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Abstract

We present a novel approach to obtaining dynamic nonlinear models using ge-
netic programming (GP) for the model predictive control (MPC) of the indoor
temperatures of buildings. Currently, the large-scale adoption of MPC in build-
ings is economically unviable due to the time and cost involved in the design
and tuning of predictive models by expert control engineers. We show that
GP is able to automate this process, and have performed open-loop system
identification over the data produced by an industry grade building simulator.
The simulated building was subject to an amplitude modulated pseudo-random
binary sequence (APRBS), which allows the collected data to be sufficiently in-
formative to capture the underlying system dynamics under relevant operating
conditions.

In this initial report, we detail how we employed GP to construct the predict-
ive model for MPC for heating a single-zone building in simulation, and report
results of using this model for controlling the internal environmental conditions
of the simulated single-zone building. We conclude that GP shows great prom-
ise for producing models that allow the MPC of building to achieve the desired
temperature band in a single zone space.

Keywords: Genetic Programming, Dynamic Non-Linear System
Identification, Model Predictive Control, Building Energy Management

1. Introduction

Model predictive control (MPC)[1] is a powerful control methodology well-
suited to systems in which there is an appreciable delay between an input being
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applied and any observable response, and which may also have control con-
straints; large (non-domestic) buildings are among such systems. Central to
MPC is a predictive model of the dynamics of the system being controlled.
Given a prediction horizon extending some number of discrete time steps into
the future, the controller optimises the sequence of future inputs by minimising
some objective function. Typically, this objective comprises a weighted sum
over the prediction horizon of the deviations from a desired setpoint together
with the control effort, the magnitudes of the control changes. This latter term
is designed to penalise rapid switching of the input and hence minimise actuator
wear. At every time step, the future input sequence is optimised, the first of
this input sequence applied to the system and the whole process repeated at the
next time step. This forever advancing prediction interval gives the technique
its alternative name of receding horizon control.

Although MPC has been widely employed in the chemical process industries,
where it had its origins, applications to buildings are currently only at the
research stage – see, for example, Rockett and Hathway [2] for a review. Critical
to MPC, whatever its domain of application, is the performance of the predictive
model.

The generally superior climate control of MPC in buildings compared to
conventional rule-based approaches appears to offer the potential for significant
energy savings – maybe up to 25% [2] – and makes buildings MPC worth pur-
suing in order to reduce CO2 emissions and to improve internal environmental
quality. However, at a roundtable discussion at a workshop on MPC in build-
ings held in Montréal in 2011, Henze [3] noted attendees estimated 70% of total
costs for MPC implementation were consumed by the creation and calibration
of the predictive model that lies at the heart of MPC. In fact, this figure agrees
with the 75% often quoted by the wider process-control community [4]. Tra-
ditionally, such models are produced by extensive fine-tuning by highly skilled
control engineers. Although the high cost of predictive model creation may be
tolerable in the highly-capital intensive environment of petrochemicals, Rockett
and Hathway [2] have pointed out that such high costs currently make MPC
economically unviable for the control of buildings. It is, therefore, critical for
the economic uptake of MPC in buildings to create predictive models of the
system dynamics using machine learning-based methods that can learn from
data obtained from the building in operation rather than be hand-crafted by
experts. Further, the characteristics of buildings change over time, either due
to changes in use, internal alterations, or indeed external factors, such as the
erection/demolition of adjacent buildings that change the solar gains or façade
wind pressures on the building under control. Such changes will change the dy-
namics of the building and necessitate a recalibration of the predictive model in
order to maintain optimised control. Rapid and low-cost recalibration without
human intervention is thus also essential to maximise the ongoing benefits of
MPC in buildings.

Buildings are widely acknowledged to exhibit non-linear dynamics and there-
fore require a non-linear predictive model. For example, in the situation de-
scribed in the present paper (see Section 3.2), the heat transfer from a conven-
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tional hydronic radiator to the room space is non-linear [5, 6]; the solar energy
entering a building via a window was found to be non-linear function of incident
radiation by Sturzenegger et al. [7]. The problem of formulating a non-linear
predictive model has been discussed in a seminal paper by Sjöberg et al. [8].
Assuming sampling at discrete, equally-spaced time steps, the one-step-ahead
(OSA) prediction ŷk+1 of a dynamical system at time (k + 1) is given by:

ŷk+1 = f(uk,uk−1, . . . ,uk−n, yk, yk−1, . . . , yk−m) (1)

where u is a vector of inputs, or so-called exogenous variables. The problem is
to identify i) f , the non-linear function, ii) the value of n dictating how many of
the previous inputs need to be considered, and iii) the value of m, the number of
previous (autoregressive) outputs to be included. The sets of delayed variables
{uk,uk−1, . . . ,uk−n} and {yk, yk−1, . . . , yk−m} are usually termed lag sets and
compactly incorporate the ‘inertia’ of the controlled system. To implement MPC
we generally need a model that produces a set of accurate future predictions
over the so-called prediction horizon, that is, N time steps into the future.

In principal, the search for f in (1) is over the set of all possible functions, but
in practice f is often restricted to families, such as Volterra functions or neural
networks [9]. Identification of the lag sets (i.e. the best combination of values
of n and m) is typically performed iteratively in a manner highly dependent on
the expertise of a control engineer.

Neural networks (NNs) have been widely used for nonlinear dynamic system
identification. In order to enhance the accuracy while minimising the model
size, an architectural refinement stage is often required. For instance, NeuroE-
volution of Augmenting Topologies (NEAT) [10] uses a genetic algorithm (GA)
to evolve both model structure and the associated parameters of neural network
models.

A further consideration with Volterra approximators and, especially, neural
networks is the large number of parameters that have to be estimated dur-
ing training, which implies a requirement for a large amount of training data.
Moreover, with reference to (1), while training NNs can approximate the func-
tion f , determining the lag sets specified by n and m usually requires the em-
bedding of the NN training within some global search for the network inputs
determined by n,m, the so-called feature selection problem, i.e. a search prob-
lem embedded within another search problem.

To address the challenge specified by (1), an increasing number of researchers
have applied genetic programming (GP) to nonlinear dynamic systems identi-
fication problems [11, 12] due to the advantage of being able to automatic-
ally optimize both model structure and its parameters simultaneously during
evolution. Basic GP, however, has often been used to evolve the function f

either as a simple regression problem (i.e. without the autoregressive terms
yk, yk−1, . . . , yk−m), or using pre-defined lags sets, that is, pre-specification of n
and m in (1).

Rodŕıguez-Vázquez and Fleming [13] used GP to identify a number of dy-
namical systems. Grosman and Lewin [11] used GP to generate an empirical
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dynamic model of a process, a mixing tank, and then applied it in a nonlin-
ear model predictive control (NMPC) strategy. The results show that the GP
method provided significantly better regulatory and servo performance than
more traditional control approaches. Recently, Feng et al. [12] also investig-
ated the performance of GP on non-linear dynamical systems and NMPC, and
claimed that a GP based predictive controller can obtain satisfactory perform-
ance.

In the model training stage, however, Rodŕıguez-Vázquez and Fleming, Gros-
man and Lewin [11], and Feng et al. [12] employed user-specified, pre-determined
lag sets, which are normally very time-consuming to determine manually in
practical applications.

Hinchliffe and Willis [14] also used GP to evolve discrete-time models of
dynamic processes, however, evolution of the appropriate lag set of input vari-
ables was included by adding unary back-shift (i.e. time lag) operators to the
GP’s function set. The experimental results suggest that the performance of
GP shows little difference with filter-based neural networks in terms of model
accuracy on an extruder case study. The significant point in Hinchliffe and
Willis’ [14] work is that their GP formulation is not only able to approximate
model structure (f), but also construct appropriate lag sets and not require
their pre-specification.

Taking advantage of the fact that the Hinchliffe and Willis GP scheme is able
to evolve both model structure and lag sets automatically during the evolution
process, in this paper, we describe the use of genetic programming for creating
the dynamic model necessary for buildings MPC. We believe this to be the first
report of the demonstration of buildings MPC using learned GP models. As is
common in the control field, we have considered a system simulation in order
to rapidly and comprehensively explore the issues involved.

To further underscore the advance made in this paper, it is worth briefly re-
viewing the process currently used for constructing a grey-box predictive mod-
els of buildings. Following the much-cited paper by Hazyuk et al. [6], typically
analogous resistor-capacitor (RC) linear networks comprising various numbers
of R’s and C’s, each network representing the different physical elements (walls,
floors, rooves, etc), are manually assembled from expert knowledge of the build-
ing. This overall composite RC network is combined with injected heat gains
from the heating system, solar radiation through windows, etc. (modelled as
voltage or current sources) to produce an overall state-space model. It is im-
portant to note that the heating and solar inputs are non-linear functions of
their controllable variables. For example, energy transfer from a hydronic ra-
diator is a non-linear function of the mean water temperature in the radiator
– see [6] for details. Having hand-assembled a model structure, it is necessary
to identify the model’s parameter values, a task which is generally regarded as
“difficult” [6, p.385], and requires input/output response data from the building;
this process is typically performed using non-linear least-squares fitting. Unfor-
tunately, parameter identification is sometimes problematic due to unidentifi-

ability – the inability to sufficiently accurately determine a parameter’s value
due to numerical deficiencies of the model [15]. Overcoming unidentifiability re-
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quires judicious modifications to the model followed by re-estimation until the
conditions for identifiability are met. At that point, the calibrated model can
be validated against data from the building independent of that used for para-
meter calibration; if the predictive ability of the model is insufficient, the whole
process is iterated until a satisfactory model structure is found. The amount
of highly-skilled human intervention at every stage of this process directly mo-
tivates the automation of the construction of predictive models to render MPC
economically-viable for buildings. A credible route to this automation is the
principal contribution of the present paper.

In Section 2, we describe genetic programming for modelling dynamical sys-
tems and give an example for a benchmark problem from the chemical engineer-
ing literature. We describe the building control methodology we have used in
Section 3 together with the procedures necessary for successfully identifying a
predictive GP model of the test building. In Section 4 we report typical results
of the performance of the predictive GP model as well as the performance of the
model predictive control scheme. In this paper, we present only representative,
typical results and defer detailed discussion of parameter settings, etc. to a
future publication. We do, however, consider these issues together with future
work in Section 5. We conclude the paper with Section 6.

2. Genetic Programming

Inspired by biological evolution processes, evolutionary algorithms (EA)
solve problems by applying the theory of natural selection to a population of
individuals with the expectation of evolving fitter models. Genetic algorithms
(GA) are one class of EA. Basically, a GA consists of a reproductive strategy
for generating offspring with better fitness using the principal genetic operators
of crossover and mutation. GP is a subset or an extension of GA. The essential
principles of GA and GP are similar although solutions in GP are expressed as
programs with hierarchical tree structures, which consist of pre-specified func-
tional and terminal nodes. This flexible tree structure provides a dynamic and
variable representation. A typical example of such a GP tree is shown in Fig-
ure 1, and its functional expression is given in (2).

y(k) = (−yk−1) + (0.2 ∗ (−uk−1)) (2)

Generally, evolutionary algorithms can be classified into two different types:
steady-state and generational. In steady-state evolution, one (or two) offspring
are produced at each step and appended to the population; the population size
is then reduced down to its original size by removing the weakest one (or two)
individuals. (In fact, the term ‘steady-state’ is a misnomer – quasi-steady state
would be more accurate.) In generational algorithms, on the other hand, a whole
new child population is produced by repeated selection from a parent population
before the child population is swapped to become the parent population and the
process repeated. In this paper, steady-state GP is used since this appears
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Figure 1: Simple example GP tree.

to yield superior search results [16]. The following algorithm describes the
evolution process of a typical steady-state GP.

• Step 1: Population initialization

In GP, candidates in the initial population are randomly generated. The
process of creating random trees can be implemented in different ways [17],
but two simple methods (the ‘full’ and ‘grow’ strategies [17]) are extens-
ively used. In the ‘full’ method, the initial trees are created up to a pre-
defined maximum depth; the depth of a GP tree is the minimum number
of edges that need to be traversed to reach the deepest leaf starting from
the tree’s root node. Trees are generated by randomly selecting nodes from
the function set until all the leaves reach the maximum tree depth. In the
‘grow’ method, trees are created with more diverse structures with some
probability of terminating tree growth before reaching the depth limit.

In order to initialize the population of trees with a variety of shapes and
sizes, Koza [18] proposed a ramped half-and-half method where half the
initial population is created using the ‘full’ method and half using the
‘grow’ method. In the present work, we have used this ramped half-and-

half method for population initialization.

• Step 2: Fitness evaluation

The performance of each tree is evaluated with a fitness function, which
is used for estimating how well a solution performs on the given problem.
Then the population is sorted according to fitness value. Solutions with
higher ranks are more likely to be selected as parent trees to breed child
candidates in the evolution process.

• Step 3: Offspring generation

At each iteration, two GP trees are selected as parents. Two main genetic
operations, crossover and mutation, are then applied to produce new off-
spring solutions. Specifically, the crossover operator randomly selects a
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crossover point in each parent tree. The child trees are then generated by
crossing over and splicing together the two trees at the selected crossover
points between two parent trees, as illustrated in Figure 2.

The mutation operation modifies a GP tree by randomly selecting a muta-
tion point in a tree, and then replacing it with a new, randomly-generated
subtree, as illustrated in Figure 3. After crossover and mutation, the fit-
ness values of the newly generated offspring are evaluated. The population
is then re-ranked after the appending the offspring solutions and the two
least-fit individuals deleted to return the population to its original size.

Figure 2: Example of subtree crossover.

• Step 4: Process termination

The above procedures are iterated from step 2 to step 3 until user-specified
termination conditions are met; here we have used a fixed number of
iterations.

One of the fundamental problems of GP is bloat – the inexorable growth in
tree size with no accompanying improvement in fitness. The use of multiobject-
ive optimization in GP, however, can reduce the effects of bloat by providing a
selective pressure that favours smaller models – so-called parsimony pressure. In
order to generate compact and accurate models, we have used the twin fitness
measures of tree size (number of tree nodes) and mean squared error (MSE)
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Figure 3: Example of subtree mutation.

over the dataset as two non-commensurable objectives. The Pareto dominance
based ranking scheme [19] was used to rank the individuals in the population.
A fitness vector a = (a1, ..., ap) is said to dominate b = (b1, ..., bp) if and only if
a is partially less than b, i.e., a ≺ b ∀i : ai ≤ bi ∧ ∃i ∈ 1, ..., p : ai < bi; in our
case the fitness vectors are the 2-vectors with node count and MSE as elements.
During the evolution process, trees with higher ranks have bigger probabilities
of being selected as parent trees to produce child candidates, and at the end of
the run the population comprises a set of individuals which trades-off compact-
ness against goodness of fit (small MSE) to the training data. Typically, this
final population spans the spectrum of small individuals with large MSE values
(underfitted models) through to large models with small MSE values (overfitted
models). We select a single, final model as the one which has the smallest MSE
over a validation set independent to the training set.

The performance of GP on nonlinear dynamic system identification was first
evaluated on a benchmark chemical engineering process, the Eaton-Rawlings
reactor model in the following section. Having demonstrated satisfactory per-
formance on this task, GP was applied to finding a dynamical model of the test
building for MPC.

2.1. Identification of the Eaton-Rawlings Reactor

There have been many reports in recent years exploiting the potential of GP
for system identification, particularly in chemical engineering applications [20].
In order to assess the suitability of GP for nonlinear dynamic system identifica-
tion, one-step-head (OSA) prediction of a well-known benchmark chemical pro-
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cess, the Eaton-Rawlings reactor model, was investigated. The Eaton-Rawlings
model [21] describes a second-order reaction occurring in an isothermal continu-
ous stirred-tank reactor (CSTR). The dynamics of this reactor are expressed by
the first-order, nonlinear ordinary differential equation

dy

dt
= −hy2 −

yu

V
+

du

V
(3)

where y is the concentration in the CSTR, h is the kinetic rate constant for
the reaction, V is the reactor volume, and d is the inlet concentration of the
reactant. The manipulated variable u is the inlet flow rate.

If the manipulated input u is assumed to change only at regular sampling
instants tk, an exact discretisation is easily derived from the continuous-time
equation; see [21] for full details.

y(k) =
[1− τ(k − 1)µ(k − 1)]y(k − 1) + 2dτ(k − 1)µ(k − 1)

1 + τ(k − 1)[y(k − 1) + µ(k − 1)]
(4)

where

τ(k − 1) =
tanh [hT

√

µ2(k − 1) + 2dµ(k − 1)]
√

µ2(k − 1) + 2dµ(k − 1)
(5)

µ(k − 1) =
u(k − 1)

2hV
(6)

In this experiment, h was 1.50 litre/mole-hr, V was 10.51 litre, d was
3.5 mole/litre [21]. The inputs uk were a sequence of steps of uniformly-
distributed random amplitudes ranging from 0.5 to 5.0 litres per hour with
a switching probability of 1.0. This input sequence was used to perturb the
reactor model (4).

To facilitate direct comparison with previous, conventional modelling ap-
proaches, we have followed the procedure in Pearson [21] and generated 100
statistically-independent training sequences, each of length P = 200. The re-
actor responses to these input sequences were calculated according to the dis-
cretisation formula (4).

The performance of a GP solution was ranked by two objectives: tree size and
the MSE. The parameter settings for the GP evolution are described in Table 1;
for the identification of the Eaton-Rawlings model, we used GP constants in the
range [0.0 . . . 1.0].

In each GP experiment, a set of solutions was obtained after training from
which the candidate with the smallest MSE over a validation dataset was finally
selected as the best model for this run. Thus, after 100 independent training
processes, the best GP model with the smallest validation MSE among the
selected 100 trees was picked as the best overall solution. The best GP model
selected had a validation MSE of 0.000121458.

We made quantitative comparison with the model – a nonlinear autoregress-
ive moving average model with exogenous inputs (NARMAX) – that exhib-
ited the best performance compared to other hand-tuned model structures and
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Table 1: Evolutionary parameters used for the Eaton-Rawlings reactor system identification

Parameter Value

Population size 100
Evolution strategy Steady state
Initialization method Ramped half-and-half
Maximum tree depth in initialization 6
Maximum number of tree evaluations 20000
Function set +, −, ×, Analytic quotient [22]
Terminal set Input variables; constants in

range {0.1, 0.2, . . . , 0.9, 1.0}
or {0.1, 0.2, . . . , 1.9, 2.0} – see text.

Crossover frequency 1.0
Mutation frequency 1.0
Fitness measures Tree size and MSE
Selection method Pareto ranking

lags studied by Pearson [21]; the same training datasets were used to train the
NARMAX models by minimising the mean squared error metric (8) using the
NLopt nonlinear optimization library2. The best NARMAX model [21] is given
by:

y(k) = y0 + α y(k − 1) + β u(k − 1) + γ u(k − 1) y(k − 1) (7)

where y0, α, β, and γ are unknown parameters to be determined by minimizing
the objective function, and Q is the length of the training sequence:

J(y0, α, β, γ) =

Q−1
∑

k=1

[ŷ(k + 1)− y(k + 1)]2 (8)

where ŷ(k+1) is the one step ahead predicted value at time k, and the y(k+1)
is the measured value at time k + 1.

The best validation MSE of the NARMAX models was 0.000120801, nearly
equal to the value of obtained from the best GP tree. The residuals – the
differences between the true and predicted values – of the best NARMAX and
GP models over the corresponding validation sets are shown in Figure 4 from
which it can be seen that the GP tree exhibits comparable model accuracy to the
best NARMAX model. The residuals of the NARMAX model show a number of
negative spikes lower than -0.02, with the absolute value of the biggest residual
around 0.04. The GP model shows two significant positive spikes, but with most
of the residuals lying in a small range around zero.

The encouraging approximation ability of the GP model on the benchmark
Eaton-Rawlings problem suggests that GP is suitable for more general nonlinear

2https://nlopt.readthedocs.io/en/latest/
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dynamic system identification problems. Particularly, GP does not require the
functional form of the model to be pre-specified – rather, this evolves during
training. This advantage makes GP a potential technique for identifying a wide
range of real world, nonlinear dynamic systems for which the underlying physical
principles are not known.

Figure 4: Test residual comparison between the NARMAX model and the best GP model

3. Building Control Methodology

In this section, we describe the procedures employed for the MPC of build-
ings using predictive models obtained through a GP-based system identification.
Figure 5 depicts the components of the simulation system used in this work. We
used an industry-grade simulator for building physics, described in Section 3.1,
to simulate the responses of a test building. This simulator provides a standard-
ised interface – the Functional Mockup Interface (FMI) [23] – that allows the
interconnection of external software units – see Section 3.1. We used this facility
for two separate tasks: first, for the open-loop collection of system identification
(SID) data detailed in Section 3.3, and second for the simulation of the build-
ing under model-predictive control, as explained in Section 3.6. In Section 3.5,
we describe how we employed GP using the collected SID data to obtain the
required predictive models for MPC.
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Figure 5: Overview of the process employed in this work for MPC. The mass flow rate (MFR)
of hot water through the radiator, external temperature Tout, the sum of direct and diffuse
solar radiation Qsolar and zone temperature y are communicated to/from the EnergyPlus
simulator via functional mock-up interfaces (FMIs).

3.1. Building Simulator – EnergyPlus

EnergyPlus is a building energy simulator used to model energy consumption
based on dynamic heat transfer calculations [24]. The description of the building
is provided to EnergyPlus as a text file – the input data file (IDF) – that
follows a prescribed format. The file controls all aspects of the simulation from
the building geometry and fabric to the building services and other simulation
parameters, such as occupancy.

The (key) influence of the external weather is incorporated into the building
simulation using a separate file containing weather data, a so-called weather file.
This allows repeating the computations under different climatic conditions. In
this work, we have used design weather files generated from UK meteorological
data collected at a station located in Manchester, UK. Two different weather
files, both containing one year’s data, were used in this work: the training and
validation datasets were extracted from the first weather file, while the second
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file was used to test the model for a whole unbroken year.
EnergyPlus supports Functional Mock-up Interfaces (FMIs) [23], a stand-

ardised interface for coupling software units for co-simulation. These software
units can add a variety of functionalities to the simulation and are referred to
as ‘slaves’. The main simulator – EnergyPlus in our case – is referred to as
the ‘master’. In practice, the FMI defines a set of C language function proto-
types that need to be implemented by the slave unit. The master will then call
these functions at appropriate times during the simulation to perform various
operations, such as send data, perform calculations, read data, etc. Here we
make two distinct uses of the FMI functionality (see Figure 5): first, we inject
an excitation sequence to perform open-loop system identification (described in
Section 3.3). Referring to Figure 5, the mass flow rate (MFR) to the heating
radiator is varied, and the external temperature (Tout), sum of the direct and
diffuse solar radiation (Qsolar) and zone temperature (y) are logged at every
time sampling interval. Second, having trained the GP models on the system
identification data collected in the previous step, we used FMIs to control the
building’s heating during model predictive control experiments (described in
Section 3.6). Again referring to Figure 5, here under MPC control, the current
environmental conditions (Tout, Qsolar and y) are acquired from the EnergyPlus
simulation via FMIs, the optimal MFR control value calculated externally tak-
ing into account the heating schedule, and this optimal MFR applied at the
next time step update.

3.2. Test Building Description

For this initial report of implementing MPC using a learned dynamic model,
we developed a single zone space with a conventional hydronic radiator supplied
by a boiler producing water at a fixed output temperature of 67 °C. The heating
system was sized using EnergyPlus which determined the maximum flow of hot
water through the radiator to be 0.11 kg/s. The simulated test building is
illustrated in Figure 6. The zone is a square room with dimensions of 10 m ×
10 m and a height of 3 m. All four walls contain one double glazed window unit
measuring 2 m × 2 m with a sill height of 0.5 m, and placed at the centre of
the external walls. This design has a window-to-wall ratio of 13% with equal
exposure to North, East, South and West directions. The single zone space
has been set to be located in Manchester, UK, which has an oceanic climate
(Köppen classification = Cfb) and classified as ASHRAE (American Society of
Heating, Refrigeration and Air Conditioning Engineers) climate zone 5c. The
construction sets and internal gains for this climate recommended by ASHRAE
Standard 189.1 [25] were considered for this space to make sure a realistic set of
inputs was defined in the building model for estimating the internally-generated
heat as well as the heat loss from the façades.

We have used a setpoint temperature of 20 °C during occupied (working)
hours of 9am to 5pm. Outside those hours, the schedule specified that the zone
temperature was ≥ 6 °C to ensure frost protection. For the present set up, we
have used this schedule for seven days a week to gather as much data about the
the MPC operation as possible.
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The airflow through the space consists of infiltration (0.00023 m3/s per m2

of exterior surface) and a ventilation rate of 10 l/s per person in accordance
with the Chartered Institute of Building Services Engineers (CIBSE) Guide
A [26]. The occupancy density was 0.0565 persons/m2, the default value for
office buildings in EnergyPlus based on the ASHRAE 189.1 2009 standard. Heat
gains from people, lighting and electrical equipment were also incorporated in
a schedule.

Figure 6: SketchUp representation of the simulated building

3.3. Open-loop System Identification

The design of appropriate excitation signals for collecting identification data
is the most crucial step in system identification as the gathered data are required
to be informative enough to capture the underlying system dynamics under
all relevant operating conditions while for practical reasons, the duration of
the SID experiments should be as short as possible to minimise disruption.
Mathematically, the amplitude of the excitation signal should cover the full
range so as to maximise the power of the excitation signal and thus the signal-
to-noise ratio; the spectrum of the input signal should excite all frequencies of
interest.

For linear systems, pseudo-random binary sequences (PRBSs) [27] are com-
monly used for system identification. In a PRBS, the signal switches between
two fixed amplitudes in such a way that that the autocorrelation function of
the sequence approximates the properties of white noise, and hence excites all
modes of the system. For nonlinear systems – such as that under consideration
here – switching between two fixed amplitudes cannot capture the nonlinear
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behaviour [9], and so we have employed amplitude modulated pseudo random

binary sequences (APRBSs) [9] in which the amplitude of a conventional PRBS
is randomly varied, thereby probing the nonlinear characteristics of the system.

A PRBS sequence was generated using linear feedback shift registers where
the length of the excitation sequence is controlled by a characteristic polynomial
of some degree n, and where each polynomial coefficient was either 0 or 1. The
maximum repetition period is given by (n2 − 1) (i.e. the maximum length of
the sequence before it starts to repeat itself). The consecutive occurrence of the
same bit is referred to as a plateau. We employed the polynomial x7 + x6 + 1,
resulting in a sequence length of 127 bits with 64 plateaux, depicted in Fig-
ure 7(a). The interval between the minimum and maximum radiator flows (0.00
to 0.11 kg/s) was divided by the number of plateaux in the PRBS resulting in a
set of different amplitude levels, which were randomly assigned to the PRBS’s
plateaux, thereby generating the APRBS [9]; an example sequence is shown in
Figure 7(b). The process of randomly assigning amplitude levels to the PRBS
plateaux was repeated to obtain a set of different excitation sequences. Note
that each repetition of the process is likely to generate a completely different
APRBS cycle, as seen in Figures 7(b-c).

Figure 7: A PRBS-7 sequence (a) and two different examples of APRBS-7 cycles (b-c) gener-
ated over a minimum-to–maximum flow amplitude range of 0.0 to 0.11 kg/s.

In addition to the characteristic polynomial and the interval of the input
sequence, an APRBS is specified by a minimum hold-time Th, that is the dura-
tion of each bit; Nelles [9] suggests that the minimum hold-time should be the
same as the dominant time constant of the process. In our case, the only input
that can be excited is the mass flow rate through the radiator so we estimated
the dominant time constant as approximately 30 minutes by applying a step
excitation to the simulated zone. As a consequence, a single APRBS-7 cycle
takes around 3,810 minutes (about 2.6 days), as depicted in Figure 7.
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3.4. Input selection

In system identification, the selection of model inputs is key to model ac-
curacy. Too many redundant or irrelevant input variables hampers the search
while increasing the computational burden. Conversely, if input variables of
significant influence are omitted, the model will have systematic errors and be
more likely have poor prediction accuracy. The input and output variables used
in this paper are listed in Table 2. Full details of the input selection criteria and
experiments will be published elsewhere, but, in brief, we performed a sensitiv-
ity analysis over the set of weather variables with respect to predictive accuracy
leaving us with Tout andQsolar as the most influential; the mass flow rate (MFR)
is, of course, the manipulated variable and y the predicted zone temperature.
All the variables were scaled so as to have the training values falling in the range
0 to 1. The scaling factors used are listed in Table 2.

Table 2: Variables used in the system identification model

Variable Variable name Type Scaling

factor

Tout Outdoor Air Drybulb Temperature (°C) Input 21.0
Qsolar Sum of Direct and Diffuse Solar Input 839.8

Radiation (W/m2)
MFR System Node Mass Flow Rate (kg/s) Input 0.11
y Zone Air Temperature (°C) Output 21.0

3.5. Genetic Programming for Building Identification

• Training & validation

A dynamical predictive GP model was developed based on an EnergyPlus
simulation model and the open-loop excitation data (see Section 3.3). Two
different weather files were employed: One weather file, denoted TRY, com-
prising 365 days and 35,040 samples, was used to generate data for model
training and validation (model selection). The other dataset, denoted DSY

and of the same size, was used for estimating the model generalisation
and prediction accuracy. A particular challenge with this MPC applica-
tion is that weather conditions play a very important role in determining
the internal temperatures of the building but they cannot be experiment-
ally perturbed in the same way as the radiator MFR variable. We have
thus used two weather files to allow an evaluation of performance over a
complete year independent of the training/validation data.

Since the (approximate) time constant of the simulated building is ∼30
minutes, the sampling interval for the MPC was set at half this figure,
namely 15 minutes. The selected input variables (see Section 3.4) were
sampled every 15 minutes for training, validation and testing of the GP
models and the MPC process predicts temperatures on this interval.
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Given a GP model f , at time k the prediction of the zone temperature
ŷ(k+i) at time (k + i) is approximated from:

ŷ(k+i) = f(uk+i−1,uk+i−2, ...,uk,uk−1, . . . ,

ŷ(k+i−1), ŷ(k+i−2), . . . , yk, yk−1, . . .) (9)

where i ranges from 1 to N , the length of the prediction horizon, and u are
the indexed sequence of exogenous input vectors. In this experiment, a u

vector consisted of three variables: Tout, Qsolar, and MFR – see Table 2.
The zone temperature y is the predicted variable.

In the training phase, all the input and output information is known since
u consists of measured values determined by the APRBS excitation se-
quence (Section 3.3) and the known weather data; the zone temperatures
up to and including the current time k are also known. For multi-step
ahead prediction, the required autoregressive values later than time k use
previously predicted values from a series of one-step ahead predictions.
For example, at time k, ŷ(k+1) = f(. . . , yk, yk−1, . . . , yk−m). To predict
two steps ahead, ŷ(k+2) = f(. . . , ŷ(k+1), yk, yk−1, . . .). Note the use of a
predicted zone temperature ŷ(k+1) at time (k+2) since when the model is
used in its ultimate control application, the actual value y(k+1) will be un-
known as it lies in the future – it therefore has to be estimated. Similarly,
the prediction three steps ahead ŷ(k+2) uses both ŷ(k+1) and ŷ(k+2), and
so on. Previously predicted values are used ∀i ∈ [1 . . . N ], as necessary.

Two objectives are used to measure the performance of candidate models
during evolution: tree size and MSE. The tree size indicates the complexity
of a GP model, and provides parsimony selection pressure that favours
simpler models during the evolutionary process. We also seek to minimise
the MSE over the training dataset by:

MSE =

∑P

k=k′

∑N

i=1[ŷ(k+i) − y(k+i)]
2

[P −max(n,m)]×N
(10)

where N is the length of the prediction horizon, and P is the largest index
on the training dataset used. Since we require the GP model to provide
accurate predictions over the whole prediction horizon, minimising (10)
provides a selective evolutionary pressure to achieve this. The values of
upper limit on the outer summation and the normalising term in (10) re-
quires some clarification: Suppose we have Q records of available training
data. To train a model that predicts N steps ahead, the final N records of
the dataset can only be used for evaluating (10) – the index k cannot ex-
ceed (Q−N). Similarly, for an autoregressive model with n lagged u values
and m lagged y values, the first max(n,m) records of the training set are
needed to calculate the very first prediction. Consequently, k′, the lower
limit on the outer summation in (10), cannot be less that [max(n,m)+1].
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In summary, the MSE in (10) is calculated over (Q−N)− [max(n,m)−1]
consecutive records. (Conventionally, the lower limit of this outer sum-
mation is taken as k = 1 and any lagged inputs with (strictly) negative k

indices are taken as zero. We have not used this approach here as, in our
experience, this sometimes produces anomalous transient predictions.)

The detailed GP parameter settings for building identification were
identical to those shown in Table 1, except we have used constants in
the range [0.0 . . . 2.0].

• Exporting the Selected GP Tree

After model validation, the best GP model was selected for use in the En-
ergyPlus MPC framework. Rather than the cumbersome inconvenience of
embedding the GP training within the MPC framework, we have exported
the trained GP model using the Genetic Programming Markup Language
(GPML) [28]. GPML is an XML-based standard for the interchange of
genetic programming trees. The implementations of reading and writing
GPML are simple and straightforward since a number of mature, open
source XML libraries are available. A trained-and-validated GP tree can
thus be directly embedded as a ‘plug-in’ component using GPML in larger
systems, which provides both convenience and modularity.

3.6. MPC Test Framework

Based on the model f in (1) approximated with a GP as described in Sec-
tions 3.3 - 3.5, a control law could, in principle, be obtained as the inverse of f –
that is a mapping from desired states to the necessary inputs. However, as f is
dynamic and nonlinear, calculating its inverse is not a trivial task. The altern-
ative is to perform an explicit optimisation at the current time k of the set of
values Uk = {uk,u(k+1), . . . ,u(k+N−1)} using f , where N is the prediction ho-
rizon, and adjusting Uk to yield the desired sequence of setpoint temperatures.
Thus we obtain Uk from:

Uk = argmin
N∑

i=1

J(k + i) (11)

where N is the length of the prediction horizon. Since the (approximate) time
constant of the building’s response was determined to be 30 minutes, and the
MPC sampling interval was 15 minutes, we adopted a value of N = 12 giving a
prediction horizon of 3 hours.

The function J is defined as:

J(k + i) = (∆Tk+i)
2

︸ ︷︷ ︸
temperature

+λ0 |∆Uk+i|
︸ ︷︷ ︸

control effort

+λ1uk+i
︸ ︷︷ ︸
energy

(12)

where ∆Tk+i = ŷ(k+i) − r(k+i) is the difference between the predicted ŷ(k+i)

and setpoint (i.e. desired) r(k+i) temperatures at time k + i, and ∆Uk+i =
uk+i − uk+i−1 is the control effort. The first term in (12) obviously penalises
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deviation from the desired setpoint temperature, while the second term seeks to
minimise the extent of changes in the control variable; such a term is frequently
included in an MPC setup to minimise wear on the system’s actuators.

The third term in (12) seeks to minimise the sum of the input quantity, which
in the present case is a proxy for input energy. We found it necessary to include
this term in (12) to ensure that heating was turned off outside working hours
when the constraint on the setpoint temperature was relaxed to simply being
>6 °C to ensure frost protection. Unless this explicit energy minimisation term
was included, (11) could be minimised by maintaining the zone temperature at
20 °C – obviously, >6 °C – but setting the sum of the magnitudes of the control
efforts (|∆U |) to zero. That is, not turning off heating at the end of the working
day thereby undesirably maintaining heating during the night.

Note that the second and third terms in (12) are weighted by the regularisa-
tion constants λ0 and λ1, which place differing relative penalties on each of the
three factors in (12). The values of λ0 and λ1 were determined by grid search
with the aim of maximising their values subject to acceptable temperature reg-
ulation. Predictions of zone temperature ŷ(k+i) are calculated using the GP
model described in Section 3.5.

One notable point is that in the training process, the weather variables Tout

and Qsolar are always assumed known, and for which we have used measured
values. During the validation and test phases, however, the practical use of the
model means that future values of Tout and Qsolar are unknown. Consequently,
we have used persistent predictions for future (as yet unknown) weather vari-
ables. Namely, the value of the weather variable at time k is assumed to persist
unchanged for the whole of the current prediction horizon. Persistent weather
prediction is known to be reasonably accurate over the short-term [29, 30] while
having the advantage of being simple to implement.

The minimisation in (11) was performed using an implementation of the
nonlinear, derivative-free optimiser COBYLA [31] together with the Multi-Level
Single-Linkage (MLSL) procedure [32, 33] from the NLopt nonlinear optimiza-
tion library3. Although MPC has the advantage of being able to straightfor-
wardly incorporate constraints on the solution, in the present work we have used
no such constraints.

The detailed MPC optimisation parameter settings for building testing are
shown in the Table 3.

4. Results

In Section 4.1 we describe the results of training the GP predictive model
using the open-loop system identification data produced using the procedure set-
out in Section 3.3. Section 4.2 presents the control results from using the trained
GP predictive models in an MPC controller to regulate the zone temperature
of the building model described in Section 3.2.

3https://nlopt.readthedocs.io/en/latest/
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Table 3: MPC optimisation parameters used in this work.

Category Parameter Value

MPC Prediction horizon N 12 steps

MLSL (global)
Population size 4
Maximum number of evaluations 131,072
Stop when objective value less than 0.001

COBYLA (local)
Maximum number of evaluations 8,192
Stop when objective value less than 0.001

Fitness function
λ0 10.0
λ1 10.0

4.1. GP Model Training

We conducted thirty GP training runs, each with an independent initial
population, using the open-loop system identification data generated with the
procedures described in Section 3.3 to obtain 30 individual models with the
best validation set MSE per run. Among these, the model with the smallest
validation MSE overall was finally selected as the best model. January’s data
(2,880 records) were used as the training dataset and February’s data as val-
idation dataset. Typically, the CPU runtime of each independent experiment
takes ∼400 s (on a given computer with 3.30 GHz CPU).

The residuals (i.e. errors) for each of the i-step ahead predictions (i ∈
[1 . . . N ]) measured over the 12-month independent test set for the best GP
model are shown in Figure 8. Here we are assessing the important performance
measure of whether the model produces sufficiently accurate predictions over
the whole (test) year, and does not, for example, erroneously demand heating
of the building in the middle of summer.

From Figure 8, residuals of the one step ahead prediction fall into range from
-1.25 to 1.75 °C; even in the summer months (June to August) , most residuals
are below 1.5 °C. Unsurprisingly, as the predictions extend further into the
future, the envelope of residuals expands although only slightly. In addition, a
distinct seasonal ‘bow’ becomes more noticeable with increasing i value.

Our choice of the metric in (10) was deliberately designed to give equal
weight to the prediction errors over the whole prediction horizon. In 12-step-
ahead prediction, residuals in January, February, March, November and Decem-
ber range from -2 to 2.5 °C. Residuals in the months such as May, June, July
and August reach their highest values of 4 °C and with an average lower bound
of 0 °C error. After increasing during summer, the sizes of the residuals decrease
later in the year. In summary, the GP model provides promising predicted tem-
peratures: the magnitudes of the residuals expand with increasing prediction
step size i with the biggest residual less than 4 °C. The best model presented in
GPML form can be found at:

https://figshare.com/articles/gpTreeConstantWFInVall_xml/7398797
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Figure 8: Residuals (predicted - actual zone temperatures in °C) of the selected GP model
over the test dataset for different future predictions. Each plot shows the residuals for a given
number of steps ahead – for example, “OSA” = 1-step head, “2SA”= 2-steps ahead, etc. The
units of the ordinate axes are Celsius.
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4.2. MPC Performance

Figure 9 shows a typical result of controlling the test building during the
month of February (from the 32nd to 59th day of the test year) using the MPC
framework from Section 3. The test weather data are independent of the data
used to train/validate the predictive model. The reference value r(k+i) was
set to match 20 °C during working hours (9:00 to 17:00). To achieve frost
protection out-of-hours, the reference value was set at ≥ 6 °C. That is, we only
apply a temperature penalty out-of-hours if the temperature falls below the
frost-protection reference value. Formally, ∆T(k+i) out-of-hours is defined as:

∆T(k+i) =

{

ŷ(k+i) − r(k+i) if ŷ(k+i) < r(k+i).

0 otherwise.
(13)

As described in Section 3.6, we have predicted future (unknown) weather
values using persistence, that is, assuming the variable has the same value over
the whole of the prediction horizon as it does at the start.

The upper plot in Figure 9 shows the zone temperatures, and also a ±1 °C
range during working hours (dotted lines). The lower plot shows the MFR
control variable (hot water flow through the radiator).

From Figure 9, it is clear that zone temperatures are mostly being main-
tained within the ±1 °C band during working hours. A noteworthy feature of
the MFR control variable is that it varies fairly smoothly over the day, and is
being reduced to small values towards the ends of the working days; we infer
that MPC is exploiting the energy stored in the building’s fabric to maintain
the setpoint temperature up to the end of the working day, thereby avoiding
direct heating, if possible, which may lead to energy savings.

Considering the thermal performance of MPC, it successfully maintained the
zone temperature within the ±1 °C range for 83.3% and ±2 °C for 95.2% of the
(working) time. The 1 °C band is generally deemed comfortable, with a small
proportion (less than a quarter) of occupants feeling mildly uncomfortable at
the extremes of the 2 °C band [26]. Although there will be some discomfort for
the short periods outside these bands that fall at either end of the working day,
these are rare.

5. Discussion and Future Work

As stated above, scope of this paper is to present what we believe to be the
first report of buildings MPC using a predictive model learned data acquired
from the building. Our aim here has been to present and document the meth-
odology we have used although a great deal of work remains to be done both in
terms of ‘fine tuning’ this, and in extending it. One area that does needs to be
explicitly discussed is comparator methods. Since the GP-controller regulates
the zone temperature generally within a highly satisfactory ± 1 °C, and exhib-
its no instances of overheating and therefore wasted energy, the only reasonable
basis for comparison is the ease/cost of generation of the predictive model –
see [2]. As pointed out in Section 1, we are aware of no comparable technique
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Figure 9: Typical results of MPC controlling a single-zone room for the (test) month of February. The upper plot is the zone temperature, and the
lower plot the mass flow rate (MFR) controlled variable. The rectangular upper plot represents the temperature schedule. The dotted lines represent
the temperature schedule together with a ± 1 °C tolerance band shown during occupied hours (9am to 5pm).
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with which to make direct comparison, and in which both the structure of the
predictive model and the composition of the lag sets are simultaneously iden-
tified. In all other applicable techniques of which we are aware, the search
over possible model forms would need to be embedded within a search over all
possible lag sets (feature selection). The GP approach used here thus repres-
ents a robust and simple automated workflow for practical application of MPC
with few ‘tuning’ parameters; further GP tends to be fairly robust to its tuning
parameters.

We can identify a number of interwoven topics that will be the subject of
future work, and will be published elsewhere.

Although we have reported only one instance of a predictive model trained
on 30 days open-loop excitation data, optimisation of the training process clearly
needs to be explored systematically. Although the test residuals shown in Fig-
ure 8 are clearly adequate to produce acceptable control, as evidenced by Fig-
ure 9, the model residuals exhibit a noticeable seasonal effect – an upward ‘bow-
ing’ in the middle of the plots. In the summer months, the actual temperatures
are systematically somewhat higher than those predicted by the model, but in
the present application with only heating of the building, this turns out not to
make a great difference since heating is not necessary in the summer months.
For a more complicated building, however, that includes cooling as well as heat-
ing, these seasonal effects may produce unacceptable conditions although for a
combined heating/cooling system, the SID procedure would obviously also need
to include excitation of both heating and cooling. Consequently, improving the
model quality is therefore clearly an area for future work, and a number of
factors need to be examined.

The duration of the open-loop excitation experiment: Although we report
only data for 30 days of system identification, it seems possible to train ad-
equate models with shorter data sequences than this. The trade-off between the
length of the SID experiment and model quality needs to be explored. Naively,
one would expect model quality to improve with longer SID sequences (= more
training data), but extending the system identification experiment has implica-
tions for both the amount of energy used during SID as well as the practicality
of conducting the experiment.

In terms of practical application, we have established that acceptable pre-
dictive models can be trained on data accumulated over 30 days. Ideally, this
SID timescale needs to be shortened to be more compatible with current build-
ing project schedules, and to be integrated with existing commissioning/testing
regimes for the heating system. One potential area of future work is to use
a much shorter SID duration and form the predictive model using consensus
prediction over multiple models [34] as has been widely used in meteorology,
econometrics, etc.

For the sake of simplicity, we have assumed persistent weather predictions.
That is, we assume the weather inputs have the same values over the entirety
of the prediction horizon as they do at the start of the prediction horizon.
Persistence is known to be acceptable in the short term, but it is possible that
more elaborate methods [35] may give improved results, especially for larger
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buildings that mandate longer prediction horizons. In particular, short-term
weather predictions are widely available online and an avenue of future research
is to examine the effect of replacing the assumption of persistence with more
sophisticated predictions.

The length of the prediction horizon has been chosen to be around six times
the characteristic time constant of the building (although the step response of
the building is clearly not a first-order characteristic). The trade-offs inherent
in selecting a prediction horizon are well-known in the MPC literature [1]: a
longer horizon allows a more relaxed planning timeframe and tends to avoid
overly aggressive control moves, while producing more uncertain predictions due
to the length of time into the future over which they are being made. Shorter
prediction horizons face the converse issues. Systematic examination of setting
the prediction horizon in the context of buildings is therefore warranted.

The MPC framework we have reported uses the rather conventional objective
of penalising deviation from a setpoint, in this case zone temperature, together
with an appropriately weighted term to minimise control effort (a proxy for ac-
tuator wear). In addition, we have included a term designed to minimise energy
consumption over the prediction horizon, this latter term proving necessary for
proper operation out of working hours. Clearly the regularisation constants
(here denoted λ0 and λ1) will have an influence on the control although quite
how significant these will be also needs to be investigated.

Such a regularisation framework has been commonly used in previously pub-
lished reports on buildings MPC [2], and appears to have been adopted straight-
forwardly from its widespread use in chemical engineering and related industrial
applications of MPC. In process engineering, of course, it is frequently import-
ant to maintain some optimal process temperature to maximise product yield,
etc. Maintaining zone temperatures within a small band, however, is gener-
ally unnecessary in buildings. Indeed relaxing the temperature constraints on
a zone can have beneficial energy-saving advantages. More generally, tuning
regularisation constants is known to be problematic and time-consuming, and
to a large extent, a conventional regularisation framework militates against our
overall objective of automating implementation of MPC in buildings in order to
make it economically viable. Consequently, alternative minimisation objective
functions may well be more appropriate in a building setting. For example,
minimising energy usage (over the prediction horizon) subject to the explicit
optimisation constraints of maintaining zone temperatures within, say, a ±2 °C
band.

The system identification experiments reported here involve open-loop ex-
citation of the building. It is well-known that open-loop excitation can drive the
system’s states to extremes since there is no feedback control to prevent this.
Apart from potentially consuming significant amounts of energy, performing
an open-loop system identification experiment on an occupied building would
probably be unacceptable. Indeed, it is highly likely that the occupants would
take atypical actions, such as opening windows and doors, to make the internal
conditions more acceptable to themselves, thereby undermining the validity of
the system identification data. Rockett and Hathway [2] have already sugges-
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ted closed-loop system identification as a way of addressing the shortcomings of
open-loop identification for periodic recalibration of the controller: closed-loop
identification [36] maintains the system under control using an initial predict-
ive model while typically applying small perturbations to the desired setpoint
from which an improved, control-capable model can be derived. This process of
closed-loop re-estimation can, of course be repeated periodically as-and-when
the building’s characteristics change. Closed-loop recalibration of MPC’s pre-
dictive model is clearly an area for future work where issues such as: the neces-
sary excitation sequence and the sensitivity of the re-estimation procedure need
to be explored.

The work presented in the paper has demonstrated successful MPC im-
plementation over a single-zone building. Clearly extension to multiple-zone
buildings is an obvious area of future work, where the necessary SID procedures
will need to accommodate multiple, interacting thermal zones.

Finally, although the work presented here has been done in simulation – as is
very common in the initial steps of a control project – the ultimate proof of the
methodology is to demonstrate its use on a real building. This too is currently
work in progress.

6. Conclusions

In this paper, we have reported the first use of genetic programming to
obtain predictive models for the model predictive control (MPC) of internal
building temperatures. Currently, the large-scale adoption of MPC in buildings
is rendered uneconomic by the time and cost involved in the design and tuning of
predictive models by expert control engineers. We have shown that GP is able to
automate this process using an open-loop excitation experiment. The resulting
MPC simulation is able to maintain the internal temperature of a single-zone
test building to within ±1 °C of the desired setpoint most of the time; we further
infer that MPC is able to effectively exploit the heat stored in the building’s
fabric towards the end of a working day rather than applying direct heating.
The results in this paper have significant implications for enabling the wide-scale
deployment of MPC in non-domestic buildings, and for the potential reduction
in CO2 emissions by improving the efficiency of building operation.
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