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The assessment of viscoelastic models for nonlinear soft materials

Rodrigo D. Solis-Ortega1, Abbas A. Dehghani-Sanij1 and Uriel Martinez-Hernandez2

Abstract— The increasing use of soft materials in robotics
applications requires the development of mathematical models
to describe their viscoelastic and nonlinear properties. The
traditional linear viscoelastic models are unable to describe
nonlinear strain-dependent behaviors. This limitation has been
addressed by implementing a piecewise linearization (PL) in
the simplest viscoelastic model, the Standard Linear Solid
(SLS). In this work, we aim to implement the PL in a more
complex model, the Wiechert model and compare the stress
response of both linearized models. Therefore, the experimental
data from the stress relaxation and tensile strength tests of
six rubber-based materials is used to approximate the spring
and dashpot constants of the SLS and the Wiechert model.
Prior to implement the PL into the stress-strain curve of each
material, the stress response from the Maxwell branches must
be subtracted from this curve. By using the parameters obtained
from fitting the Wiechert model into the stress relaxation curve,
the response of both linearized models was improved. Due to the
selection of constitutive equations evaluated, the linearized SLS
model described the stress-strain curve more accurately. Finally,
this work describes in details every step of the fitting process
and highlights the benefits of using linearization methods
to improve known models as an alternative of using highly
complex models to describe the mechanical properties of soft
materials.

I. INTRODUCTION

The implementation of soft materials in robotics appli-

cations has always been challenging [1]. This is the case

of elastomers that, commonly used in soft robotics, exhibit

nonlinear, time-dependent and history-dependent properties

which cannot be easily described by mathematical models.

However, the benefits provided by soft materials such as

energy storing, passive compliance and safe human-robot

interaction, have motivated their implementation in robotic

applications and the development of mathematical models

able to describe them [2].

In robotics applications for human assistance, mimicking

the human musculoskeletal system and its natural properties

of storing and releasing energy have motivated the inclusion

of elasticity into these applications. Series-elastic actuators

(SEAs) are commonly implemented to achieve the latter. The

addition of an elastic element between the actuator and the

load greatly simplifies the controller design. The deformation

of the elastic element can provide an indirect measurement

of the applied force to the load, essentially transforming a
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force-control problem into a displacement-control problem

[3]. Traditional SEAs use metallic springs, considered as

purely elastic. However, the human musculoskeletal system

exhibit viscoelastic behaviors. Viscoelasticity have proven

beneficial in these particular applications, in terms of energy

consumption and compliance, motivating the implementation

of viscoelastic (soft) materials in SEAs [4], [5], [6]. The

mechanical behavior of a rigid element as a spring can be

accurately described by known mathematical models. This

is not the case for soft materials which have nonlinear and

viscoelastic properties. The mentioned benefits can only be

fully exploited by developing a mathematical model able to

accurately describe the mechanical behavior of soft materials.

Substantial research is focused on developing new models

suitable for the latter task. The most accurate models are

mathematically complex and computationally expensive [7],

[8], [9]. Nonetheless, even these complex models cannot ac-

count for all the different factors which modify the materials

properties, such as the manufacturing process and internal

weakening of the material after being loaded for the first

time [10]. The latter highlights the difficulty of developing

mathematical models which account for both microscopic

and macroscopic aspects of the materials. This is why some

authors have opted for alternative methods for characterizing

a material, such as Finite Element Analysis.

In robotics applications, where the controller can com-

pensate the lack of accuracy in describing the controlled

plant, a simple and fairly accurate model is preferred over

very accurate and highly complex one. In line with this, the

work performed by Austin et al. modifies the viscoelastic

Standard Linear Solid (SLS) model by implementing a piece-

wise linearization (PL) which allows the model to account

for nonlinearities in the material and improve its accuracy

without highly increasing the model complexity [6], [11].

Whether the aim is to develop a highly accurate model or a

fairly accurate one, both approaches make use of the basic

linear viscoelastic models, illustrated in Fig. 1.

In this work, the analysis and comparison of two viscoelas-

tic models when describing the properties of soft materials

is presented. The PL described in the literature is applied to

the Standard Linear Solid (SLS) model and to the Wiechert

Fig. 1: Linear viscoelastic models. (a) Kelvin-Voigt. (b) Maxwell. (c)
Standard Linear Solid. (d) Burger. (e) Wiechert. k and η represent the
spring’s stiffness and the dashpot’s viscous constant, respectively [11].



model, a more complex version of the SLS model. The

potential benefits of implemented the PL in a more complex

model are of interest. In contrast with the available literature,

we use the stress relaxation test and the respective Wichert

model’s equation to characterize the spring stiffness k and

dashport viscous constant η of all the soft materials. Fol-

lowing the premise that any material can be fully described

with the Wiechert model, given enough Maxwell branches,

we find the optimal number of branches between the range

of 1 to 10 which better approximate each material. Prior

of implementing the PL on the models, we account for the

stress contribution of the Maxwell branches and remove it

from the tensile strength test data. This additional step greatly

improves the stress response of the models. Subsequently,

the strain-dependent stiffness is extracted from the stress-

strain curve by implementing the PL. Lastly, the constant

spring stiffness found in the traditional model is substituted

by the obtained strain-dependent stiffness and the models

stress response is evaluated.

II. METHODOLOGY

A. Viscoelastic Models

Rubber-based materials are known to have a nonlinear re-

lationship between the applied strain and the resulting stress,

as well as time-dependent and history-dependent properties.

The linear viscoelastic models, which are based on different

configurations of mechanical elements such as springs and

dashpots, (Fig. 1) can describe the latter properties. In these

models, the parameters of interest are the springs stiffness k
and the dashpots viscous constant η.

In particular, the SLS model is frequently used when

modeling viscoelastic materials, mainly due to its fairly

simple mathematical model and its ability to account for

creep and stress relaxation of the material (time-dependent

properties). Creep in a material refers to the change over

time of the strain under a constant stress. Similarly, the stress

relaxation of a material refers to the change over time of the

stress under a constant strain. The SLS model can be viewed

as a Maxwell model (also known as Maxwell branch) with

an extra spring connected in parallel.

The simplicity of the SLS model is also its main limitation.

Viscoelastic materials are known to have more than one

relaxation time, i.e. more than one Maxwell branch. In the

linear viscoelastic models, the relaxation time depends on

the viscous elements, i.e. dashpots. The Wiechert model,

which is essentially a SLS model with j Maxwell branches

is able to account for j relaxation times. The time-dependent

behavior of any viscoelastic material can be fully described

by this model, given enough numbers of elements. However,

the complexity of the model increases in proportion to

the number of extra branches. Mathematically, each extra

branch increases the derivative order of the model since

more equations are required to account for the extra variables

[12], [13]. Viscoelastic materials also have history-dependent

properties. The cross-linked molecular chains found in vis-

coelastic materials relocate when the material is deformed for

the first time. This process is known as the Mullins effect

which causes the material to permanently lose strength [10].

In addition to time-dependent and history-dependent prop-

erties, rubber-based materials also have a nonlinear stress-

strain relationship which is partially described by the linear

viscoelastic models. The relaxation time of the dashpots in

these models allows nonlinear stress responses to be de-

scribed. This is a time-dependent nonlinearity. Nonetheless,

viscoelastic materials also have a nonlinear strain-dependent

response which can be described by implementing the PL

proposed in [6], [11]. The spring in parallel with the other

elements, in both the SLS model and the Wiechert model,

is known as the equilibrium spring and its stiffness ke is

assumed constant. However, the stiffness ke of a material is

not constant and also depends on the material’s strain.

Early attempts of modeling a strain-dependent stress re-

sponse in viscoelastic materials are described by Schepel-

mann et al. in [6], where the stress-strain curve of a nonlinear

rubber spring is approximated with an exponential model.

In subsequent works, Austin et al. describes a piecewise

linear regression fitted to the stress-strain curve of a material.

The work is based on the SLS model. The slope of the

stress-strain curve represents the material’s Young Modulus

which is proportional to the materials’ stiffness. During a

tensile strength test the material is deformed at a constant

rate, i.e. the stress response of the viscous element is also

constant. Therefore, the observed nonlinearities in the stress-

strain curve are caused by the equilibrium spring. The

PL approximate the nonlinear behavior of the equilibrium

spring by considering it as several springs in parallel which

“engages” in sequence as the materials strain increases. This

is modeled by a summation of Heaviside functions centered

in the desired strain in which each of the mentioned springs

“engages” and contributes with the total stress response of

the material. In other words, the stress-strain curve of the

material is segmented in several sections which relates a

single stiffness to a strain range (Fig. 2).

B. Experimental work

In order to describe a viscoelastic material using the

above models, it is required to obtain the materials pa-

rameters from experimental data. The mechanical tests of

tensile strength (ASTM D412 [14]) and stress relaxation

(ASTM D6147 [15]) were performed for these soft materials:

ethylene polypropylene rubber (EPR), fluorocarbon rubber

(FR), nitrile rubber (NR), natural rubber (NatR), polyethy-

lene rubber (PR) and silicone rubber (SR). The samples

were obtained from a material sheet using laser cutting, a

Fig. 2: Left: Standard Linear Solid model with Strain-Dependent Stiffness.
Right: Piecewise linearization method [11]. This load-deformation (δ) curve
is proportional to a stress-strain curve.



Fig. 3: Typical stress relaxation curve. The parameters ke, k1 and η can be
obtained by analyzing three points in the curve: t = 0, t = τ , and t = ∞.

technology commonly used with rubber-based materials. All

the materials have a thickness of 1.5 mm, except for the

polyethylene rubber in which the thickness is 6 mm. All

tests were carried out using an Instron 3369 Dual Column

Testing System equipped with a 50 kN load cell.

In the tensile strength test, all the specimens were elon-

gated to failure at a deformation rate of 500 mm/min except

for silicon rubber and natural rubber which were elongated

at 50 mm/min. The machines gripper was unable to hold the

latter materials using the highest deformation rate.

During the stress relaxation test the materials were elon-

gated at a deformation rate of 500 mm/min until reaching a

predefined initial strain ǫ0. The initial strain ǫ0 for each ma-

terial was selected using its stress-strain curve, ensuring that

the strain value was within the elastic region of each material

(on average, less than 0.8 strain). The latter condition is to

avoid incorrect measurements caused by plastic deformations

in the material. The materials were held at ǫ0 for a period of

three hours. The duration of the experiment was taken from

similar experimental works on soft materials [10], [16]. Prior

to the actual model fitting, the obtained experimental data

from the five specimens per material was compiled into a

single dataset and subsequently smoothed using a weighted

second degree local regression in MATLAB.

C. Model fitting

The mathematical expression for the SLS model and the

Wiechert model can be simplified when considering a con-

stant strain input (stress relaxation test). This simplification

allows these models to be fitted into the stress relaxation

curve and to approximate the parameter of interest, k and η
[13]. The mathematical expression for the Wiechert model

under a constant strain input is given by:

σ(t) =

{

ke +
∑

j

kje
−t/τj

}

ǫ0 (1)

where σ is the stress at a given time, ke is the equilibrium

spring stiffness and ǫ0 is the initial strain. For the summation,

τj = ηj/kj is the relaxation time constant, kj and ηj are

the spring stiffness and viscous constant, respectively, of

the elements in the jth Maxwell branch. For the specific

case when j = 1, the resulting equation describes the

SLS model under a constant strain input. In this case, the

three parameters described in the SLS model: equilibrium

spring stiffness ke, dashpot viscous constant η and the spring

stiffness in the Maxwell branch k1, can be obtained from the

Fig. 4: Stress relaxation curve for Silicone Rubber. The number of branches
used in the Wiechert model fit is j = 10.

stress relaxation curve by analyzing three significant points:

t = 0, t = τ , and t = ∞ (Fig. 3). The longer the duration

of the test, the better the approximation of ke.

The process to extract the parameters of the Wiechert

model is more complicated due to its extra Maxwell

branches, i.e. there are more than three points in time to be

analyzed. These points can be selected using a collocation

technique [13], [17]. In the reviewed literature, the points of

interest are linearly scattered throughout the whole duration

of the stress relaxation curve. Nevertheless, the decaying

exponential term in Eq. 1 is better approximated by selecting

the points of interest using a logarithmic scale. This is

possible with the MATLAB function logspace which

spreads evenly the desired number of points between the

allowable decades. Supposing that a Wiechert model with six

branches, j = 6, wants to be fitted into a stress relaxation

curve with four decades of duration (t = 104 seconds). In

total it would be required seven points in time, one for each

branch and one for t = 0 (curve first point) which the

function textttlogspace spreads as evenly as possible. The

point t = 0 is required for a correction described in the

following paragraph. Let us focus in the branches. Each point

in time represents a time constant τj for which there is a

known stress σj from the experimental data. This can be

rearranged into an equation system of j equations with kj
as the unknown variable as described in [17].

Prior to this step, ke can be obtained using the equation

for σ(∞), defined for the SLS model (Fig. 3). Subsequently,

The Wiechert model in Eq. 1 can be completely described

by solving the mentioned system of equations. Finally, after

obtaining all the kj , the value of k1 is corrected, as described

in [13], by analyzing the point in time t = 0 (Fig. 3).

The previous process allows the wiechert model equation

to be fitted into the stress relaxation curve for a defined

number of branches j. However, to obtain the optimal

number of branches for each material, an iterative algorithm

to find the smallest root mean square error (RMSE) between

the Wiechert model response and the experimental data

after testing different number of branches in the range of

j = [1, 10] is implemented. The obtained optimal number

of branches for each material varied between the range

j = [8, 10]. A higher number of branches has a meaningless

improvement on the RMSE. Furthermore, beyond the number

of branches j = 20 the Wiechert model response shows

an oscillatory behavior, hence a higher RMSE. Having



obtained the parameters of interest for the SLS and the

Wiechert model, their stress response under a constant strain

is compared against the experimental data in Fig. 4. This

figure highlights the better accuracy delivered by the extra

Maxwell branches in the Wiechert model in comparison to

the simpler SLS model. As previously mentioned, Eq. 1 is

a simplification helpful to approximate the parameters of

both models but it is only applicable when the strain input

is constant. The mathematical expression for the Wiechert

model which describes the stress response under an unknown

strain input, also called the constitutive equation, is found in

[13]. Let us again consider j = 1 to obtain the constitutive

equation of the SLS model and transform it back to the time

domain as follows (for the detailed procedure refer to [13]):

σ̇ +
σ

τ1
= (ke + k1)ǫ̇+

keǫ

τ1
(2)

where ǫ, ǫ̇, and σ̇ are the strain, the strain rate and the

stress rate, respectively. Notice that the previous procedure

will yield into a higher derivative order equation when

applied to the Wiechert model due to its extra branches. A

higher number of branches will increase the model accuracy

at the cost of increasing its mathematical complexity. The

constitutive equation of a Wiechert model with j branches

would result in a j order differential equation similar to

Eq. 2. The aim of this work is to evaluate the performance

of the Wiechert model when the PL is implemented to it.

Therefore, solving a complex differential equation is out of

the scope. Nonetheless, the Wiechert model can be evaluated

by transforming it into a finite differences equation, as

explained in [13], yielding the following equation:

σt = keǫ
t +

∑

j

kj(ǫ
t
− ǫt−1) + σt−1

j
(

1 +
∆t

τj

) (3)

where the superscript t− 1 and t refers to values before and

after a small time step ∆t have passed. The response of the

two viscoelastic models of interest will be compared against

the experimental data from the tensile strength test.

The next step in the fitting process focuses on the tensile

strength test. It is worth noticing this test the strain rate is

constant, hence the resulting stress for both models (Fig. 1)

is dependent on both the equilibrium spring and the Maxwell

branches. At this stage of the model fitting, the parameters

of the Maxwell branches in both models are known and their

stress response can be calculated. The stress response of

the equilibrium spring (ke) can be isolated by subtracting

the stress response of the Maxwell branches to the stress

measured in the tensile strength test.

After isolating the stress response of ke, the final step in

the fitting process is to implement the PL to both models

and compare their response against the experimental data.

Firstly, the stress-strain curve from tensile strength test is

divided into n segments. As previously explained, ke is

considered as a group of parallel springs which “engage” as

the strain increases. This means, each subsequent stiffness

is a combination of the ones found in previous segments

of the stress-strain curve (Fig. 2). Lastly, a linear regression

is applied on the stress-strain curve for the desired n strain

segments to find the slope of the curve. This slope represents

the stiffness of the equilibrium spring in each segment. By

combining the n obtained stiffness, the stress response of the

strain-dependent stiffness k∗i is defined as follows:

σ∗ =

n
∑

i

k∗iHǫ−ǫi(ǫ− ǫi) (4)

where n is the desired number of strain intervals to fit, ǫi
represents the strain value at which the ith spring starts

contributing to the stress response, the Hǫ−ǫi is the Heaviside

or unitary step function centered at ǫi, i.e. the function output

goes from 0 to 1 when ǫ − ǫi = 0. By substituting Eq. 4

into Eq. 2, the Standard Linear Solid model with Strain-

Dependent Stiffness (SLSDS) is obtained [11], [6].

Linear viscoelastic models describe a nonlinear relation-

ship (decaying exponential time relaxation) between the

applied strain and the resulting stress in a material. However,

they only account for a linear stress response of the equilib-

rium spring. In reality, the relocation of internal molecular

chains causes viscoelastic materials to exhibit a nonlinear

and strain-dependent stress response. This can be solved by

implementing the PL into Eq. 3. The equilibrium spring

stiffness ke is replaced by the strain-dependent stiffness k∗i ,

yielding the linearized Wiechert model (PL-Wiechert) in

Eq. 5. Subsequently, the SLSDS model, found in [11] is

transformed into a finite difference equation, yielding Eq. 6.

σt = σ∗ +
∑

j

kj(ǫ
t
− ǫt−1) + σt−1

j
(

1 +
∆t

τj

) (5)

σt =
1

(

1 +
∆t

τ1

)

[

∆t

τ1
σ∗+(σ∗+k1)(ǫ

t
−ǫt−1)+σt−1

]

(6)

In this work, we call Eq. 6 the piecewise linearized SLS

(PL-SLS) model, differentiating it from the SLSDS model

found in the literature since we implemented the optimization

explained previously (stress response of Maxwell branches).

In summary, the experimental data from the stress relaxation

test was used to obtain the parameters in the Maxwell

branches of both models. The required number of branches

was different per material, ranging from j = 8 to j = 10. The

constitutive equation of the Wiechert model was expressed as

an equation of finite differences and subsequently linearized

to obtain Eq. 5 (PL-Wiechert). Similarly, the constitutive

equation of the SLS model (Eq. 2) was modified in the same

way, yielding Eq. 6 (PL-SLS).

III. RESULTS AND DISCUSSION

A. Analysis of the optimal number of strain segments

The amount of strain segments and their proper collocation

impacts on the PL method accuracy. In the work presented

by Austin et al. there is no explanation of the criteria

used to select the strain segments, only an illustration is



provided [11]. In this work, we use the variation of the

slope in the stress-strain curve as the selection criteria. We

developed an optimization algorithm to collocate a new

strain segment when the slope has varied outside a defined

tolerance boundary.

Having defined the selection criteria as the variation of the

slope, we tested different tolerance boundaries and observed

the relationship between the number of strain segments and:

1) the desired tolerance and 2) the achievable relative RMSE,

which is the absolute error divided by the mean value of the

stress-strain curve (Fig. 5). On one hand, the relationship

between the number of strain segments and the desired

tolerance is found to be exponential. On the other hand,

the achievable RMSE for both models, in general for all

materials, have minimum changes above a certain number

of strain segments.This highlights a design trade-off between

good accuracy and high computational load of the controller

due to the large number of strain segments.

The PL-SLS model benefits the most from the PL method.

It delivers a good accuracy even for small number of strain

segments (Fig. 5). In contrast, the accuracy of the PL-

Wiechert does not improve when using higher numbers of

strain segments. Moreover, in the cases for the SR and EPR

materials, the accuracy gets worse as the number of strain

segments increases (Fig. 5a and Fig. 5b).

The charts in Fig. 5 are useful to select a proper value

for the slope variation tolerance, taking into account the

previously mentioned trade-off. It can be appreciated that the

optimal tolerance is different for each material and dependent

on the application. For the sake of analyzing the effect of the

number of strain segments in the stress response of the PL-

SLS and the PL-Wiechert models we chose a tolerance value

of 20% and presented the models fit in Fig. 6.

B. Analysis of model fit accuracy

In general, the stress response from the PL-SLS model

outperforms the response from the PL-Wiechert model (Fig.

6). The PL-SLS model is able to accurately describe the

stress-response of all the soft materials. Furthermore, it is

able to achieve values of relative RMSE close to zero in four

of the six rubber-based materials tested (Fig. 5b, 5c, 5d, 5e).

The slightly higher relative RMSE for the SR (Fig. 5a) and

PR (Fig. 5f) materials might be caused by different factors,

such as the incorrect selection of the stress relaxation test

parameters, i.e. the initial strain ǫ0 and the test duration. The

PR material is unable to sustain high strains without suffering

plastic deformation, even with this taken into account, an

even smaller ǫ0 is recommended. Another factor could be

the time collocation method. The poor selection of the points

in time to analyze can affect the accuracy of the parameters

extracted. The logarithmic collocation approach used here

yielded a large number of branches required to describe the

material, which can cause the model response to oscillate.

In the case of the PL-Wiechert model, the very low

obtained accuracy might be caused by an essential difference

between Eq. 5 and Eq. 6. In the latter equation, the strain-

dependent stiffness k∗i interacts with the strain and the strain

(a) (b)

(c) (d)

(e) (f)
Fig. 5: Relationship of the desired tolerance between the number of strain
segments (blue bars), and the achievable rRMSE of the PL-SLS (solid red)
and the PL- Wiechert (solid green) models, for all the soft materials (a-f).

rate whereas in the former, k∗i only interacts with the strain.

This lack of interaction of k∗i in the PL-Wiechert allow the

abrupt step changes caused by the Heaviside function to

disrupt the model stress response (Fig. 6a, 6b, 6f).

Nonetheless, the main limitation of the PL-SLS model is

the inability to account the stress offset from the Maxwell

branches. This was solved using the parameters obtained

from the Wiechert model with j branches, ultimately im-

proving the stress response of the PL-SLS model. The PL-

Wiechert model response can be improved by using its

constitutive differential equation, similar to Eq. 2. Even in

its simplest form, i.e. j = 2 the resulting second order

differential equation might outperform the PL-SLS model

due to the fact that the strain dependent stiffness k∗i will

interact with different terms of the equation, providing that

transforming it into a finite differences equation does not add

extra complications.

IV. CONCLUSION

The experimental data obtained from the stress relaxation

tests of six soft materials was used to describe the parameters

of two mathematical models, the SLS and the Wiechert

model. Both models were fit into the stress relaxation curve

to extract their parameters. The fitting process for the SLS

model is straight forward and the simplicity of the model

yielded in a large RMSE. In contrast, the Wiechert model was

fitted using a time collocation technique which yielded in a

system of equations required to be solved to obtain all the



(a) (b)

(c) (d)

(e) (f)
Fig. 6: Comparison between the experimental data from the Tensile Strength
test and the Stress response of the PL-SLS (dashed red) and the PL-Wiechert
(solid green) models for all the soft materials (a-f). The number of strain
segments required to meet the slope variation tolerance of 20% for each
material are EPR=20, FR=37, NatR=88, NR=73, PR=455 and SR=33.

model parameters. In addition, an optimization algorithm was

implemented to obtain the right amount of Maxwell branches

required to minimize the RMSE. The optimal number of

branches varies from one material to the other in the range

of j = [8, 10]. The stress response of the optimal number of

Maxwell branches was subtracted from the tensile strength

test data. This step allowed the piecewise linearization

to better approximate the strain-dependent stiffness of the

equilibrium spring. Due to the lack of explicit information

regarding the PL method implementation [11], an algorithm

to locate the strain segments for the PL method using the

variation of the slope of the stress-strain curve as the se-

lection criteria, was developed. The relationship between the

previous tolerance with the achievable relative RMSE and the

number of strain segments was obtained (Fig. 5). These set of

charts have the potential to be used as design guidelines when

using the reported soft materials in robotic applications, since

they highlight the trade-off between achievable accuracy and

computational cost. The PL method was implemented into

the linear viscoelastic models, obtaining the PL-Wiechert

and PL-SLS models. These models were transformed into

finite differences equations to evaluate their stress response.

The obtained results demonstrated the great accuracy of

the PL-SLS in describing the stress-strain curve of six soft

materials. In contrast, implementing the PL method into

a more complex viscoelastic model such as the Wiechert

model, did not meet the expectations. The latter is due to

an essential difference between Eq. 5 and Eq. 6. In the

latter equation, k∗i interacts with the strain and the strain

rate whereas in the former, k∗i only interacts with the strain.

This lack of interaction allows the abrupt step changes

caused by the Heaviside function to disturb the PL-Wiechert

model response. In future works, we plan to explore the

implementation of the PL method to the differential equation

of the Wiechert model. Finally, The PL method is able to

approximate complex viscoelastic and non-linear behaviors

in soft materials using the linear viscoelastic models.
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