-03 (1.530E-03) ***	
Multiple Work Locations								
Yes	-2.079E-02 (1.575E-03) ***	-2.047E-02 (1.582E-03) ***		-2.155E-02 (1.579E-03) ***	-1.991E-02 (1.587E-03) ****	-2.381E-02 (1.588E-03) ***	-1.006E-02 (1.513E-03) ***	
No (reference)								
Work from Home								
Yes	-1.520E-03 (2.700E-03)	-2.110E-03 (2.712E-03)		-1.700E-04 (2.707E-03)	-1.710E-03 (2.719E-03)	-1.950E-03 (2.726E-03)	4.731E-03 (2.590E-03)	
No (reference)								
Economic Constraints								
Household Income								
£50,000 and over (reference)								
£25,000 to £49,999	-4.317E-02 (1.295E-03) ***	-4.424E-02 (1.300E-03) ***	-3.806E-02 (1.264E-03) ***		-5.596E-02 (1.280E-03) ***	-3.185E-02 (1.243E-03) ***	-3.275E-02 (1.245E-03) ***	

Table 1 Results from hierarchical age-period-cohort model of multimodality (fixed-effect parts).

£24,999 and less	-2.315E-02 (1.145E-03) ***	-2.303E-02 (1.150E-03) ***	-2.117E-02 (1.146E-03) ***		-2.999E-02 (1.147E-03) ***	-2.122E-02 (1.142E-03) ***	-1.779E-02 (1.099E-03) ***
Accessibility Constraints							
Settlement Type							
London Boroughs	6.853E-02 (2.230E-03) ***	6.972E-02 (2.239E-03) ***	6.834E-02 (2.237E-03) ***	7.433E-02 (2.229E-03) ***		7.252E-02 (2.239E-03) ***	5.244E-02 (2.143E-03) ***
Metropolitan Built-up Areas	1.226E-02 (2.076E-03) ***	1.196E-02 (2.084E-03) ***	1.239E-02 (2.082E-03) ***	1.193E-02 (2.081E-03) ***		1.283E-02 (2.088E-03) ***	5.106E-03 (1.992E-03)*
Urban over 250 population	1.760E-02 (2.005E-03) ***	1.731E-02 (2.013E-03) ***	1.764E-02 (2.011E-03) ***	1.812E-02 (2.010E-03) ***		1.907E-02 (2.023E-03) ***	7.733E-03 (1.925E-03) ***
Urban with 25k to 250k	9.867E-03 (1.821E-03) ***	9.689E-03 (1.828E-03) ***	9.618E-03 (1.826E-03) ***	9.816E-03 (1.825E-03) ***		1.201E-02 (1.836E-03) ***	3.641E-03 (1.747E-03)*
population							
Urban with 3k to 25k	6.933E-03 (1.647E-03) ***	6.832E-03 (1.654E-03) ***	6.777E-03 (1.652E-03) ***	6.484E-03 (1.651E-03) ***		8.665E-03 (1.662E-03) ***	4.045E-03 (1.580E-03)*
population							
Rural (reference)							
Population Density							
(Persons/ha)							
40 and over	1.392E-02 (1.779E-03) ****	1.349E-02 (1.787E-03) ***	1.365E-02 (1.785E-03) ***	1.350E-02 (1.784E-03) ***		1.970E-02 (1.786E-03) ***	8.148E-03 (1.708E-03) ***
20 to 39.99	7.866E-03 (1.592E-03) ****	7.467E-03 (1.599E-03) ***	7.756E-03 (1.598E-03) ***	7.207E-03 (1.596E-03) ***		9.943E-03 (1.604E-03) ***	5.505E-03 (1.528E-03) ***
5 to 19.99	3.754E-03 (1.451E-03) **	3.305E-03 (1.457E-03)*	3.734E-03 (1.456E-03)*	3.392E-03 (1.455E-03)*		4.264E-03 (1.464E-03) **	2.108E-03 (1.392E-03)
4.99 and less (reference)							
Housing Tenure							
Owns/Buying	2.831E-02 (1.107E-03) ***	3.058E-02 (1.111E-03) ****	3.028E-02 (1.106E-03) ***	3.385E-02 (1.097E-03) ***		1.629E-02 (1.054E-03) ***	3.002E-02 (1.062E-03) ***
Rents and other (reference)							
Mobility Resources Constraints							
Number of Household Vehicles							
2 and over	-6.520E-02 (1.661E-03) ***	-6.427E-02 (1.668E-03) ***	-6.435E-02 (1.662E-03) ***	-5.224E-02 (1.613E-03) ***	-7.032E-02 (1.571E-03) ***		-5.680E-02 (1.594E-03) ***
1	-4.154E-02 (1.426E-03) ***	-4.078E-02 (1.432E-03) ***	-4.003E-02 (1.429E-03) ***	-3.808E-02 (1.421E-03) ***	-4.225E-02 (1.388E-03) ***		-3.609E-02 (1.368E-03) ***
0 (reference)							
Owning a Bicycle							
Yes	4.220E-02 (9.460E-04) ***	4.437E-02 (9.490E-04) ***	4.365E-02 (9.470E-04) ***	4.365E-02 (9.480E-04) ***	4.009E-02 (9.440E-04) ***		3.711E-02 (9.080E-04) ***
No (reference)							
Holding Full Car License							
Yes	-8.340E-03 (1.229E-03) ***	-5.750E-03 (1.233E-03) ***	-9.610E-03 (1.222E-03) ***	-9.010E-03 (1.232E-03) ***	-6.210E-03 (1.237E-03) ***		-2.350E-02 (1.185E-03) ***
No (reference)							
Number of Trip Stages							3.399E-03 (2.600E-05) ***
Intercept	2.318E-01 (3.954E-03) ***	2.228E-01 (4.327E-03) ***	2.319E-01 (3.908E-03) ***	1.997E-01 (3.259E-03) ***	2.836E-01 (4.355E-03) ***	1.955E-01 (3.097E-03) ***	1.556E-01 (3.855E-03) ***
Number of observations	203329	203329	203329	203329	203329	203329	203329

Note: Model 1: the maximally adjusted model. Model 2-6: the models that respectively excluded physical mobility, work, economic, accessibility, and mobility resources constraints from the maximally adjusted model. Model 7: sensitivity analysis 1 (including the number of trip stages). OM_PI-8 was used as the dependent variables. *, **, and *** denotes significant at the significance level of 0.05, 0.01, and 0.001, respectively.

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
Variance	Variance	Variance	Variance	Variance	Variance	Variance	Variance
Components							
Period	0.000016 **	0.000012 *	0.000020 ^v	0.000013 *	0.000019 *	0.000018 *	0.000016 **
Cohort	0.000121 *	0.000167 *	0.000116 ***	0.000067 *	0.000192 ^v	0.000062 *	0.000113 *
Random Effects	Coef. (SE)	Coef. (SE)	Coef. (SE)	Coef. (SE)	Coef. (SE)	Coef. (SE)	Coef. (SE)
Period							
2001	6.600E-04 (2.365E-03)	-5.500E-04 (2.235E-03)	5.260E-04 (2.496E-03)	-1.040E-03 (2.247E-03)	1.944E-03 (2.486E-03)	9.320E-04 (2.419E-03)	-1.430E-03 (2.308E-03)
2002	2.244E-03 (1.952E-03)	5.990E-04 (1.863E-03)	1.680E-03 (2.054E-03)	-2.200E-04 (1.850E-03)	3.103E-03 (2.057E-03)	2.744E-03 (1.981E-03)	-3.500E-03 (1.903E-03)
2003	-1.800E-04 (1.870E-03)	-1.970E-03 (1.783E-03)	-6.500E-04 (1.969E-03)	-2.470E-03 (1.777E-03)	-8.060E-06 (1.961E-03)	4.820E-04 (1.904E-03)	-2.700E-03 (1.823E-03)
2004	-3.150E-03 (1.847E-03)	-4.290E-03 (1.759E-03) *	-3.690E-03 (1.945E-03)	-4.700E-03 (1.762E-03) **	-2.510E-03 (1.937E-03)	-3.020E-03 (1.887E-03)	-5.730E-03 (1.800E-03) **
2005	2.849E-03 (1.808E-03)	1.277E-03 (1.720E-03)	2.897E-03 (1.906E-03)	1.737E-03 (1.731E-03)	3.355E-03 (1.892E-03)	3.297E-03 (1.854E-03)	-7.200E-04 (1.762E-03)
2006	1.776E-03 (1.795E-03)	5.330E-04 (1.706E-03)	1.348E-03 (1.892E-03)	8.410E-04 (1.724E-03)	2.630E-03 (1.874E-03)	2.015E-03 (1.847E-03)	-1.780E-03 (1.750E-03)
2007	4.176E-03 (1.780E-03)*	3.704E-03 (1.690E-03)*	3.975E-03 (1.877E-03)*	3.733E-03 (1.713E-03)*	5.112E-03 (1.855E-03) **	4.802E-03 (1.835E-03) **	4.747E-03 (1.734E-03) **
2008	6.445E-03 (1.786E-03) ***	5.840E-03 (1.696E-03) ***	6.595E-03 (1.883E-03) ***	6.382E-03 (1.721E-03) ***	5.977E-03 (1.858E-03) **	6.734E-03 (1.844E-03) ***	5.945E-03 (1.740E-03) ***
2009	7.047E-03 (1.760E-03) ***	6.735E-03 (1.670E-03) ***	7.298E-03 (1.856E-03) ***	6.931E-03 (1.696E-03) ***	6.894E-03 (1.832E-03) ***	7.119E-03 (1.818E-03) ***	9.127E-03 (1.715E-03) ***
2010	-2.010E-03 (1.784E-03)	-1.780E-03 (1.693E-03)	-1.700E-03 (1.880E-03)	-1.310E-03 (1.718E-03)	-2.160E-03 (1.857E-03)	-2.010E-03 (1.842E-03)	-3.400E-04 (1.738E-03)
2011	-1.140E-03 (1.810E-03)	-9.400E-04 (1.719E-03)	-6.300E-04 (1.907E-03)	-5.700E-04 (1.742E-03)	-1.520E-03 (1.886E-03)	-1.100E-03 (1.866E-03)	1.648E-03 (1.763E-03)
2012	-4.090E-03 (1.790E-03)*	-3.740E-03 (1.700E-03)*	-3.580E-03 (1.887E-03)	-3.160E-03 (1.718E-03)	-5.650E-03 (1.868E-03) **	-4.010E-03 (1.841E-03)*	-1.940E-03 (1.744E-03)
2013	-3.500E-03 (1.826E-03)	-1.630E-03 (1.736E-03)	-3.170E-03 (1.924E-03)	-2.730E-03 (1.749E-03)	-4.230E-03 (1.910E-03)*	-3.680E-03 (1.874E-03)*	-4.000E-05 (1.780E-03)
2014	-3.390E-03 (1.839E-03)	-1.540E-03 (1.750E-03)	-3.370E-03 (1.938E-03)	-1.950E-03 (1.756E-03)	-4.070E-03 (1.928E-03)*	-3.670E-03 (1.881E-03)	-1.000E-05 (1.793E-03)
2015	-4.290E-03 (1.884E-03)*	-2.380E-03 (1.795E-03)	-4.000E-03 (1.985E-03) *	-2.100E-03 (1.793E-03)	-4.730E-03 (1.980E-03)*	-4.890E-03 (1.921E-03)*	-3.400E-04 (1.837E-03)
2016	-3.070E-03 (1.907E-03)	-1.130E-03 (1.819E-03)	-3.280E-03 (2.008E-03)	-9.800E-04 (1.807E-03)	-3.300E-03 (2.011E-03)	-4.220E-03 (1.934E-03)*	-1.810E-03 (1.859E-03)
2017	-3.700E-04 (1.973E-03)	1.258E-03 (1.883E-03)	-2.400E-04 (2.077E-03)	1.588E-03 (1.864E-03)	-8.500E-04 (2.085E-03)	-1.520E-03 (1.995E-03)	-1.110E-03 (1.924E-03)
Cohort							
Pre-1930	-6.060E-03 (5.200E-03)	-1.130E-02 (5.655E-03)*	-9.350E-03 (5.189E-03)	-9.760E-03 (4.298E-03)*	-2.620E-03 (6.056E-03)	-5.900E-03 (4.246E-03)	-1.174E-02 (5.023E-03)*
1930-1934	1.469E-03 (4.547E-03)	1.487E-03 (5.005E-03)	7.482E-03 (4.514E-03)	-3.550E-03 (3.729E-03)	5.482E-03 (5.345E-03)	-3.260E-03 (3.672E-03)	-1.670E-03 (4.389E-03)
1935-1939	1.049E-02 (4.137E-03)*	1.260E-02 (4.597E-03) **	2.063E-02 (4.085E-03) ***	4.866E-03 (3.362E-03)	1.418E-02 (4.908E-03) **	4.663E-03 (3.304E-03)	7.932E-03 (3.992E-03)*
1940-1944	1.535E-02 (3.828E-03) ***	1.825E-02 (4.290E-03) ***	2.486E-02 (3.772E-03) ***	1.010E-02 (3.097E-03) **	1.885E-02 (4.572E-03) ***	9.361E-03 (3.038E-03) **	1.658E-02 (3.692E-03) ***
1945-1949	1.895E-02 (3.567E-03) ***	2.175E-02 (4.033E-03) ***	2.415E-02 (3.513E-03) ***	1.525E-02 (2.867E-03) ***	2.171E-02 (4.293E-03) ***	1.409E-02 (2.804E-03) ***	2.015E-02 (3.439E-03) ***
1950-1954	9.545E-03 (3.474E-03) **	1.173E-02 (3.936E-03) **	8.622E-03 (3.414E-03)*	7.672E-03 (2.814E-03) **	1.143E-02 (4.176E-03) **	6.803E-03 (2.752E-03)*	9.950E-03 (3.347E-03) **
1955-1959	4.941E-03 (3.410E-03)	6.406E-03 (3.872E-03)	4.690E-04 (3.343E-03)	4.666E-03 (2.769E-03)	6.125E-03 (4.100E-03)	4.525E-03 (2.706E-03)	4.207E-03 (3.285E-03)
1960-1964	-2.110E-03 (3.366E-03)	-1.390E-03 (3.833E-03)	-6.480E-03 (3.303E-03) *	-1.510E-03 (2.718E-03)	-1.340E-03 (4.062E-03)	5.580E-04 (2.653E-03)	-1.620E-03 (3.242E-03)
1965-1969	-9.740E-03 (3.405E-03) **	-9.610E-03 (3.874E-03)*	-1.365E-02 (3.349E-03) ***	-8.290E-03 (2.736E-03) **	-9.960E-03 (4.114E-03)*	-5.330E-03 (2.670E-03)*	-1.126E-02 (3.281E-03) ***
1970-1974	-8.290E-03 (3.542E-03)*	-8.690E-03 (4.011E-03)*	-1.234E-02 (3.489E-03) ***	-5.910E-03 (2.841E-03)*	-9.760E-03 (4.270E-03)*	-3.600E-03 (2.776E-03)	-9.140E-03 (3.414E-03) **
1975-1979	-5.440E-03 (3.795E-03)	-6.190E-03 (4.260E-03)	-1.050E-02 (3.745E-03) **	-1.760E-03 (3.058E-03)	-7.850E-03 (4.545E-03)	-1.100E-03 (2.993E-03)	-5.420E-03 (3.661E-03)
1980-1984	-3.930E-03 (4.105E-03)	-4.940E-03 (4.569E-03)	-9.490E-03 (4.059E-03)*	7.340E-04 (3.317E-03)	-8.570E-03 (4.884E-03)	-1.340E-03 (3.255E-03)	-5.990E-03 (3.962E-03)
1985-1990	-6.300E-03 (4.523E-03)	-7.990E-03 (4.984E-03)	-9.080E-03 (4.493E-03) *	-9.000E-04 (3.684E-03)	-1.201E-02 (5.333E-03)*	-3.750E-03 (3.628E-03)	-3.390E-03 (4.367E-03)

 Table 2 Results from hierarchical age-period-cohort model of multimodality (random-effect parts).

Post-1990	-1.888E-02 (5.071E-03) ***	-2.211E-02 (5.525E-03) ***	-1.532E-02 (5.063E-03) **	-1.161E-02 (4.155E-03) **	-2.566E-02 (5.935E-03) ***	-1.572E-02 (4.109E-03) ***	-8.600E-03 (4.901E-03)
Model Fit							
AIC	-103524	-101745	-102270	-102441	-100357	-99641	-122427
BIC	-103522	-101742	-102267	-102438	-100354	-99638	-122425

Note: OM_PI-8 was used as the dependent variables. Model 1: the maximally adjusted model. Model 2-6: the models that respectively excluded physical mobility, work, economic, accessibility, and mobility resources constraints from the maximally adjusted model. Model 7: sensitivity analysis 1 (including the number of trip stages). Ψ , *, **, and *** denotes significant at the significance level of 0.10, 0.05, 0.01, and 0.001, respectively.

Figure 2 The extent to which a specific type of spatial mobility constraint moderates the age-multimodality relation.

Note: subfigures A-E successively display the comparison between OM_PI predicted by Model 1 (the maximally adjusted model; blue lines) and Model 2-6 (the models that respectively excluded physical mobility, work, economic, accessibility, and mobility resources constraints from the maximally adjusted model; purple-to-pink lines).

518
519 Figure 3 The extent to which physical mobility and work constraints moderate the age520 multimodality relation.

521 *Note:* the predicted mean value of OM_PI-8 was calculated according to Model 1 (the blue line) and the 522 model that excluded physical mobility and work constraints from the maximally adjusted model (the 523 purple line).

Figure 4 Predicted mean values of OM_PI across periods.

Note: the predicted mean value of OM_PI-8 was calculated using coefficients in Model 1. The solid blue,
 solid grey, and dash red lines represented the predicted mean value of OM_PI, grand mean of OM_PI,
 and 95% confidence interval, respectively.

Figure 5 Predicted mean values of OM_PI across cohorts.

533 Note: the predicted mean value of OM_PI-8 was calculated using coefficients in Model 1. The solid blue, 534 535 solid grey, and dash red lines represented the predicted mean value of OM_PI, grand mean of OM_PI,

and 95% confidence interval, respectively.

536 **5. Discussion and conclusion**

537 The research reported in this paper investigated the extent to which individual multimodality varies 538 by age, period, and cohort, using 17 consecutive waves of the NTS in England, 2001 to 2017. In 539 light of the mathematical coupling between age, period, and cohort, the HAPC model was used to 540 disentangle the confounding effects between these three variables. Our analyses showed that the 541 effects of age, period, and cohort on multimodality were significant and independent of each other.

Our results showed that travellers tend to be, on average, less multimodal as they age, which is 542 543 in line with prior studies (e.g., Heinen and Mattioli (2019a); Klinger (2017); Molin et al. (2016)). 544 As indicated by our multistep analyses, the effect of age might be moderated by multiple spatial 545 mobility constraints - work and physical mobility constraints in particular - which largely accelerate 546 the falling of multimodality before and after reaching middle adulthood, respectively. A plausible 547 explanation is that, during the adolescence-to-adulthood transition, changes in employment status 548 are universally catalysed. Moving from student to full-time employee contributes to the tight budget 549 of discretionary time as well as to more commuting/business trips that are characterised by strong 550 temporal and spatial fixity (Elldér, 2014). These changes may result in fewer opportunities to use a 551 variety of modes and higher repeatability of daily mode choices. Subsequently, for the remainder of 552 their lifespan, people are more likely to undergo a deterioration in their physical performance and 553 experience a decline in mobility (Morgan et al., 2014)). Within this context, individuals are, to a 554 large extent, restricted from using active modes, e.g., walking, cycling, and the use of public transit, thereby reducing the richness of their mode choice sets. 555

556 We found that the overall temporal pattern in multimodality remained relatively stable from 557 2001 to 2017 in England, despite the fluctuations. Our findings were, to a certain extent, inconsistent with the previous studies, which reported an increase in multimodality between two time periods 558 559 after 2000 (see: Buehler and Hamre (2014) for trends between 2001 and 2009; and Streit et al. (2015) for trends between 1998-2002 and 2010-2012). We also compared our results with the research by 560 561 Heinen and Mattioli (2019a). They used the NTS data and multivariable linear regressions that 562 simultaneously accounted for age and period; a significant downward trend in England between 563 2002 to 2015 was found. In contrast, for our research, the OM PI slightly decreased by only 0.006 564 during the same period. This comparison suggests the necessity of incorporating the cohort effect 565 into the surveillance of temporal patterns in multimodality. Moreover, we saw a decline in multimodality between 2009 and 2010. These changes were not as salient as the fluctuations in 566 ageing and cohort succession. This decline in 2009 happened shortly after the 2008-09 financial 567 568 crisis. Comparing 2007 with 2009, 1.3% of trip stages shifted from car driver to bus, walk, and 569 bicycle. In 2010, the car driver modal share rebounded by 1.5% on average, at the cost of a fall in 570 walk and bicycle modal shares.

571 This research yielded new insights into the nexus between multimodality and birth cohort. We 572 revealed that multimodality was unequally distributed across cohorts. The cohort-specific changes 573 in multimodality could be partially explained by the variations in multiple spatial mobility 574 constraints in relation to the cohort succession. It was also observed that compared to period effects, 575 cohort effects, which have been largely overlooked by previous studies, substantially explain the 576 observed changes in multimodality over time. One of the most intriguing findings for cohort effects 577 is that multimodality reached the lowest levels for the cohort born between 1945 and 1969, even 578 when controlling for all covariates. This may largely be attributed to the surge in driving share 579 shaped by baby boomers' distinctive early life conditions and formative experience. Baby boomers 580 refer to the demographic cohort born between 1946 and 1964 during the post-war population 581 explosion (Eggebeen and Sturgeon, 2014). According to the 2001-2017 NTS data (Figure 6-A), the 582 share in car driver trip stages, being at the highest levels (0.56) for baby boomers, followed an 583 inverted U-shaped curve according to cohort succession. By contrast, reversed patterns were noticed for bus and car passenger modal share, which continued to decrease for cohorts born before 1965 584 585 and rebounded thereafter. In the early years of baby boomers, the end of World War II enabled industrialised countries, such as the US and Western European countries, to usher the 'golden age of 586 587 capitalism,' marked by two decades of economic growth, high levels of productivity, and low 588 unemployment (Marglin and Schor, 1991). The lifestyles were, therefore, dramatically changed. In 589 particular, due to the prosperity of automobile industries, termination of petrol rationing, and a more 590 affluent life, people were more able to afford private cars and were more prone to drive (e.g., Gunn 591 (2018); Thompson et al. (2012)). Between the 1950s and the mid-1960s, the number of households with at least one car roughly tripled in Great Britain (Leibling, 2008), and the share in total car use 592 (including travel as driver and passenger) surged by 40% (Figure 6-B). Studies have suggested that 593 vouth is an impressionable period when individuals are highly susceptible to the influence of social 594 595 context, and on this basis, their worldviews, values, and beliefs can be substantially shaped (e.g., Down and Wilson (2013); Wrav-Lake et al. (2010)). Therefore, baby boomers might have developed 596 597 strong pro-car and pro-driving attitudes in their youth (see, e.g., Chatterjee et al. (2018); Owram 598 (1997)). It is also reasonable to believe that these attitudes could be maintained and lead to a large 599 driving share when baby boomers reach the minimum age for a driver's license (circa 1960-1980 600 onwards) and onwards. This could be partially reflected on the fact that the modal share in car travel 601 rose by 30% between 1960 and the mid-1990s (Figure 6-B). This, as well as the lack of effective 602 supportive policies for other modes of transport (see, e.g., Gunn (2018)), potentially contributed to the decline in multimodality for the cohorts born between 1945 and 1969. 603

604 From a demographic standpoint, our analyses were unable to support the view of a long-term 605 increase in multimodality. It was found that following the cohorts of the mild upward trend, 606 multimodality started to decrease for the cohort born at and after 1985. This finding is potentially related to the distinctive growth process of the post-1985 cohort, during which the use of the internet 607 608 came to be prevalent. Studies have suggested that increasing 'virtualisation' has largely contributed to the decline in daily mobility in recent generations (e.g., Frändberg and Vilhelmson (2011)). 609 Travelling less, the post-1985 cohort may, therefore, have fewer opportunities to use specific modes, 610 which in turn, results in a less multimodal travel pattern. Our speculation is supported by our 611 sensitivity analysis (S1) that the salient decline for the post-1985 cohort was hardly present after 612 controlling for the number of trip stages. This finding is of importance for policy-making, as it, to a 613 614 certain extent, indicates a future trend of multimodality.

615 Going beyond our specific findings, we believe that the HAPC method employed is of a wider 616 application value, in the ex post evaluation of long-range policies on improvements of sustainable transport. For evaluating long-range policies targeted at either specific cohorts or a part of the 617 618 (sub-)population at one point in time, it is necessary to regularly trace travel patterns of the target 619 groups over a long period, and compare them with the baseline ones. However, ageing of individuals, 620 changes in social contexts, and cohort succession are necessarily intertwined. The observed effects of such policies inevitably contain some time-related confounding effects that are not within the 621 original aim of the policies. As illustrated in our analyses, the HAPC model is able to disentangle 622 623 the confounding effects between age, period, and cohort, thereby providing an effective and 624 comprehensive tool for ex post policy evaluation.

625 This research also has several limitations. First, the continuous indicator we applied to measure multimodality does not explicitly provide insight into the modes used. As such, we cannot draw 626 627 strong conclusions on variation in specific modes from our analyses. Our interpretations and the implications of our findings should be, therefore, treated with caution. For example, changes in 628 629 multimodality do not necessarily correspond with changes in car use (despite the dominant role of 630 car use in our country of study), especially at the disaggregate level. We used descriptive analyses 631 and existing literature on the post-war socioeconomic transformation to speculate on the causes of 632 the observed patterns. This enabled us to suggest that decreased levels of multimodality for baby 633 boomers may be attributed to increased levels of driving. However, resulting from the measurement of multimodality and the interconnection between age, period, and cohort, we cannot be absolutely 634 certain of this interpretation, nor can we automatically draw similar conclusions related to car use 635 for other observed patterns (e.g. for other cohorts). APC analyses on the exclusive use of various 636 modes would be an important supplement to our findings. Second, the time span (17 years) of our 637 data may not be sufficiently long, although, to our best knowledge, the NTS data is the only data 638 639 currently available with national-wide population representativeness and high-quality multiday 640 travel diaries. Due to the potential 'peak car' phenomenon in recent decades in England (e.g., 641 Headicar (2013)), looking at the data with a longer time span may reveal more salient changes in 642 multimodality across periods. Third, individual multimodality showed a decline for the cohort born 643 in or after 1985, yet our sensitivity analyses were not able to verify the robustness of the temporal 644 pattern for the post-1990 cohort. A revisit to this finding in the future is recommended.

Figure 6 Trends in (A) the modal share in England across cohorts (based on the 2001-2017 NTS data) and (B) the modal share in Great Britain from 1952 to 2017 (based on Department for Transport (2018b)).

	Age			Period			Cohort		
Correlates	16-40	41-60	61 and over	2001- 2006	2007- 2012	2013- 2017	Pre- 1945	1945- 1970	Post- 1970
Social Role Constraints									
Age	28.8	50.2	72.1	47.1	48.2	49.2	73.5	51.2	28.2
Gender									
Female	52.6%	51.9%	53.1%	52.6%	52.5%	52.4%	53.6%	51.8%	52.7%
Male	47.4%	48.1%	46.9%	47.4%	47.5%	47.6%	46.4%	48.2%	47.3%
Ethnicity									
White	85.2%	91.6%	96.4%	92.4%	90.3%	88.9%	96.8%	92.1%	84.5%
Mixed Multiple Ethnic Groups	1.6%	0.7%	0.2%	0.8%	1.0%	0.9%	0.2%	0.7%	1.7%
Asian/Asian British (reference)	8.2%	4.4%	1.9%	3.9%	5.2%	6.4%	1.6%	4.1%	8.8%
Black/African/Caribbean/Black British	3.3%	2.3%	1.0%	2.0%	2.4%	2.6%	1.0%	2.2%	3.3%
Other Ethnic Group	1.6%	0.9%	0.4%	0.9%	1.1%	1.1%	0.4%	0.9%	1.7%
Physical Mobility Constraints									
Having Walking Difficulties									
Yes	2.7%	8.0%	25.4%	13.8%	10.9%	8.1%	29.5%	8.4%	2.4%
No	97.3%	92.0%	74.6%	86.2%	89.1%	91.9%	70.5%	91.6%	97.6%
Work Constraints									
Economic Status									
Full-time	55.4%	60.6%	8.0%	44.3%	42.9%	43.5%	5.2%	53.9%	54.8%
Part-time	17.3%	18.4%	7.6%	15.0%	15.1%	14.6%	5.8%	17.7%	17.1%
Unemployed	4.4%	2.1%	0.2%	1.9%	3.0%	2.3%	0.1%	1.9%	4.6%
Retired	0.0%	4.7%	79.2%	23.2%	24.2%	25.8%	84.1%	13.4%	0.0%
Student	10.6%	0.3%	0.0%	3.5%	4.3%	4.3%	0.0%	0.3%	11.6%
Other inactive employment	12.3%	13.9%	5.0%	12.1%	10.6%	9.5%	4.8%	12.8%	11.8%
Multiple Work Locations									
Yes	9.0%	12.4%	3.1%	7.4%	8.4%	9.5%	1.9%	11.2%	9.0%
No	91.0%	87.6%	96.9%	92.6%	91.6%	90.5%	98.1%	88.8%	91.0%
Work from Home									
Yes	1.9%	3.9%	1.8%	2.0%	2.7%	2.9%	1.3%	3.7%	1.9%
No	98.1%	96.1%	98.2%	98.0%	97.3%	97.1%	98.7%	96.3%	98.1%
Economic Constraints									
Household Income ^a									
£50,000 and over	30.0%	32.4%	9.4%	17.6%	26.0%	31.7%	6.3%	28.8%	31.7%

Appendix A. Descriptive statistic of the considered correlates

£25,000 to £49,999	33.0%	31.8%	67.5%	48.9%	42.0%	36.0%	73.7%	34.9%	32.4%
£24,999 and less	37.0%	35.8%	23.1%	33.5%	32.0%	32.3%	20.0%	36.3%	35.9%
Accessibility Constraints									
Settlement Type									
London Boroughs	17.5%	12.9%	10.1%	13.0%	13.8%	14.8%	10.2%	12.6%	17.8%
Metropolitan Built-up Areas	16.2%	14.2%	13.8%	15.2%	14.9%	14.3%	14.0%	14.2%	16.3%
Urban over 250 population)	16.1%	15.6%	15.1%	16.5%	15.1%	15.4%	15.2%	15.6%	16.0%
Urban with 25k to 250k population	27.0%	26.3%	26.6%	26.5%	26.9%	26.6%	26.3%	26.6%	26.9%
Urban with 3k to 25k population	13.6%	17.0%	18.8%	17.8%	15.8%	14.9%	19.5%	16.9%	13.2%
Rural	9.6%	14.0%	15.6%	11.0%	13.5%	14.0%	14.8%	14.1%	9.8%
Population Density (Persons/ha)									
40 and over	28.2%	20.8%	17.3%	21.3%	21.8%	25.1%	17.1%	20.4%	29.0%
20 to 39.99	26.6%	25.4%	25.3%	24.4%	26.6%	26.5%	25.1%	25.4%	26.9%
5 to 19.99	24.4%	26.0%	27.2%	25.8%	26.5%	24.6%	27.3%	26.1%	24.2%
4.99 and less	20.8%	27.7%	30.2%	28.5%	25.1%	23.8%	30.5%	28.1%	19.9%
Housing Tenure									
Owns/Buying	61.7%	78.8%	80.9%	75.8%	72.6%	70.3%	80.4%	79.3%	59.8%
Rents and other	38.4%	21.2%	19.2%	24.2%	27.4%	29.7%	19.6%	20.7%	40.2%
Mobility Resources Constraints									
Number of Household Vehicles									
2 and over	45.7%	53.5%	24.6%	40.5%	42.8%	43.7%	19.6%	51.0%	45.5%
1	36.4%	35.3%	51.4%	41.5%	39.9%	39.5%	52.7%	37.6%	35.9%
0	17.9%	11.2%	24.0%	18.0%	17.3%	16.8%	27.7%	11.4%	18.6%
Owning a Bicycle									
Yes	41.9%	44.1%	19.9%	35.3%	37.1%	36.5%	16.5%	42.3%	41.3%
No	58.1%	55.9%	80.1%	64.7%	62.9%	63.5%	83.5%	57.7%	58.7%
Holding Full Car License									
Yes	65.9%	84.2%	68.7%	71.3%	73.1%	74.5%	64.4%	83.9%	63.9%
No	34.1%	15.8%	31.3%	28.7%	26.9%	25.5%	35.6%	16.1%	36.1%

^a Household income was deflated to 1990 values using the Retail Price Index (RPI). *Note:* the statistics of variables were grouped based on the rough tertile for individuals' age, periods, and cohorts.

Appendix B. Predicted OM_PI across periods and cohorts using alternative sample sets

Reference

- Bell, A. (2014) 'Life-course and cohort trajectories of mental health in the UK, 1991–2008–a multilevel age-period–cohort analysis', *Social science & medicine*, 120, pp. 21-30
- Blanchard, R.D., Bunker, J.B., Wachs, M. (1977) 'Distinguishing aging, period and cohort effects in longitudinal studies of elderly populations', *Socio-Economic Planning Sciences*, 11(3), pp. 137-146
- Blumenberg, E., Pierce, G. (2013) 'Multimodal travel and the poor: evidence from the 2009 National Household Travel Survey', *Transportation Letters*, 6(1), pp. 36-45
- Buehler, R., Hamre, A. (2014) 'The multimodal majority? Driving, walking, cycling, and public transportation use among American adults', *Transportation*, 42(6), pp. 1081-1101
- Buehler, R., Hamre, A. (2016) 'An examination of recent trends in multimodal travel behavior among American motorists', *International journal of sustainable transportation*, 10(4), pp. 354-364
- Chatterjee, K., Goodwin, P., Schwanen, T., Clark, B., Jain, J., Melia, S., Middleton, J., Plyushteva, A., Ricci, M., Santos, G. (2018) 'Young people's travel–What's changed and why? Review and analysis',
- Circella, G., Lee, Y., Alemi, F. (2019) 'Exploring the Relationships Among Travel Multimodality, Driving Behavior, Use of Ridehailing and Energy Consumption',
- Crossley, T.F., Ostrovsky, Y. (2003) 'A synthetic cohort analysis of Canadian housing careers', McMaster University.
- Delbosc, A., Currie, G. (2013) 'Causes of youth licensing decline: a synthesis of evidence', *Transport Reviews*, 33(3), pp. 271-290
- Department for Transport. (2019a). National Travel Survey, 1995-2001: Special Licence Access. [data collection]. UK Data Service. SN: 7804, http://doi.org/10.5255/UKDA-SN-7804-1
- Department for Transport. (2019b). National Travel Survey, 2002-2017: Special Licence Access. [data collection]. 7th Edition. UK Data Service. SN: 7553, http://doi.org/10.5255/UKDA-SN-7553-7
- Department for Transport (2018a) 'National Travel Survey Data Extract User Guide, 1995-2016', accessed 17 February 2020.

http://doc.ukdataservice.ac.uk/doc/7559/mrdoc/pdf/7559 nts user guidance 1995-2016.pdf.

- Department for Transport (2018b) 'Passenger transport by mode from 1952', accessed 05 March 2020. https://www.gov.uk/government/statistical-data-sets/nts07-car-ownership-and-access.
- Diana, M., Mokhtarian, P.L. (2007) 'The individual desire to change a "modal basket" and its relationship with the actual and perceived use of different transport means', *11th World Congress on Transport Research*.
- Diana, M., Mokhtarian, P.L. (2009) 'Desire to change one's multimodality and its relationship to the use of different transport means', *Transportation research part F: traffic psychology and behaviour*, 12(2), pp. 107-119
- Diana, M., Pirra, M. (2016) 'A comparative assessment of synthetic indices to measure multimodality behaviours', *Transportmetrica A: Transport Science*, 12(9), pp. 771-793
- Down, I., Wilson, C.J. (2013) 'A rising generation of E uropeans? Life-cycle and cohort effects on support for 'E urope'', *European Journal of Political Research*, 52(4), pp. 431-456
- Duchateau, L., Janssen, P. (1999) 'Small vaccination experiments with binary outcome: the paradox of increasing power with decreasing sample size and/or increasing imbalance', *Biometrical Journal: Journal of Mathematical Methods in Biosciences*, 41(5), pp. 583-600
- Eggebeen, D.J., Sturgeon, S. (2014) 'Demography of the baby boomers', *The Baby Boomers Grow Up*, Psychology Press.
- Elldér, E. (2014) 'Residential location and daily travel distances: the influence of trip purpose', *Journal* of Transport Geography, 34(pp. 121-130
- Fienberg, S.E., Mason, W.M. (1979) 'Identification and estimation of age-period-cohort models in the analysis of discrete archival data', *Sociological methodology*, 10(pp. 1-67
- Frändberg, L., Vilhelmson, B. (2011) 'More or less travel: personal mobility trends in the Swedish population focusing gender and cohort', *Journal of Transport Geography*, 19(6), pp. 1235-1244
- Garikapati, V.M., Pendyala, R.M., Morris, E.A., Mokhtarian, P.L., McDonald, N. (2016) 'Activity patterns, time use, and travel of millennials: a generation in transition?', *Transport Reviews*, 36(5), pp. 558-584
- Goodwin, P., Van Dender, K. (2013) "Peak car'—themes and issues', *Transport Reviews*, 33(3), pp. 243-254
- Grimal, R. (2020) 'Are French millenials less car-oriented? Literature review and empirical findings', *Transportation research part D: transport and environment*, 79(pp. 102221
- Gunn, S. (2018) 'The history of transport systems in the UK', Goverment Office for Science.
- Hägerstraand, T. (1970) 'What about people in regional science?', Papers in regional science, 24(1), pp.

7-24

- Hair, J.F., Black, W.C., Babin, B.J. (2010) *Multivariate Data Analysis: A Global Perspective*. Pearson Education.
- Headicar, P. (2013) 'The changing spatial distribution of the population in England: its nature and significance for 'peak car'', *Transport Reviews*, 33(3), pp. 310-324
- Heinen, E. (2018) 'Are multimodals more likely to change their travel behaviour? A cross-sectional analysis to explore the theoretical link between multimodality and the intention to change mode choice', *Transportation research part F: traffic psychology and behaviour*, 56(pp. 200-214
- Heinen, E., Chatterjee, K. (2015) 'The same mode again? An exploration of mode choice variability in Great Britain using the National Travel Survey', *Transportation Research Part A: Policy and Practice*, 78(pp. 266-282)
- Heinen, E., Mattioli, G. (2017) 'Does a high level of multimodality mean less car use? An exploration of multimodality trends in England', *Transportation*,
- Heinen, E., Mattioli, G. (2019a) 'Does a high level of multimodality mean less car use? An exploration of multimodality trends in England', *Transportation*, 46(4), pp. 1093-1126
- Heinen, E., Mattioli, G. (2019b) 'Multimodality and CO2 emissions: A relationship moderated by distance', *Transportation Research Part D: Transport and Environment*, 75(pp. 179-196
- Heinen, E., Ogilvie, D. (2016) 'Variability in baseline travel behaviour as a predictor of changes in commuting by active travel, car and public transport: a natural experimental study', *Journal of transport & health*, 3(1), pp. 77-85
- Klinger, T. (2017) 'Moving from monomodality to multimodality? Changes in mode choice of new residents', *Transportation Research Part A: Policy and Practice*, 104(pp. 221-237)
- Kroesen, M. (2014) 'Modeling the behavioral determinants of travel behavior: An application of latent transition analysis', *Transportation Research Part A: Policy and Practice*, 65(pp. 56-67
- Krueger, R., Rashidi, T.H., Vij, A. (2019) 'X vs. Y: an analysis of intergenerational differences in transport mode use among young adults', *Transportation*, pp. 1-29
- Kuhnimhof, T., Armoogum, J., Buehler, R., Dargay, J., Denstadli, J.M., Yamamoto, T. (2012a) 'Men shape a downward trend in car use among young adults—evidence from six industrialized countries', *Transport Reviews*, 32(6), pp. 761-779
- Kuhnimhof, T., Buehler, R., Dargay, J. (2011) 'A new generation: travel trends for young Germans and Britons', *Transportation Research Record: Journal of the Transportation Research Board*, 2230), pp. 58-67
- Kuhnimhof, T., Buehler, R., Wirtz, M., Kalinowska, D. (2012b) 'Travel trends among young adults in Germany: increasing multimodality and declining car use for men', *Journal of Transport Geography*, 24(pp. 443-450)
- Kupper, L.L., Janis, J.M., Salama, I.A., Yoshizawa, C.N., Greenberg, B.G., Winsborough, H. (1983)
 'Age-period-cohort analysis: an illustration of the problems in assessing interaction in one observation per cell data', *Communications in Statistics-Theory and Methods*, 12(23), pp. 201-217
- Lee, Y., Circella, G., Mokhtarian, P.L., Guhathakurta, S. (2019) 'Are millennials more multimodal? A latent-class cluster analysis with attitudes and preferences among millennial and Generation X commuters in California', *Transportation*, pp. 1-24
- Leibling, D. (2008) 'Car ownership in Great Britain', London: RAC Foundation for Motoring,
- Marglin, S.A., Schor, J.B. (1991) *The golden age of capitalism: reinterpreting the postwar experience*. Oxford University Press.
- Mehdizadeh, M., Ermagun, A. (2018) "'I'll never stop driving my child to school": on multimodal and monomodal car users', *Transportation*, pp. 1-32
- Molin, E., Mokhtarian, P., Kroesen, M. (2016) 'Multimodal travel groups and attitudes: A latent class cluster analysis of Dutch travelers', *Transportation Research Part A: Policy and Practice*, 83(pp. 14-29
- Morgan, P.E., Soh, S.-E., McGinley, J.L. (2014) 'Health-related quality of life of ambulant adults with cerebral palsy and its association with falls and mobility decline: a preliminary cross sectional study', *Health and quality of life outcomes*, 12(1), pp. 132
- NatCen Social Research (2018) 'National Travel Survey 2017. Technical Report', accessed 1 February 2020.
 - https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/7 29525/nts-technical-report-2017.pdf.
- Newell, C. (1990) Methods and models in demography. Guilford Press.
- Nobis, C. (2007) 'Multimodality: facets and causes of sustainable mobility behavior', *Transportation Research Record*, 2010(1), pp. 35-44
- O'Brien, R.M., Stockard, J., Isaacson, L. (1999) 'The enduring effects of cohort characteristics on age-

specific homicide rates, 1960-1995', American Journal of Sociology, 104(4), pp. 1061-1095

- Owram, D. (1997) Born at the right time: A history of the baby-boom generation. University of Toronto Press.
- Preston, S.H., Guillot, M. (2000) Demographymeasuring and modeling population processes.
- Robinson, R.V., Jackson, E.F. (2001) 'Is Trust in Others Declining in America? An Age-Period-Cohort Analysis', *Social Science Research*, 30(1), pp. 117-145
- Ryder, N.B. (1965) 'The Cohort as a Concept in the Study of Social Change', *American Sociological Review*, 30(6), pp. 843-861
- Scheiner, J., Chatterjee, K., Heinen, E. (2016) 'Key events and multimodality: A life course approach', *Transportation Research Part A: Policy and Practice*, 91(pp. 148-165)
- Smith, H.L. (2008) 'Advances in age-period-cohort analysis', Sociological Methods & Research, 36(3), pp. 287-296
- Streit, T., Allier, C.-E., Weiss, C., Chlond, B., Vortisch, P. (2015) 'Changes in variability and flexibility of individual travel in Germany: trends and drivers', *Transportation Research Record*, 2496(1), pp. 10-19
- Thompson, G., Hawkins, O., Dar, A., Taylor, M. (2012) 'Olympic Britain: Social and economic change since the 1908 and 1948 London Games', *Retrieved October*, 1(pp. 2014
- Van Wee, B. (2015) 'Peak car: The first signs of a shift towards ICT-based activities replacing travel? A discussion paper', *Transport Policy*, 42(pp. 1-3)
- Wray-Lake, L., Flanagan, C.A., Osgood, D.W. (2010) 'Examining trends in adolescent environmental attitudes, beliefs, and behaviors across three decades', *Environment and behavior*, 42(1), pp. 61-85
- Yang, Y. (2008) 'Social inequalities in happiness in the United States, 1972 to 2004: An age-periodcohort analysis', *American sociological review*, 73(2), pp. 204-226
- Yang, Y., Land, K.C. (2006) 'A mixed models approach to the age-period-cohort analysis of repeated cross-section surveys, with an application to data on trends in verbal test scores', *Sociological methodology*, 36(1), pp. 75-97
- Yang, Y., Land, K.C. (2016) Age-period-cohort analysis: New models, methods, and empirical applications. Chapman and Hall/CRC.
- Zhou, M., Wang, D. (2019) 'Investigating inter-generational changes in activity-travel behavior: a disaggregate approach', *Transportation*, 46(5), pp. 1643-1687