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ABSTRACT 

Dense (1-x)wt%CaSnSiO5-xwt%K2MoO4 (CSSO-KMO) composite ceramics were fabricated 

by the cold sintering process at 180 °C under 400 MPa for 60 min. X-ray diffraction, Energy 

dispersive X-ray and Raman spectroscopy confirmed that CSSO and KMO coexisted without 

intermediate phases. As KMO weight fraction increased, relative permittivity (εr) and 

temperature coefficient of resonant frequency (τf) decreased and the microwave quality factor 

(Q×f, where f is resonant frequency) increased. Near-zero τf (-0.5 ppm/°C) was obtained for 

65wt%CSSO-35wt%KMO with εr ~ 9.2 and Q×f ~ 6240 GHz.  No chemical reaction 

between ceramic composites and silver was observed, demonstrating potential for cofiring 

with Ag-paste. A prototype antenna was fabricated from 65wt%CSSO-35wt%KMO 

composite ceramic with a bandwidth of 144 MHz @ -10 dB, a gain of 5.7 dBi and a total 

efficiency of 88.4% at 5.2 GHz, suitable for 5G mobile communication systems. 

 

Keywords: microwave dielectric, cold sintering process, microstrip patch antenna 

 

 

 

mailto:kxsong@hdu.edu.cn


INTRODUCTION 

Microwave dielectric ceramics are commonly used in communication systems in 

components such as antennas, duplexers, resonators and substrates [1,2]. With the development 

fifth-generation technology for cellular networks (5G), faster and more reliable broadband 

access is required with larger capacity and shorter transmission response time (delay less than 

1ms). To reduce the signal delay of the system, it is necessary to optimize the signal 

transmission response mode, system structure and physical hardware. The propagation speed 

of electromagnetic waves is inversely proportional to the relative permittivity (εr) and low εr 

values minimize the cross-coupling between air and dielectrics for 5G applications. At the 

same time, high microwave quality factor (Q×f, where f is the resonant frequency) improves 

selectivity and energy transmission, and near zero temperature coefficient of resonant 

frequency (τf) maintains temperature stability of components in operation [3-10]. 

Temperature-stable silicates such as Ca2Al2SiO7 
[11], Y3MgAl3SiO12 

[12], Mg2SiO4 
[13] and 

(Sr,Ba)Y2Si3O10 
[14] with low εr (4~15) and high Q×f (20000~240000 GHz) have therefore, 

attracted attention as candidates for 5G applications. However, silicate-based ceramics are 

conventionally sintered at high temperatures (> 1200 °C), consuming energy and releasing 

carbon. The cold sintering process (CSP) can densify ceramics and composites at ultralow 

temperatures (< 200 °C), temperatures that not only reduce carbon emissions but also 

facilitate direct deposition onto printed circuit boards [15-27].  

CaSnSiO5 (CSSO) is conventionally sintered at 1450 °C with εr  ~ 10.9, τf  ~ 35 ppm/°C, 

Q×f ~ 43600 GHz [28,29]
 and is therefore, an ideal base to begin the search for cold sintered 

silicates. However, initial cold sintering studies of CSSO were unsuccessful and hence, 

following work by Wang and co-workers [26,27], K2MoO4 (KMO) was used as a fluxing agent 

to encourage densification and to tune τf to near zero. The microstructure, Ag compatibility 

and microwave dielectric properties of CSSO-KMO composites were therefore, investigated 

followed by the design, fabrication and testing of a prototype microstrip patch antenna on 

substrates made from optimum compositions. 

 

 



EXPERIMENTAL SECTION 

(1-x)wt%CSSO-xwt%KMO (x = 20, 30, 35, 40, 50, 60, 70, 80, 90 and 100) composite 

ceramics were prepared by CSP. CSSO powder was synthesized by a traditional 

high-temperature solid-state method. The raw materials, CaCO3 (Acros Organics, 99.99%), 

SiO2 (Acros Organics, 99.99%) and SnO2 (Acros Organics, 99.99%) were weighed according 

to the stoichiometric ratio of CaCO3: SiO2: SnO2 = 1:1:1, and then planetary ball-milled 4 

hours in isopropanol. The mixed powders were dried and calcined at 1450 °C for 4 hours to 

synthesize the CSSO powders. To obtain fine and uniform CSSO powders, the calcined 

CSSO powders were re-milled 4 hours, dried, and then sieved using a 48 μm Nylon screen. 

CSSO and KMO (Alfa Aesar, > 99%) powders were weighed and mixed with ~15% 

deionized water. CSSO-KMO composite ceramics were obtained by hot-pressing mixed 

powders in a 12 mm die at 180 °C for 60 min under a uniaxial pressure of 400 MPa, after 

which samples were placed in an oven at 120 °C for 24 hours to remove residual moisture. 

Furthermore, in order to reveal the chemical compatibility, a Heraeus LTC3602 low 

temperature Ag paste was printed between two green pellets, and then cofired by cold 

sintering to form a sandwich structure. 

 

The geometric method was used to calculate the bulk density of composite ceramics 

[30-32]. X-ray powder diffraction (XRD, D2 Phaser, Bruker) using CuKα radiation was 

employed to identify crystal structure and phase composition. Scanning electron microscope 

(SEM, Inspect F50, FEI) equipped with energy dispersive spectroscopy (EDS) was used to 

examine the microstructure on the polished surface and cross section of composite ceramics. 

Raman spectra were collected at room temperature using a Raman spectrometer (LabRAM 

HR800) excited with an Ar+ laser (514.5 nm). Temperature and frequency dependence of r 

was measured using an Agilent 4294A impedance analyzer from room temperature to 250 °C. 

Impedance spectroscopy was performed using an Agilent E4980A impedance AC analyzer 

from 20 to 106 Hz. A vector network analyzer (R3767CH, Advantest Corporation, Tokyo, 

Japan) was measured the microwave properties of the composite ceramics by the TE01δ 

dielectric resonator method. The cavity was heated by Peltier device and the resonance 



frequency (f) was measured in the range from 25 to 85 °C. The following formula was used to 

obtain the corresponding τf value: 

                                           (1) 

where fT0 and fT represent f at T0 (25 °C) and T (85 °C), respectively. 

 

RESULTS AND DISCUSSION 

Fig. 1 shows the XRD patterns of synthesized CSSO powder, KMO raw powder and 

cold-sintered CSSO-KMO composites. Both CSSO (space group A2/a, JCPDS No.86-0928) 

and KMO (space group C12/m1, JCPDS No.29-1021) have monoclinic a structure [26-29]. All 

diffraction peaks in the XRD patterns belong to CSSO and KMO with no peaks from impurity 

phases detected. The intensity of KMO peaks increases as a function of its weight fraction. 

 

Figure 1. Room-temperature XRD patterns of (1-x)CSSO-xKMO composite ceramics 

fabricated by CSP, and CSSO powder synthesized by solid state reaction. 

 

Fig. 2 displays the Raman spectra of cold-sintered (1-x)CSSO-xKMO composite 

ceramics at room temperature. According to group theory and irreducible representation, 

CSSO and KMO have 45 and 39 different vibration modes, respectively. 

ΓCSSO= 9Ag + 11Au + 12Bg + 13Bu    (2) 



ΓKMO = 13Ag + 7Au + 8Bg + 11Bu    (3) 

The main Raman bands of CSSO are located at 135, 175, 295, 323, 363, 443, 510, 572 and 

740 cm-1, which are attributed to bending modes of the Ca-O bond (135, 175 and 295 cm-1), 

[SiO4]4- modes (443 and 510 cm-1) and [SnO6]- polyhedral modes (323, 363, 572 and 740 cm-1) 

[33,34]. For KMO, Raman bands of 100 ~ 160 cm-1 are attributed to translations and vibrations 

modes of MoO4 tetrahedra and translations of K+, bands at 310 ~ 370 cm-1 belong to bending 

modes of MoO4 tetrahedra and modes at 820 ~ 890 cm-1 are assigned to stretching modes 

of MoO4 tetrahedra [35,36]. As KMO concentration increases, the intensity of KMO Raman 

modes increases (as marked in orange frame) and all data except the end-members remains 

consistent with a two-phase mix with CSSO. 

 

Figure 2. Raman spectra of (1-x)CSSO-xKMO composite ceramics. 

 

Fig. 3(a) presents the SEM images of cold-sintered 70wt%CSSO-30wt%KMO 

composite ceramics. EDS spectra showed the elongated needle or sheet-shaped radial grains 

belong to KMO (indexed triangle shape), and the aggregated grains are CSSO (indexed circle 

shape). To verify the compatibility of cold-sintered (1-x)CSSO-xKMO composite ceramics 

with Ag electrodes, Ag powder was cold-sintered with 65wt%CSSO-35wt%KMO powder, 

Fig.3(b). The white area is the Ag electrode layer, which has a clean interface with 



CSSO-KMO ceramic particles. EDS line scans suggest that there is no interact between Ag 

and CSSO-KMO composite, Fig. 4(c), indicating good chemical compatibility with Ag 

electrode. 

 

Figure 3. (a) SEM and EDS of etched polished surface of 70wt%CSSO-30wt%KMO sample 

(Triangle KMO, Circle CSSO); (b) SEM of the cross section of 65wt%CSSO-35wt%KMO 

sample co-sintered with silver, and (c) EDS elemental line. 

 

The relative density (ρr) and microwave dielectric properties of (1-x)CSSO-xKMO 

composite ceramics as a function of KMO weight fraction are plotted in Fig. 4. ρr increases 

from 89% for 80wt%CSSO-20wt%KMO to near 100% for KMO. εr and τf decrease linearly 

as KMO weight fraction increases, while Q×f increases, Table 1. Near-zero τf (-0.5 ppm/°C) 

was obtained for 65wt%CSSO-35wt%KMO composites with εr ~ 9.168 and Q×f ~ 6240 GHz. 

According to the XRD, Raman and EDS, there are no chemical interactions between the two 

phases. Thus, the effective εr can be estimated by the Lichtenecker mixing law [37]: 

parallel mixing law, ε = V1 ε1 + V2 ε2   (4) 

series mixing law, 1/ε = V1 /ε1 + V2 /ε2       (5) 

logarithmic mixing law,  21
2 22 11 1= . ., lg lg lgv v i e V V          (6) 

where ε1 and ε2 are the dielectric constants of phase 1 and phase 2, respectively. V1 and V2 (V1 

+ V2 = 1) are the volume fractions of phase 1 and phase 2 respectively. From Fig. 4(b), εr of 

(1-x)CSSO-xKMO composite ceramics is less than the calculated value of equation (4), larger 

than the calculated value of equation (5), and close to that obtained using equation (6), which 

shows that εr follows the logarithmic mixing law. τf may be predicted according to parallel 

mixing rules,  



τf  = V1τf1 + V2τf2                                                                                       (7)                          

where τf1 and τf2 correspond to the τf of phase 1 and phase 2, respectively, as presented in Fig. 

4(c). 

 

Figure 4. Microwave dielectric properties of (1-x)CSSO-xKMO composite ceramics as a wt 

fraction of KMO. 

Table 1 Sintering temperature (ST), relative density (ρr), and microwave dielectric properties 

of (1-x)CSSO-xKMO ceramics.  

Composition ST(℃) ρr(%) εr Q×f (GHz) τf (ppm/℃) 

CaSnSiO5 1450 95 10.9 43600 +35 

20wt%K2MoO4 180 89 9.78 2792 +22 

30wt%K2MoO4 180 93 9.24 5484 +5 

35wt%K2MoO4 180 95 9.17 6240 -0.5 

40wt%K2MoO4 180 98 8.82 6576 -9.9 

50wt%K2MoO4 180 99 8.38 6831 -18 

60wt%K2MoO4 180 99 8.04 7628 -30 

70wt%K2MoO4 180 99 7.52 8004 -44 



80wt%K2MoO4 180 100 7.12 9343 -54 

90wt%K2MoO4 180 100 6.76 11395 -62 

K2MoO4 150 100 6.37 18266 -70 

 

Fig. 5 shows the temperature dependence of εr for 65wt%CSSO-35wt%KMO measured 

from 10 kHz to 1 MHz. εr is stable from room temperature to 250 °C, as shown in Fig. 7a, 

indicating no phase transition in this temperature range but decreases with increase in 

frequency as space charge contributions diminish (Fig. 5b). At room temperature, εr @ 1MHz 

is 10.8, close to the value at microwave frequencies in Table 1 (9.17).  

 

Figure 5. (a) Temperature dependence, (b) Frequency dependence of εr for 65wt%CSSO- 

35wt%KMO ceramic. 

 

Room temperature EIS of 65wt%CSSO- 35wt%KMO is shown in Fig. 6. The complex 

impedance is divided into real part ( Z' ) and imaginary part ( Z'' ) and is expressed by the 

following formula. 

R
Z= ' ''
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where ω is angular frequency. From Fig. 7(a), the observed non-perfect semicircle is equal to 

the sum of two smaller semicircles, corresponding to two Debye peaks in frequency 



dependence of Z" and M", Fig. 6(b), which indicates at least two electrical components. The 

extracted capacitances of these two components are 2.6×10-12 F cm-1 and 1.7×10-12 F cm-1 for 

component 1 and 2, respectively. The complex microstructure of the CSSO – KMO make 

attributing the components to a specific part of the microstructure difficult but the low 

temperature, low frequency response is consistent with the space-charge contribution 

observed in the LCR data, Figure 5, which decreases with increasing frequency and is absent 

in MW measurements, Figure 4. 

                     Figure 6. (a) Z* plot, and (b) Frequency dependence of Z" and M" for 65wt%CSSO- 

35wt%KMO ceramic. 

 

A 5G prototype microstrip patch antenna (MSPA) with a center operating frequency of 

5.2 GHz was designed and fabricated using the 65wt%CSSO-35wt%KMO ceramic as a 

substrate. The radiation element (the patch) and the ground plane was made of adhesive 

copper tape. The patch had the dimensions of 11.71 mm x 11.55 mm and the feed point was 

3.75 mm away from the patch edge. A semi-rigid coaxial cable (RG405) was used for 

providing the probe feeding. The thickness of 65wt%CSSO-35wt%KMO ceramic substrate 

was 1.45 mm. The fabricated MSPA is shown in the inset pattern of Fig. 7(a).  

The measured and simulated S11 result is shown in Fig. 7(a), indicating a good 

agreement between the measurement and simulation. The MSPA also shows the good 

impedance match, with a -10 dB bandwidth of 144 MHz. The MSPA was measured in a 

Spherical Near-Field anechoic chamber. The measured radiation patterns at 5.2 GHz at two 

principle cut planes: magnetic plane (H-plane) and electric plane (E-plane) are shown in Fig. 



7(b) and Fig. 7(d), respectively, compared with simulated results. Good agreement between 

simulation and measurement is observed. The measured antenna gain, directivity and total 

efficiency (including the impedance mismatch) are shown in Fig. 7(c). The MSPA has an 

antenna gain of 5.7 dBi and total efficiency of 88.4% at 5.2 GHz. The far-field performance 

suggests that 65wt%CSSO-35wt%KMO is a good candidate for antenna applications.  

 

Figure 7. (a) Measured S11 result of MSPA, compared with the simulation; (c) Measured 

far-field performance of the MSPA; Radiation patterns of the MSPA at (b) H-plane, (d) 

E-plane. 

 

CONCLUSIONS 

(1-x)CSSO-xKMO microwave composite ceramics with 89%-100% relative density 

were successfully fabricated by CSP (180 °C, 60 min and 400 MPa). SEM showed that the 

composite ceramics had a dense microstructure. XRD, EDS and Raman spectra identified two 

discrete phases of CSSO and KMO, with no chemical interaction. With increasing weight 

fraction of KMO, εr and τf decreased, while Q×f increased. A near-zero τf ~ -0.5 ppm/°C was 

obtained in 65wt%CSSO-35wt%KMO with εr ~ 9.17 and Q×f ~ 6240 GHz. εr was stable 

from room temperature to 250 °C but decreased in respect to frequency, consistent with a low 



temperature, low frequency space charge contribution observed in EIS data. CSSO-KMO 

composite ceramics and Ag electrodes had good compatibility. A MSPA was designed and 

fabricated using cold sintered 65wt%CSSO-35wt%KMO as a substrate with a central 

operating frequency of 5.2 GHz. The antenna had an S11 of -10 dB with bandwidth of 144 

MHz. The antenna gain of the MSPA was 5.7 dBi at 5.2 GHz, and the total efficiency was 

88.4%.  
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