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Abstract

In the past decade, deep learning techniques have powered many aspects of our daily life, and drawn ever-increasing

research interests. However, conventional deep learning approaches, such as deep belief network (DBN), restricted

Boltzmann machine (RBM), and convolutional neural network (CNN), suffer from time-consuming training process

due to fine-tuning of a large number of parameters and the complicated hierarchical structure. Furthermore, the above

complication makes it difficult to theoretically analyze and prove the universal approximation of those conventional

deep learning approaches. In order to tackle the issues, multilayer extreme learning machines (ML-ELM) were

proposed, which accelerate the development of deep learning. Compared with conventional deep learning, ML-ELMs

are non-iterative and fast due to the random feature mapping mechanism. In this paper, we perform a thorough review

on the development of ML-ELMs, including stacked ELM autoencoder (ELM-AE), residual ELM, and local receptive

field based ELM (ELM-LRF), as well as address their applications. In addition, we also discuss the connection

between random neural networks and conventional deep learning.

Keywords: Deep Learning, Multilayer Extreme Learning Machine, Stacked Extreme Learning Machine

Autoencoder, Residual Extreme Learning Machine, Local Receptive Field based Extreme Learning Machine

1. Introduction

In the past few years, machine learning has been intensively studied both in theory and applications, and is pow-

ering many aspects of our daily life. Current machine learning techniques can deal with some kinds of tasks more

efficiently than human beings, but their cognitive capability, flexibility, and robustness are still weak. Among all the

machine learning techniques, neural network is one of the most important branches, which can theoretically model5

any “black-box” process. Generally, the development of neural network arises from the following two objectives: 1)

understand the nervous system of human brain better; and 2) build information processing system to make data-driven

decision and prediction based on biological mechanism [1].

Conventional machine learning techniques usually cannot function well in dealing with complex tasks with high-

dimension data. In order to build a satisfactory machine learning model, artificial feature extraction is usually designed10

for achieving more discriminative features, but only for specific tasks, which is time-consuming and labor-intensive.

In addition, feature extraction and machine learning modeling are usually two isolated independent phases without in-

trinsic connections, which may cause that the created machine learning models have no awareness of the noise existed

in the data and degrade their performance. Accordingly, representation learning is important, which can automatically

extract more representative features from the raw data. Deep learning approaches are actually with multiple levels of15

representation, whose hierarchical structure can learn from data using a general-purpose learning procedure without

specific design for corresponding tasks [2]. In 2006, the layer-wise-greedy learning marked the birth of deep learning,

whose basic idea is that unsupervised learning is implemented for network pre-training, sequentially layer-by-layer
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learning for automatic feature extraction, and the whole deep neural network will be fine-tuned finally. It means that

deep neural networks consist of a hierarchical structure with several layers, each of which is actually a non-linear20

information processing unit. This kind of hierarchical structure can guarantee the capability of deep neural networks

for representing complex target functions if the number of layers or units is increased gradually. The past decade

witnesses the breakthroughs of deep learning in image recognition, computer vision, and natural language process,

etc., motivating many researchers to study feedforward neural networks with hierarchical structure [3]. However, con-

ventional deep learning approaches, including deep belief network (DBN), restricted Boltzmann machine (RBM), and25

convolutional neural network (CNN), etc. [4, 5, 6], suffer from time-consuming training process due to fine-tuning of

a large number of parameters and the complicated hierarchical structure. In addition, the above complication makes it

difficult to theoretically analyze and prove the universal approximation of those deep learning approaches. Differently,

this paper focuses on a special way for constructing deep neural networks based on extreme learning machine (ELM)

theory.30

Classic ELM is a type of generalized single hidden layer feedforward networks (SLFNs) [7]. Different from the

traditional gradient-based training approaches for SLFNs, which are easy to trap in the local minimum and time-

consuming, the hidden layer parameters of ELM are assigned randomly, and the output weights are then analytically

calculated through the least-square method [8]. ELM training involves two phases, including randomly generation of

hidden layer parameters from a predefined specific interval, and calculation of generalized inverse of the output weight35

matrix. Thus, ELM is much faster and easier to implement than most state-of-the-art machine learning approaches. In

the past decade, ELM theory and applications have attracted numerous attention, its variants and extensions have been

developed for specific problems, such as online sequential learning [9], imbalance learning [10], multilabel learning

[11], compressive learning [12], and compact modeling [13], etc. ELM was recently extended to hierarchical structure

for dealing with complex tasks, i.e., multilayer ELM (ML-ELM). Experimentally, compared with conventional deep40

learning approaches, ML-ELM shows comparative performance, but much faster learning speed.

Considering ML-ELM may accelerate the development of deep learning, this paper makes a comprehensive survey

on ELM-based deep learning, especially discusses the differences between ELM-based deep learning approaches and

conventional deep learning approaches with our comments and remarks. It should note that, although there are some

surveys about ELM [14, 15, 16, 17], it rarely involves ML-ELM. Thus, regarding the focuses, this paper is quite45

different from other existing related surveys.

The paper is organized as follows: ELM theory is firstly introduced in Section 2. Stacked ELM autoencoder

(ELM-AE), residual ELM, and local receptive field based ELM (ELM-LRF) are then reviewed in Section 3, Section

4, and Section 5, respectively. Selected applications are highlighted in Section 6. Finally, discussions are given in

Section 7, and followed by conclusions in Section 8.50

2. ELM Theory

In this section, ELM theory is briefly introduced to facilitate the understanding of the following sections.

As illustrated in Fig. 1, classic ELM consists of input layer, hidden layer, and output layer. ELM was originally

proposed for the SLFNs and was extended to the generalized SLFNs where the hidden layer need not be neuron alike.

Different from the existed machine learning approaches, its hidden layer parameters are generated randomly, so the55

learning problem is transformed as the estimation of the optimal output weights β for a given dataset {(xi, yi)}
Ñ
i=1
⊂

Rn×Rm. ELM training includes two phases: 1) random feature mapping, mainly for feature mapping from the original

input space to the ELM feature space; 2) linear parameters solving, mainly for calculating the output weights.

Generally, ELM can be treated as a linear combination of L activation functions:

f (x) =

L
∑

i=1

βihi(x) = h(x)β (1)

where L represents the number of hidden nodes of ELM, and h(x) represents the mapped feature vector.

The corresponding matrix form can be expressed as

Hβ = Y (2)
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Figure 1: Structure of Classic ELM

where H represents the hidden layer output matrix:60
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and Y represents the training data target matrix:
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The objective function of ELM aims to simultaneously minimize the training error and the norm of the output

weights, which can be mathematically represented as

min : 1
2
∥β∥2 + 1

2
C

Ñ
∑

i=1

ξ2
i

s.t.,h(xi)β = yi − ξi, i = 1, ..., Ñ

(5)

where C denotes a regularization factor for generalization performance improvement, and ξi = [ξ1,m, ..., ξÑ,m] denotes

the training error of the m output nodes with respect to the training sample xi.

Then, based on the Karush-Kuhn-Tucker (KKT) theorem, we have

β̃ =


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HT
(
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(6)

where β̃ is the estimated value of β, and I is the unit matrix.65

In addition, ELM kernel matrix is also defined [18]:

Ω = HT H : Ωi j = k
(

xi, x j

)

(7)

where k (·, ·) is the inner product in the ELM feature space.

Therefore, kernel-based ELM can be represented as
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Remark 2.1: Some conventional random projection belongs to linear mapping, but the feature mapping of ELM

uses different kinds of nonlinear piecewise continuous neurons in the hidden layer. In addition, the hidden nodes of

ELM are not only neurons with activation functions, such as Sigmoid function and Gaussian function, but also fuzzy

rules, Fourier series, or wavelets, etc. [19, 20, 21].70

Remark 2.2: One of the most important advantages of ELM is that its hidden layer parameters can be randomly

generated according to any continuous probability distribution, and the universal approximation capability of “without

iterative tuning” learning mode has been proved, which can guarantee the learning capability of ELM [22]. However,

there is no corresponding theoretical proof for Schmidt’s method, as well as lacks rigorous proof for full random

hidden nodes cases of other random neural networks [23, 24, 25, 26, 27].75

Remark 2.3: ELM can provide an unified learning paradigm for regression, binary classification, and multi-

class classification, and be easily extended to both semi-supervised learning and unsupervised learning, as well as

hierarchical structure (For example, support vector machine (SVM) is difficult to be used for dealing with multi-

class classification directly. Usually, one-against-one or one-against-all strategy is implemented to convert multiclass

classification into binary classification, but this kind of conversion may cause data imbalanced distribution, which80

degrades the performance of SVM classifier) [28, 29, 30, 31, 32]. In addition, all the hidden nodes in ELM are not

only independent of training data, but also independent to each other. Thus, compared with other machine learning

approaches, ELM is closer to biological learning.

3. Stacked ELM-AEs

The rapid development of both hardware and software accelerate the breakthroughs of deep learning, especially85

in image recognition, and natural language processing, etc. [33, 34, 35, 36, 37, 38, 39, 40]. The core reason is

that deep learning approaches are deeper than shallow machine learning approaches, making neural network with

hierarchical structure automatically extract high-level or representative features. It is well known that neural network

can approximate any target function with enough number of hidden nodes, but too many hidden nodes also may

lead to the overfitting problem, which seriously degrades its performance. Unfortunately, neural network with single90

hidden layer should be with a large number of hidden nodes to guarantee its performance especially in dealing with

complex tasks. Hierarchical structure of deep neural network does not need a large number of hidden nodes in each

layer, and its representation capability can be strengthened through layer-by-layer iterative strategy [41, 42]. However,

because all the hidden layer parameters need to be fine-tuned multiple times, constructing deep neural network is too

cumbersome, time-consuming, and may bring much human intervention, which always puzzles conventional deep95

learning. Accordingly, compared with existed shallow machine learning approaches, classic ELM and its variants

can obtain comparative generalization performance and much faster learning speed. Thus, constructing deep neural

network based on ELM theory or incorporating ELM into existed hierarchical structure of deep learning should be a

promising way to tackle the above issues [43]. Among the ML-ELMs, stacked ELM-AE is most widely studied both

in theory and applications.100

In this section, we will review the stacked ELM-AEs, including general forms of stacked ELM-AE, denoising s-

tacked ELM-AE, semi-supervised and unsupervised stacked ELM-AE, distributed stacked ELM-AE, and other typical

variants of stacked ELM-AE.

3.1. General Forms of Stacked ELM-AE

Autoencoder (AE) is an unsupervised neural network, whose history can be tracked back to 1980s [44, 45]. A105

classic AE is a back propagation (BP)-based neural network, in which the original input data are reconstructed at the

output, passing through an encoding layer with less number of hidden nodes. AE aims to learn dense representation of

the input data while maintaining most of the important information. Specifically, the input data are firstly mapped to an

abstract feature space for representation, and then converted back into the original format. It can extract discriminative

features and filter useless information from the input data by minimizing the reconstruction error.110

As mentioned above, classic AE works based on BP algorithm, it is inevitable to inherit the drawbacks of gradient-

based neural network, such as local optimum, time-consuming iterative process, and much human intervention, etc.,

which may degrade the performance of AE-based deep neural networks. Differently, ELM-AE was constructed based

4



on ELM theory, whose basic structure is illustrated in Fig. 2. For a given dataset {(xi, yi)}
Ñ
i=1
⊂ Rn × Rm, the input data

will be reconstructed at the output layer by115

L
∑

i=1

βig(xi, ai, bi) = xi (9)

Similar to (2), the corresponding matrix form is

Hβ = X (10)

n

2

1

1

2

L

1

2

n

Figure 2: Basic Structure of ELM-AE

ELM-AE can represent features from the raw high-dimension space to the lower-dimension feature space, from

the raw low-dimension space to the higher-dimension feature space, or the dimension of the raw space equals to the

feature space. Accordingly, β can be achieved through the following three manners:

1) Compressed representation:

β =

(

I

C
+HT H

)−1

HT X (11)

2) Sparse representation:

β = HT

(

I

C
+HHT

)−1

X (12)

3) Equal representation:

β = H−1X (13)

Remark 3.1: Similar to multilayer perceptron (MLP), ELM-AE is a kind of SLFN. The essential difference120

between them is that ELM-AE aims to approximate the input data at the output layer, while MLP is for prediction

with the given input data. In addition, both of them can be used for constructing neural networks with hierarchical

structure. MLP with two hidden layer can deal with XOR problem, but its capability in feature extraction is not strong

enough. Stacked ELM-AE can extract high-level feature well through its multiple hidden layers.

Remark 3.2: Some research works pointed out that local optimum of classic AE is not a serious issue for large125

hierarchical neural networks in dealing with practical applications. Furthermore, the landscape is packed with a great

number of saddle points where the gradient is zero, and the surfaces curves up in most dimensions, this also can

strengthen the performance of classic AE-based deep neural networks. We argue that this viewpoint is only based on

the engineering experience, but not the rigorous theoretical support

Using ELM-AE to stack deep neural networks, i.e., stacked ELM-AEs, is one of most important branches in ELM-130

based deep learning. The main advantages of stacked ELM-AEs include: 1) ELM-AE inherits the very fast learning

speed of classic ELM, which can reduce the time consumption of training process comparing with conventional deep

learning approaches; 2) representation learning and decision making can be integrated into a whole training process,

5



in which multiple hidden layers stacked using ELM-AEs are for representation learning, and a final layer of ELM or

an ELM classifier is implemented at the last component for decision making.135

Remark 3.3: Different from conventional deep neural networks, stacked ELM-AEs do not need iterative fine-

tuning after once all the parameters are fixed in each layer. Thus, its training time is reduced from days or hours to

minutes or even seconds. The very fast learning speed of stacked ELM-AEs is especially useful in some real-world

applications with strong timeliness, e.g., stock forecast and weather forecast, etc.

Fig. 3 illustrates the training of stacked ELM-AEs, ELM-AEs are performed for determining the output weights of140

the multiple hidden layers iteratively. Specifically, for the determination of the output weights between the ith hidden

layer and the (i + 1)th hidden layer, the number of input nodes of the (i + 1)th ELM-AE should be identical to the

hidden nodes of the ith hidden layer. The corresponding output of hidden layer in stacked ELM-AEs is

Hi+1 = g
(

Hi · β
T
i+1

)

(14)

where Hi+1 and Hi represent the output matrices of the (i+1)th hidden layer and the ith hidden layer, and g(·) represents

the activation function, respectively.145
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Figure 3: Typical Structure of Stacked ELM-AEs

Kasun et al. [46] proposed the first ELM-AE, which can represent features with singular values. In the proposed

ELM-AE, the randomly generated hidden layer parameters, including input weights and bias, are required to be

orthogonal, which can be mathematically represented as

L
∑

i=1

βig(xi, ai, bi) = xi

s.t., aT a = I, bT b = 1

(15)

After that, Kasun et al. [46] designed an ELM-based deep neural network by stacking the proposed ELM-AEs,

denoted by ML-ELM-1. Compared with DBN, DBM, stacked AE (SAE), and stacked denoising AE (SDAE), the150

proposed ML-ELM-1 achieved comparative accuracy with much faster learning speed. In addition, Cecotti [47]

evaluated the performance of ML-ELM-1 on four handwritten character datasets, the corresponding experimental

results also confirmed the advantages of ML-ELM-1 both in accuracy and time consumption. Actually, the hidden

layer parameters in this ELM-AE are not purely randomly generated, because they are required to be orthogonal.

Obviously, it has not well exploited the advantages of ELM, because Huang et al. [22, 28, 29] had pointed out that155

the universal approximation capability of ELM cannot be guaranteed without random projection of the inputs. Thus,

we conjecture that the potential of ELM in the aforementioned hierarchical structure has not been fully exploited.
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Remark 3.4: In this paper, ML-ELM denotes ELM-based deep neural networks, mainly including stacked ELM-

AE, residual ELM, and local receptive filed based ELM (ELM-LRF), etc., and ML-ELM-1 denotes the multilayer

ELM proposed by Kasun et al. in [46].160

Recently, Wong et al. [48] proposed the kernel version of ML-ELM-1, named multilayer kernel ELM (ML-

KELM), for strengthening the performance of ML-ELM-1. Different from ML-ELM-1, ML-KELM is stacked by

kernel ELM-AE (KELM-AE), so the burden on tuning number of hidden nodes is eliminated by replacing the original

random generated hidden layer parameters utilizing kernel matrix. Thus, ML-KELM should be more efficient and

has better generalization performance. In addition, the transformation matrix can be learned through exact inverse165

rather than pseudoinverse, which can reduce the effects of reconstruction error on ML-KELM. Due to the kernel trick

in ML-KELM, its training time mainly depends on the number of training data, while ML-ELM-1 depends on the

number of hidden nodes. Accordingly, ML-KELM has obvious advantage in dealing with small-scale datasets in time

consumption. Although, ML-KELM can tackle the issues of unstable and suboptimal performance of hidden layers of

ML-ELM-1 caused by random projection and manual tuning of number of hidden nodes, it also needs a large memory170

and gradually becomes slow during the training process. Therefore, Vong et al. [49] proposed an extended version

of ML-KELM, named ML-EKM-ELM, in which an approximate empirical kernel map (EKM) computed from low-

rank approximation of the kernel matrix was used for producing much smaller hidden layers for fast training and low

memory storage. Comprehensive experiments indicate the effectiveness of the proposed ML-EKM-ELM, and it is

more suitable for large-scale problems compared with ML-ELM-1 and ML-KELM.175

In order to tackle the above issues and further strengthen the performance of ML-ELM-1, Tang et al. [50] designed

a ℓ1-norm ELM-AE and attempted to use it as the building block of a hierarchical ELM (H-ELM), in which the

hidden layer parameters of ℓ1-norm ELM-AE do not require to be orthogonal. The modified objective function can be

represented as

min : ∥β∥ℓ1 + ∥Hβ − X∥2 (16)

Due to the utilization of ℓ1 penalty, the new ELM-AE could achieve sparser and more meaningful features, and the180

proposed H-ELM achieved better accuracy and much faster convergence speed than some conventional deep learning

approaches as well as ML-ELM-1 on car detection, gesture recognition, and online incremental tracking. Different

from ML-ELM-1, a classic ELM was applied for the final decision making in H-ELM.

Remark 3.5: ℓ1 optimization has been proved that it can function better in data recovery and other applications

[51, 52], so the ℓ1-norm ELM-AEs can reduce the redundant features and remove noise, as well as accelerate the185

convergence of H-ELM. However, there is no analytical solution for this kind of sparse ELM-AE and solving the

optimal output weights have to resort to the ℓ1-norm based optimization algorithms, such as the fast iterative shrinkage-

thresholding algorithm used in [50].

Considering ML-ELM may be sensitive to noise and outliers, Chen et al. [53] proposed a full correntropy-based

ML-ELM (FC-MELM), in which both of the loss function and the sparsity penalty term in conventional ELM-AE190

were replaced by correntropy-based loss function and correntropy-based sparsity penalty, respectively. Thus, the

proposed FC-MELM stacked by correntropy-based ELM-AEs is more robust and can provide sparser representation

compared with H-ELM.

In order to solve large and complex tasks using ELMs without incurring the memory problem, Zhou et al. [54]

proposed stacked ELM (S-ELM) with hierarchical structure based on principal component analysis (PCA). As the195

hidden layer parameters of ELM-AE are randomly generated, the contribution of different hidden nodes to perfor-

mance improvement may vary a lot. It means that there are some redundant hidden nodes in ELM-AE, which not only

degrade the performance, but also increase the computational burden. S-ELM selects the most significant few percent

of hidden nodes or combined hidden nodes to represent all the hidden nodes in each ELM-AE. Specifically, in the

hierarchical structure, the previous layer outputs such hidden nodes to the next layer, and those hidden nodes are then200

combined with the new randomly generated hidden nodes and function as the total hidden layer output of this layer.

During its training process, the above procedure as the previous layer can output the most significant hidden nodes to

the next layer, making S-ELM always keep a compact network size. In addition, S-ELM selects top few significant

hidden nodes using their output weights’ eigenvalues, and reduces the number of hidden nodes by multiplying the

corresponding eigenvectors based on PCA.205

Remark 3.6: Similar to ML-ELM-1 and H-ELM, S-ELM consists of multiple small ELMs located at different

7
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Figure 4: Fat ELM is reduced to a slim ELM in S-ELM

layers, each of them is serially connected. Differently, it is not the original full hidden layer outputs that are propagated

to the next layer, but the hidden layer reduced by PCA.

As shown in Fig. 4, the original “fat” ELM with L hidden nodes is reduced to a new “slim” ELM with L̃ hidden

nodes through PCA. The reduced hidden layer output matrix H̃1 is propagated to the next layer to represent the210

information of all the original hidden nodes of this layer. Accordingly, the second layer will randomly generate
(

L − L̃
)

hidden nodes, and the corresponding hidden layer output matrix is denoted as H2new. The actual hidden layer

output matrix of the second layer is

H2 =
[

H̃1,H2new

]

(17)

In the following layers of S-ELM, the same PCA dimension reduction procedure will be taken iteratively until to

the last layer. The whole dimension reduction and feature mapping process can be represented as215

H1 → H̃1
[

H̃1,H2new

]

→ H̃2
[

H̃2,H3new

]

→ H̃3

...
[

H̃(N−2),H(N−1)new

]

→ H̃(N−1)
[

H̃(N−1),HNnew

]

(18)

Comprehensive experiments indicate that S-ELM can achieve better or comparative accuracy but with compact

network size than ELM, SVM, and DBN.

Although S-ELM can address large and complex data problems with a relatively high accuracy and low require-

ment for memory, there is still room for improving the time consumption and robustness. Luo et al. [55] enhanced

S-ELM by replacing the original PCA with the correntropy-optimized temporal PCA (CTPCA), which is more robust220

for outlier rejection and can reduce the training time significantly.

Considering the limited capability of shallow one-class ELM (OC-ELM) in dealing with high-dimension and com-

plex tasks, Dai et al. [56] proposed multilayer neural network based one-class classification with ELM (ML-OCELM)

for learning acceleration and performance enhancement. In ML-OCELM, ELM-AEs are for feature extraction and

OC-ELM is implemented at the final phase for one-class classification. With the encoded features, OC-ELM can225

8



perform the final decision making based on the following objective function:

min : ∥HX(k)β − Y∥22 + ∥β∥
2
2 (19)

where HX(k) denotes the hidden layer output matrix with the encoded feature X(k) as the input feature.

In MK-OCELM, setting of number of hidden nodes is not necessary due to the kernel trick in ELM-AE. Thus,

MK-OCELM is with less human-intervention parameters tuning and better generalization performance.

In [57], we stacked ELM-AEs for designing a multilayer probability ELM (MP-ELM). Different from the afore-230

mentioned ML-ELMs, MP-ELM outputs the probability of the predicted results belonging to all the classes instead of

fitting to data, which can significantly alleviate the effects of accumulated errors on the final predicted results.

3.2. Denoising Stacked ELM-AE

Motivated by [58, 59], Zhang et al. [60] proposed ELM denoising AE (ELM-DAE) by introducing a local denois-

ing criterion. Different from ELM-AE, the inputs and the outputs of ELM-DAE are initial training data and corrupted235

data, respectively. The authors used Gaussian noise, Masking noise or Salt-and-pepper noise to corrupt the initial

training data. In this way, features extracted by ELM-DAE should be more robust. Sequentially, denoising ML-ELM

(D-ML-ELM) was stacked by ELM-DAE. Furthermore, manifold regularization framework was introduced into D-

ML-ELM and denoising Laplacian ML-ELM (D-Lap-ML-ELM) was proposed. Due to the utilization of manifold

regularization term in the objective function of D-Lap-ML-ELM, it can introduce the local manifold structure infor-240

mation of the data, which is regarded as a prior knowledge into the classification model for enhancing the performance.

The objective function of D-Lap-ML-ELM can be mathematically represented as

min : ∥β∥2 + ∥Hβ − X∥2 + Tr
(

βT HT LHβ
)

(20)

where Tr (·) stands for the trace of a matrix, and L is the Laplacian matrix.

Experimental results indicate the effectiveness of D-ML-ELM and D-Lap-ML-ELM both in supervised learning

and unsupervised learning on some typical benchmark datasets.245

Remark 3.7: D-Lap-ML-ELM needs to calculate the Laplacian matrix, so its computational burden is higher than

D-ML-ELM, especially when the number of unlabeled data is relatively large.

Similar to ELM-DAE, Cao et al. [61] proposed a SSDAE-RR (stacked sparse denoising AE-ridge regression)

learning scheme, integrating sparse denoising stacked AE and ridge regression implementation in ELM. The proposed

SSDAE-RR uses a quick-and-dirty SSDAE to generate a stable and interpretable feature space which is fed into a RR250

solver in ELM to calculate the output weights. Experimentally, the time consumption of SSDAE-RR is comparative

with ELM, as long as its embodied deep neural network only needs a few iterations for unsupervised pre-training.

3.3. Semi-Supervised and Unsupervised Stacked ELM-AE

Hu et al. [62] stacked a deep neural network based on unsupervised ELM [63] (named as unsupervised SLFNs

with randomly fixed hidden neurons, URHN-SLFNs, and the proposed stacked deep neural network was named as255

St-URHN-SLFNs), whose structure could yield a better embedding space for clustering problem. Similar to (20), the

objective function of the proposed URHN-SLFNs is

min : ∥β∥2 + Tr
(

βT HT LHβ
)

(21)

The proposed St-URHN-SLFNs not only incorporates the simplicity of URHN-SLFNs, but also inherits the ex-

cellent representation capability derived from hierarchical structure. Compared with Laplacian eigenmaps, spectral

clustering, and K-means clustering, its training time is relatively longer, but it only needs several seconds at most.260

Compared with deep AE and SAE, its learning speed is still much faster.

Sun et al. [64] also proposed an unsupervised ELM-AE by combining manifold regularization with ELM-

AE, named generalized ELM-AE (GELM-AE), which outperformed some state-of-the-art unsupervised learning ap-

proaches, including Laplacian embedding, spectral clustering, and K-means clustering, etc. In addition, they stacked

a deep neural network using GELM-AEs, named as multilayer generalized ELM-AE (ML-GELM).265

Gu et al. [65] proposed a semi-supervised deep ELM (SD-ELM) for WiFi indoor localization. In the proposed

SD-ELM, discriminative features are fed into a classifier after feature extraction, and its objective function is similar

to (20) and (21).
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3.4. Distributed Stacked ELM-AE for Big Data

According to analyzing the execution process of H-ELM, Chen et al. [66] found that H-ELM was still relatively270

time-consuming in some sub-processes. Thus, they proposed a parallel H-ELM (PH-ELM) on Flink to accelerate

H-ELM based on three basic parallel algorithms. As shown in Fig. 5, the executions of both sparse ELM-AE layers

and the classic ELM are parallelized on Flink. Before the training process, the data firstly need to be stored in HDFS,

and then, it is loaded into Flink’s distributed memory system as a DST object. Simultaneously, the hidden layer

parameters of all the ELM-AEs and the classic ELM are randomly generated. Finally, all the output weights of all the275

ELM-AEs and the classic ELM are calculated and stored in Flink’s distributed memory system as DST objects, and

they also can be written as HDFS.
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Figure 5: Workflow of PH-ELM

Yao et al. [67] analyzed the implementation of ELM and H-ELM on MapReduce as the distributed and parallel

models for process quality prediction with big data. Accordingly, they proposed distributed and parallel H-ELM (dp-

HELM), in which hidden layers of H-ELM were decomposed into a loop of MapReduce jobs. Under the circumstance280

of large-scale dataset, the multimode process was considered and the dp-K-means algorithm was proposed for dividing

the process into a group of modes. Then, the local models of different modes were trained concurrently by dp-ELM

and dp-HELM models, respectively. Finally, the local modes were integrated for online prediction. Experimentally,

the proposed MapReduce-based dp-HELM has shown excellent capability in processing and extracting information

from big data.285

3.5. Other Variants of Stacked ELM-AE

Tissera et al. [68] proposed a supervised AE ELM module, which could be utilized for stacking deep neural

network. Fig. 6 illustrates the first two hidden-layer of the proposed deep ELM network. In this process, the input

data are firstly projected to the L-dimension first hidden-layer through a random weight matrix. After transformation

by the sigmoidal units, the result is multiplied by the output weights to produce a new input vector. Sequentially, the290

input vector is projected to a Q-dimension second hidden-layer through another random weight matrix. The authors

referred to each three-layer ELM as a module, and additional ELM modules could be added, with a readout of a

classification available from each intermediate layer, to construct a deep neural network.
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Multimodal data are becoming ubiquitous in the daily life, but it is difficult to ensure the data collected from

different sources are full pairing. In order to tackle this issue, Wen et al. [69] proposed a modified framework of295

weakly paired multimodal fusion based on ML-ELM-1, which could find complex nonlinear transformations of each

modality of data such that the resulting representations were highly corrected. In the proposed framework, ML-ELM-

1 implements for extracting features of all the modalities separately, and the extracted discriminative features are

performed joint dimension reduction by weakly paired maximum covariance analysis. Compared with linear weakly

paired approaches, the proposed framework can achieve better performance with better robustness.300

Chu et al. [70] proposed a network embedding-based deep ELM, (DELM-NE), which was stacked by DELM-

AEs. As shown in Fig. 7, DELM-AE consists of several hidden layers, and the parameters between the last ELM-

based hidden layer and the encoder output can be obtained by fine-tuning using BP algorithm. According to the

structure illustrated in Fig. 7, compared with BP-based AE, most of the parameters in DELM-AE need not to be

fine-tuned, leading to high-increased efficiency; and compared with conventional ELM-AE, the fine-tuning in the last305

part of DELM-AE can reduce the negative effects of random projection, so it should be with better generalization

performance. Experimental results on some benchmark datasets indicate the excellent performance of the stacked

deep ELM using DELM-AE.

Different from existed ELM-AEs, in which the hidden nodes in the encoding layer are randomly generated, pos-

sibly leading to the suboptimal feature mapping, Yang et al. [71] established a two-layer ELM-AE, whose current310

weights of the encoding layer were replaced by the previous decoding layer and were very correlated with the input

data, making it naturally symmetric. In addition, they stacked a ML-ELM using the proposed two-layer ELM-AE,

and implemented for dimension reduction and image reconstruction.

Yang et al. [72] also proposed a general structure of ML-ELM with subnetwork nodes, providing a representation

learning platform with unsupervised/supervised and compressed/sparse representation learning. They found that a315

hidden node itself could be a subnetwork formed by several hidden nodes which naturally formed biological learning,

and thus resulted in feature learning (See Fig. 8). It means that a single hidden layer can contain multiple networks.

Different from classic ELM, subnetwork nodes (also called general hidden nodes) are performed instead of single

hidden nodes. Similar to classic ELM, the number of general hidden nodes and output dimension are also independent,

but the number of hidden nodes in each general hidden node should be equal to the dimension of outputs, i.e., the320

number of hidden nodes in a general hidden node should equal the number of output nodes.

Remark 3.8: As mentioned above, all the hidden layers of other existed ELM-AEs randomly generate their hidden

layer parameters, but it cannot function well in dealing with some specific tasks sometimes, because the pure random

projection may destroy the useful features. Some research works have pointed out that ELMs are sensitive to the

random range of the hidden layer parameters [73, 74].325

Remark 3.9: According to the experimental results in [72], ML-ELM stacked by subnetwork ELM is not sensitive

to generalization performance. The proposed approach provides a new forward encoding learning way that is different

from other existed stacked ELM-AEs and conventional deep neural networks, which may be a new direction of
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representation learning. Other related research works about the subnetwork node refer to [75, 76, 77, 78, 79].
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Figure 8: Basic Structure of Subnetwork ELM

We noticed some research works about the online sequential ELM-AE (OS-ELM-AE) based on the online version330

of ELM [80, 81], i.e., online sequential ELM (OS-ELM) [82, 83, 84]. Mriza et al. [80] and Su et al. [81] verified the

performance of multilayer OS-ELM (ML-OSELM) in image classification and hot metal silicon content prediction,

respectively. Similar to OS-ELM, the proposed ML-OSELM can learn the sequentially coming data one-by-one or

chunk-by-chunk with fixed or varied chunk size. As we all known, deep neural network usually needs a great number

of training data to guarantee its performance. If the specific chunk is with small number of data, and without sequen-335

tially coming chunks, it may be difficult to guarantee the performance of ML-OSELM. In addition, we conjecture

that ML-OSELM is difficult to guarantee its stability with the data stream, because it needs to update its relatively

complex structure in every time step with random projection. Accordingly, we envision OS-ELM-AE will be one of

the hot research topics, which still has many challenging issues should be tackled before ML-OSELM can be really

applied.340
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4. Residual ELMs vs. Deep Residual Networks

Deep residual network (ResNet) was proposed for easing the training of deep neural networks, in which stacked

layers were fitted residual mapping instead of desired underlying mapping [85, 86, 87]. However, Veit et al. [88] found

that short paths of ResNet behaved just like the ensembles without strongly depending on each other. Differently, the

residual compensation ELM (RC-ELM) was proposed based on hierarchical residual compensation mechanism, in345

which the baseline ELM was for building the feature mapping between the input and the output, and the following

ELMs were for residual compensation layer by layer through remodeling the residual of the previous layers for

performance improvement, as illustrated in Fig. 9 [89]. In addition, the coupling relationship among ELM modules

has been proofed, indicating that RC-ELM is not a stack of several nonlinear modules. Compared with classic ELM,

RC-ELM has better performance in dealing with regression problems, because the ELM modules in RC-ELM can350

enhance its representation capability iteratively. For example, it may lead to overfitting problem when classic ELM

uses a large number of hidden nodes to enhance its representation capability, but that number of hidden nodes can be

shared by ELM modules in RC-ELM, which can perform the deep compensation of residual layer by layer to obtain

the optimal solution, so it can avoid the overfitting problem efficiently without the loss of representation capability.
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Figure 9: Structure of RC-ELM

In order to further strengthen the capability of RC-ELM in dealing with non-Gaussian noise, we proposed an355

extended version of RC-ELM [90]. Compared with RC-ELM, the extended version abandons the expansion in depth,

and performs expansion in broad sense, because the experimental results in [89] indicate that the first residual com-

pensation layer usually plays a main role in performance improvement. It was designed as a two-layer structure,

including one baseline layer and one residual compensation layer, but the residual would be decomposed into some

sub-modes using empirical wavelet transform (EWT), and corresponding number of ELMs were implemented for360

modeling those sub-modes in the residual compensation layer (see Fig. 10). The extended version is more efficient in

handling tasks with non-Gaussian nosie, because the decomposed sub-modes are more linear.

Similarly, Tissera et al. [91] designed a hierarchal ELM based on a modular architecture, named modular ex-

pansion ELM (M-ELM), which expanded the output weight layer constructively, so that the final network could be

treated as a SLFN with a “large” hidden layer. The training speed of M-ELM is much faster than a signal hidden365

layer neural network with less memory and computational complexity. Actually, RC-ELM and M-ELM have similar

network structure, but RC-ELM is for regression problem, and M-ELM mainly for classification problem.
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Yu et al. [92] proposed a stacked structure, named deep representation learning via ELM (DrELM), in which

a scheme of building layer-by-layer structure for estimating the errors of prediction functions when working on a

particular learning set, and then correcting those errors. In each layer, DrELM integrates a random projection of the370

predictions obtained by classic ELM into the inputs, and then applies kernel functions to generate the outputs for the

next layer. In this way, data from different classes are pushed towards different directions so that the resulting features

are more likely to be separated.

In [93], Wang et al. firstly proposed an enhanced DrELM (EH-DrELM), in which the linear ELM was replaced

by regularized ELM (R-ELM) as the building blocks, and adding shortcut connections between the inputs of two375

successive building blocks (similar to ResNet). After that, a modified AdaBoost-ID algorithm was proposed for

updating the weights of both the correctly classified and misclassified samples. Finally, they embedded the modified

AdaBoost-ID into EH-DrELM for developing a deep weighted ELM (DWELM) to deal with complex and large

imbalanced data.

Yang et al. [94] proposed a parent-offspring progressive learning method (PPLM) for strengthening the repre-380

sentation capability and generalization performance of classic ELM, in which a partition growth method was firstly

proposed to separate similar feature data into the same partition, and several ELMs were utilized to learn each cor-

responding partition. The proposed PPLM extends classic ELM from a single neural network to a multi-network

learning system, and theoretical proof and experimental results indicate that it can approximate any target contin-

uous function and classify disjointed regions with excellent performance. Similar to the above residual ELMs, the385

large number of hidden nodes in classic ELM can be shared by the multiple ELMs of PPLM, so it can reduce time

consumption and avoid overfitting problem.

5. Local Receptive Field based ELM

Usually, the hidden nodes of ELMs are fully connected to the input nodes, which can produce excellent generaliza-

tion performance. However, some applications, such as image processing and speech recognition, may include strong390

local correlations, and it is reasonably expected that the corresponding neural networks have local connections instead

of full connections. Inspired by CNN, one of such local receptive fields may be implemented by randomly generating

convolutional hidden nodes and the universal approximation capability of such ELM may still be preserved. Accord-

ingly, Huang et al. [95] proposed the local receptive field based ELM (ELM-LRF) as a generic ELM architecture

to tackle image processing and other related tasks in which different density of connections may be requested. The395

connections between the inputs and the hidden nodes are sparse and bounded by corresponding receptive fields, which

can be sampled by any continuous probability distribution. In addition, combinatorial nodes are used for providing

translational invariance to the network by combining several hidden nodes together. Compared with CNN, ELM-LRF

does not involve gradient-based steps, so its training should be remarkably efficient. Bai et al. [96] used ELM-LRF as
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a general framework for object recognition, which was operated directly on the raw images, and thus suitable for all400

different datasets.

Fig. 11 illustrates the local dense connection of ELM-LRF, in which the connections between the input layer and

the specific hidden node are randomly generated depending on some continuous probability distribution, and some

receptive fields are then generated through this kind of random connections.

Figure 11: Local Connections of ELM Hidden Node

Remark 5.1: Combinatorial node means that the hidden node of ELM can be a combination of several hidden405

nodes or a subnetwork of nodes. Combinatorial node based ELM-LRF may learn the local structure better: denser

connections around the input node due to the overlap of specific number of receptive fields while sparser farther away.

In detail, the receptive field of each hidden node consists of input nodes within a predetermined distance to the

center. In addition, simply sharing the input weights to different hidden nodes directly leads to the convolution

operation. In this manner, a specific case of the general ELM-LRF can be created, which is shown in Fig. 12.410

Input Map Feature Map Pooling Map

Local Receptive Field
Combinatorial Node

Figure 12: General Form of ELM-LRF

ELM-LRF is actually closely related to CNN, both of them handle the raw input directly and apply local con-

nections to force the network to learn spatial correlations in natural images and languages. Differently, ELM-LRF

can provide more flexible and wider type of local receptive fields, but CNN only uses convolutional hidden nodes;

ELM-LRF randomly generates the input weights and analytically calculates the output weights, but CNN needs to be

tuned.415

Liu et al. [97] proposed a multi-modal ELM-LRF (MM-ELM-LRF) framework for constructing the nonlinear

representation from different aspects of information sources, which has three separated phases, including unsupervised

feature representation for each modality separately, feature fusion representation, and supervised feature classification.

The authors performed feature learning to have representations of each modality, i.e., RGB and Depth, before they

were mixed. Each modality was given to a single ELM-LRF, which could provide useful translational invariance of420
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low-level features, such as edges, and allowed parts of an object to be deformable to some extent. In this structure,

MM-ELM-LRF takes full advantages of ELM-LRF to learn the high-level representation of the multi-modal data.

In [98], a hierarchical local-receptive-field-based ELM structure was proposed to jointly learn the state represen-

tation and the reinforcement learning strategy. As shown in Fig. 13, ELM-LRF was extended to a multilayer structure.

In a single ELM-LRF, the links between the input and the hidden layer nodes are sparse and bounded by correspond-425

ing receptive fields, which are sampled from any continuous probability distribution. The feature maps in convolution

layers are determined by the filters sliding on the previous layer pixel by pixel. The pooling layer is in full connection

with the output layer, and the output weights are analytically calculated through least-square estimation. In addition,

Li et al. [99] proposed a hierarchical ELM with LRF, whose structure is similar to the one illustrated in Fig. 13.
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Figure 13: Structure of Hierarchical ELM-LRF

A modified ML-ELM was proposed for image classification with two stages, including ML-ELM feature mapping430

stage and ELM learning stage [100]. The ML-ELM feature mapping stage was recursively built by alternating between

feature map construction and maximum pooling operation. In the ELM learning stage, elastic-net regularization was

proposed to learn the output weights, which could guarantee to learn more compact and meaningful output weights.

Zhu et al. [101] designed a modified hierarchical ELM for unsupervised representation, which learned the local

receptive filters by ELM-AE. In addition, several key elements were combined together to boost the performance,435

including local contrast normalization, whitening and trans-layer representation.

6. Applications

Due to the excellent training speed, generalization performance, and representation capability, ML-ELMs have

been performed in many real world applications.

Wang et al. [102] performed ML-ELM-1 for encrypted image classification. Similarly, Ahmad et al. [103]440

exploited ML-ELM-1 for hyperspectral image classification. Cao et al. [104] also focused on hyperspectral image

classification using modified ML-ELM, named multilayer sparse ELM (MSELM). Considering that the neighboring

pixels are more likely from the same class, a local block extension was introduced for MSELM to extract the local

spatial information, named local block MSELM (LBMSELM). Furthermore, the loopy belief propagation was also

implemented in MSELM and LBMSELM for further using the rich spectral and spatial information to improve the445

classification accuracy. Considering the effectiveness of leaky rectified unit (LReLU) activation function, Nayak et al.

[105] replaced the original activation function of ELM-AE using LReLU activation (ML-ELM+LReLU), and applied

the proposed ML-ELM+LReLU for pathological brain image classification.

Yang et al. [106] proposed a modified hierarchical ELM-based image denoising network, which comprised a

sparse AE and a supervised regression, also including a non-local aggregation procedure aiming to fine-tune noise450

reduction according to structural similarity. Yu et al. [107] proposed a ML-ELM with object principal trajectory, in
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which the temporal and spatial characteristics were taken into consideration for supporting dynamic semantic repre-

sentation between adjacent frames. The proposed approach can recognize multiple objects with different movement

directions, and also identify subtle semantic features.

Duan et al. [108] designed a system for motor imagery electroencephalogram (EEG) classification, in which PCA455

and linear discriminant analysis (LDA) were combined for feature extraction, and ML-ELM-1 was performed for

classifying. Experimentally, the designed ML-ELM-1-based system was more suitable in dealing with motor imagery

EEG data. She et al. [109] proposed the hierarchical semi-supervised ELM (HSS-ELM) for motor imagery EEG

classification, in which H-ELM was used for feature extraction, and semi-supervised ELM for the final classification.

Furthermore, Kadam et al. [110] combined wavelet packet transform and H-ELM for EEG based IQ test. Yin et al.460

[111] proposed dynamic deep ELM (DD-ELM) to adapt the variation of the EEG feature distributions across two

mental tasks for task-generic mental fatigue recognition. Compared with existed ML-ELMs, DD-ELM iteratively

updated the shallow weights at multiple time steps during the testing stage, incorporating both the merits from deep

neural network for EEG feature abstraction and ELM-AE for fast weight recomputation. Ding et al. [112] combined

ML-ELM-1 and kernel ELM (K-ELM) for EEG classifcation, i.e., ML-ELM-1 for feature extraction and K-ELM for465

classification.

Niu et al. [113] used CNN and ML-ELM-1 as feature extractor, and K-ELM as the classifier for human activity

recognition. Chen et al. [114] incorporated the kernel risk-sensitive loss into S-ELM for achieving fine-grained human

activity recognition.

Ibrahim et al. [115] designed a three-stage framework, which combined PCA, deep ELM (DELM), and LDA, for470

protein fold recognition from the amino-acid sequences. They also designed another two frameworks for protein fold

recognition [116]. In the first two-level framework, deep kernelized ELM (DKELM) and LDA were performed. In

the second three-level framework, OVADKELM and OVODKELM were independently employed to extract features,

and DKELM was used for the final classification.

Roul et al. [117] implemented ML-ELM-1 for text data classification, and obtained satisfactory stability and475

effectiveness. Cao et al. [118] proposed a modified approach for radar emitter signal identification, where the bis-

pectrum estimation of radar signal was extracted and H-ELM was performed for further representation learning and

recognition. Experimentally, four representative radar signals were conducted for performance validation, and the

results indicated that the proposed approach was more feasible and potentially applicable in real world applications.

Zhang et al. [119] proposed a modified ML-ELM classification model combined with dynamic generative adversarial480

net (GAN) for imbalanced biomedical data classification, in which PCA was used for removing irrelevant and redun-

dant features, and GAN was designed to generate the realistic-looking minority class samples for balancing the class

distribution, a self-adaptive ML-ELM was finally proposed for classification.

Remark 6.1: According to the aforementioned introduction and analysis, stacked ELM-AEs play very important

roles in ELM-based deep learning filed, and they can obtain excellent performance in dealing with classification and485

recognition tasks, because the discriminative features can be extracted from the raw data through multiple hidden

layers. However, if stacked ELM-AEs are implemented to deal with some regression problems, it only can obtain

comparative results compared with shallow machine learning approaches, such classic ELM and SVM, not much

better than them. The main reason may be that the extracted features by the multiple hidden layers are useless to

the final predictions. For example, when we meet a stranger, we may deduce his gender, age, or job by observing490

him, because his appearance (features) should be helpful (this kind of situation is actually equal to the classification

or recognition problems in machine learning and deep learning); however, we may not be able to accurately deduce

where does he live or what will do only from his appearance (features) (this kind of situation is actually equal to the

regression problems in machine learning and deep learning).

7. Discussions495

ELM was originally inspired by biological learning and proposed to tackle the challenging issues faced by some

existed machine learning approaches. Some related research works indicate that brain learning is usually sophisti-

cated [120, 121, 122], and brain can function well for regression, classification, clustering, and feature extraction

almost without human intervention and zero time in learning given particular samples in several scenarios. Accord-

ingly, Huang et al. [28] conjectured that some parts of brain might be with random neurons with all their parameters500
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independent of environments, and the resultant learning mechanism was referred to ELM theory. Actually, the learn-

ing mechanism of ELM is globally ordered but locally random based, such kind of way can guarantee the universal

approximation capability and classification capability. In this section, we will discuss about ELM combining with con-

ventional deep learning, whether other random neural networks can be used for designing AE, and the randomization

in conventional deep learning, respectively.505

7.1. ELM Combining with Conventional Deep Learning

In the common practices for the combination of ELM and conventional deep learning approaches, the conventional

deep learning schemes are used for feature extraction, and ELM for the final decision making based on the extracted

high-level features. For example, Ribeiro et al. [123] utilized DBN for feature extraction and ELM for classification.

Han et al. [124] first produced an emotion state probability distribution for each speech segment using deep neural510

networks, then constructed utterance-level features from segment-level probability distributions, and finally, those

features were fed into an ELM. Zhu et al. [125] performed CNN to extract high-level features of images, and K-ELM

as a classifier instead of the original linear fully connected layer.

7.2. Possibility of Other Random Neural Networks based AE

Random vector functional link network (RVFL) is a famous random neural network proposed by Pao et al. [25,515

26, 27]. As shown in Fig. 14, RVFL is also a SLFN, in which the input layer is directly connected to both the hidden

layer and the output layer. Its input weights are randomly generated, while the output weights are calculated through

Moore-Penrose pseudo inverse. Pao et al. [26] pointed out that not all the weights in RVFL are equally important, so

it is not necessary to iteratively tune all of them.

Input layer

Output layer

Hidden layer

Figure 14: Structure of RVFL

Another typical random neural network was proposed by Schmidt et al. [24]. As shown in Fig. 15, Schmidt’s520

method has no direct link between the input layer and the output layer. Its input weights are randomly selected and

kept same throughout the training process, the output weights can be obtained through Fisher method.

As mentioned above, ELM can be used for constructing ELM-AE, and easily extended to hierarchical structure

for representation learning. However, when RFVL is implemented for constructing AE, the weights of the direct link

connecting the input layer and the output layer will be a constant value one, and the weights of the links between its525

hidden layer to the output layer will be a constant value zero. Therefore, RFVL will lose the learning capability in AE

cases. Schmidt’s method may also face difficulty in AE cases due to the biases in the output nodes.

Remark 7.1: ELM has been successfully implemented in several applications with very fast learning speed and

good generalization performance. For example, ELMs usually can achieve satisfactory performance in dealing with

noisy data, indicating the relatively excellent robustness [126, 127, 128, 129, 130, 131]. ELM-AE was proposed based530

on ELM, thus it naturally inherits the characteristics and capabilities of ELM.

18



1

Input layer Hidden layer Output layer

Figure 15: Structure of Schmidt’s Method

7.3. Conventional Deep Learning with Randomization

RBM is a probabilistic graphical model based on stochastic neural network with two layers, including a visible

layer and a hidden layer. Nodes in the visible layer are fully connected to the nodes in the hidden layer, while there

are no connections between nodes in the same layer. Rosa et al. [132] merged RBM and randomized algorithms,535

and proposed a deep structure for nonlinear system identification, in which the distributions of the hidden weights

were trained utilizing the input data and RBM. It shows that combining RBM and randomized algorithms can per-

form better for nonlinear system identification. Zhang et al. [133] proposed an incremental ELM based on deep

feature embedded (IELM-DFE) approach. In the proposed IELM-DFE, the visible layer units are fully connected,

and there are two hidden layers for feature extraction, in which the first hidden and visible layer are constructed as540

a semi-restricted Boltzmann machine (SRBM) model, and the second layer is also used as the hidden layer of ELM.

Accordingly, a SRBM model and a RBM model are included in IELM-DFE, the SRBM model mainly for feature

extraction, the second RBM model for providing feature expression, and the output weights are calculated through

manifold regularization ELM. Wang et al. [3] proposed a noniterative way to train multilayer feedforward neural

networks, including two components: an initial extractor of features based on RBM, and a solution of a system of545

linear matrix equations. In the proposed method, iterative tuning of parameters is not necessary, it is essentially a

modified version of random weights assignment based training method by replacing the randomly assigned weights

with RBM-based initial weights while keeping the output weights acquired analytically. In addition, for the tasks with

strong temporal dependencies among subsequent patterns, recurrent neural network (RNN) usually can achieve satis-

factory performance. However, the training of fully adaptable RNN requires the flow of errors gradient information550

throughout temporal instants, increasing the likelihood of vanishing or exploding gradients and may lead to unstable

network behaviors. Actually, for the tasks that do not require a relatively long memory of its inputs, an alternative to

a fully adaptable RNN is achieved by introducing the random weight assignment mechanism, allowing for a recurrent

layer of fixed, randomly generated nonlinearities, and followed by an adaptable linear layer in the output [134].

Since LeNet-5 was proposed [135], CNN-based deep neural networks, such as AlexNet [136] and VGG [137], can555

efficiently handle image processing problems due to the special mechanism, including shared weights, sub-sampling,

and local receptive fields, etc. Jarret et al. [138] found that random filters used in the two-stage feature extraction

system could obtain comparative performance with the approach using pre-training and exact fine tuning of the filters.

It means that the network structure is more important than hidden layer parameters in deep learning, indicating that

not all the hidden layer parameters need the fine-tuned if we can construct a good hierarchical structure [139]. Zhang560

et al. [140] proposed the convolutional random vector functional link (CRVFL) by combining RVFL and CNN, in

which the convolutional filters were randomly initialized and kept same, only the parameters in the fully connected

layers needed to be learned. Compared with classic CNN and its variants, the global fine-tuning is not necessary in

CRVFL, and it is not sensitive to the hyper-parameters, such as learning rate, epochs, etc. Wang et al. [141] proposed

a convolutional AE ELM (CAE-ELM) combining the advantages of CNN, AE, and ELM. They further designed565

a modified structure based on the proposed CAE-ELM, which accepted two types of 3D shape representation, i.e.,
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voxel data and signed distance field data, as inputs to extract the global and local features of 3D shapes. It is fair to

mention that although CNN suffers from heavy computational workloads, it also provides better performance than

that of ELMs in image processing tasks. For example, CNN with CIFAR10 dataset provides more than 94% accuracy,

while ELM-based neural network only achieves up to 80%. Therefore, how to fully embed convolutional nodes in the570

ELM-based framework may be a key for performance improvement.

Remark 7.2: The essence of combining RBM and random neural network is that replacing the random weight

assignment with RBM-based weight initialization and keeping the weights if output layer nodes are calculated analyt-

ically. This kind of non-iterative way can guarantee the computational efficiency of RBM-based deep neural network.

8. Conclusions575

In this paper, we have presented a thorough review on the development of ML-ELM. Some widely-used hierar-

chical structures are investigated, and selected applications on pattern recognition, image classification, and computer

vision are highlighted. Specifically, three typical ML-ELMs, including stacked ELM-AE, residual ELM, and ELM-

LRF, are discussed in detail. In addition, we also analyze whether other random neural networks can be used for

constructing AE, and the randomization in conventional deep learning approaches. ML-ELM makes deep learning580

non-iterative and faster due to its random feature mapping mechanism. In addition, the combination of ELM and

conventional deep learning approaches can significantly guarantee the computational efficiency of deep learning.

The followings are the challenging issues of ML-ELM, which may accelerate the development of ELM-based

deep learning:

1) Impacts of distribution form for randomly generating hidden layer parameters. The randomly generated hidden585

layer parameters enable ELM training very fast, but it also may lead to the instability. ELM and its variants are sensi-

tive to the randomization range sometimes, whose change may seriously degrade the performance. However, there is

still no appropriate criterion to set the randomization range for different tasks depending on the data distributions.

2) Theoretically justifying the effectiveness of random feature mapping in ML-ELM. As mentioned above, random

feature mapping ensures the universal approximation and classification approximation of ELM, making its learning590

efficient with good generalization performance. However, there is still no rigorously theoretical proof for the effec-

tiveness of random feature mapping in ML-ELM. We conjecture that it will be helpful for investing the connection

between ML-ELM and other related deep learning approaches.

3) Some conventional deep learning approaches, such as CNN, DBM and DBN, usually require large number of

data and tuned parameters to guarantee their excellent performance. Whether the combination of conventional deep595

learning approaches and ML-ELM can significantly reduce the scale of tuned parameters without performance loss

urgently needs to be investigated.
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