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Abstract: Patients spend months between the primary spinal tumor diagnosis and the surgical

treatment, due to the need for performing chemotherapy and/or radiotherapy. During this period,

they are exposed to an unknown risk of fracture. The aim of this study was to assess if it is possible

to measure the mechanical strain in vertebrae affected by primary tumors, so as to open the way to

an evidence-based scoring or prediction tool. We performed biomechanical tests on three vertebrae

with bone tumor removed from patients. The tests were designed so as not to compromise the

standard surgical and diagnostic procedures. Non-destructive mechanical tests in combination with

state-of-the-art digital image correlation allowed to measure the distribution of strain on the surface

of the vertebra. Our study has shown that the strains in the tumor region is circa 3 times higher

than in the healthy bones, with principal strain peaks of 40,000/−20,000 microstrain, indicating a

stress concentration potentially triggering vertebral fracture. This study has proven it is possible to

analyze the mechanical behavior of primary tumor vertebrae as part of the clinical treatment protocol.

This will allow building a tool for quantifying the risk of fracture and improving decision making in

spine tumors.

Keywords: vertebra; spine disease; primary tumor; in vitro tests; strain analysis; mechanical stability;

digital image correlation

1. Introduction

Primary malignant spinal tumors consist of a large spectrum of various histologic entities.

Osteosarcoma is the most frequently diagnosed (35.1%), followed by chondrosarcoma (25.8%) and

Ewing’s sarcoma (16.0%) [1], and compressively they represent the 0.2% of all malignant tumors. The

overall 5 years survival rate is around 68%, when proper and effective treatments are identified and

applied [2]. Conversely, severe complications could occur and, in addition, the medical case can

become more difficult.

Indeed, a multidisciplinary approach between medical oncologists, radiation oncologists and

spine surgeons is mandatory for choosing the appropriate treatment and timing of treatment. Usually,

patients with a diagnosis of a primary spine tumor undergo chemotherapy and/or radiotherapy to

diminish osteoclasts activations and kill the tumor cell, shrinking the tumor volume and producing

ossification [3]. During the weeks/months of therapy, before surgical intervention, the patient is exposed
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to the risks of fracture. From an orthopaedic point of view, a careful evaluation of spinal stability

is crucial in the decision-making process: in some cases, over-protection may result in unnecessary

constraint and reduction of quality of life, while insufficient treatment may lead to fractures and

deformities of the spine with possible neurological sequelae. Moreover, the timing of the planned

surgery, connected with the progression of the pathology, can play a fundamental role in the reduction

of the risk of fracture.

Similar problems are experienced by patients with metastatic spine diseases, where surgical

treatment decisions are broadly based on spinal stability and patient-specific factors that include

patient health, prognosis, and tumor histology [4,5]. In 2010, the Spine Oncology Study Group (SOSG)

introduced a classification system for spinal instability in neoplastic disease (SINS) [4], which takes

into account six different factors: location of the tumor within the spine, mechanical pain, bone lesion

quality, spinal alignment, vertebral body collapse and posterolateral involvement of spinal elements.

The SINS is generated by tallying each score from the six individual components. The minimum score

is 0, and the maximum is 18. Scores up to 6 denote a “stable” spine, scores between 7 and 12 denote

“indeterminate (possibly impending) instability”, and scores greater than 13 denote “instability”.

According to the SOGS study, SINS scores between 7 and 18 warrant surgical consultation. The SINS

score has proved to be an excellent tool for non-surgeons to identify the patients that should be referred

to a spine surgeon, with an excellent inter-observer and intra-observer agreement [6,7]. However the

SINS score is only partially helpful for surgeon as a treatment guide [8]: there is a large grey zone of

“potentially unstable” (SINS 7 to 12), were spine surgeons currently must rely on their own experience

to determine whether instability is present in the setting of spinal neoplasia and surgery is urgently

indicated. A recent review [9] confirmed that the recommendations for treating the primary bone

tumors are based on moderate quality evidence and expert opinions.

To assist surgeons in the decision-making process, several biomechanical studies have shown that

the modifications associated with simulated metastatic lesions (and the consequent risk of instability)

are to a large extent related to biomechanical factors [10–12]. In fact, vertebral fracture in case of

tumors is possibly triggered by the limited mechanical strength of neoplastic tissue, and by the stress

concentrations occurring around tumor lesions. Therefore, the paradigm for investigating spinal

instability as the result of a neoplastic process differs significantly from traumatic injuries under

different points of view: the pattern of bony and ligamentous involvement, the prognosis, neurologic

manifestations and bone quality. Specific and different sets of criteria for assessing spinal stability

are required. In particular, a biomechanical path for proving the evidence of the effects of primary

malignant tumors on the spine stability has not yet been defined.

The hypothesis of this study was that the primary tumors cause significant mechanical alterations,

in terms of bone strain distribution and absolute value in the spine. The aim was to verify if such

alterations can be measured in vitro in order to define a reliable way to characterize the effect of the

specific tumors. In prospective, this approach can be used to collect a database from a range of tumors,

and create an evidence-based score to assess the stability of the spine.

2. Materials and Methods

2.1. Protocol

The workflow (Figure 1) was defined in compliance with the rules of the Declaration of Helsinki

and the protocol was approved by the Ethical Committee of the Rizzoli Orthopaedic Institute (Protocol

441, 15/01/2018, Bologna, Italy); written informed consent was provided by all the patients involved.
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Figure 1. The workflow consisted of the CT-scan of the patient, en bloc resection of the vertebra with

primary tumor, staining of the vertebra with methylene blue for the evaluation of the tumor margins,

preparation of the white-on-black random speckle pattern for the DIC measurements, mechanical tests

and histology. The time available between the resection of the vertebra and the end on the mechanical

test was two hours for not jeopardizing the patient’s diagnosis.

After the en bloc resection of the primary tumor, the retrieved spine specimen can be used for

biomechanical tests, with two strong restrictions:

• The specimen can stay in air only two hours to not modify the biological characteristics, after that

the specimen must be fixed in formalin solution (also if the tests are not completed);

• The specimen must not be fractured or damaged to not compromise the evaluation of the margins

of the tumor and the histological analysis.

The design of the biomechanical test was constrained by the need for not changing the clinical

pathway, and not jeopardizing the diagnosis based on the histology of the removed tissue.

2.2. Cases

Three cases were collected for this study at the Rizzoli Orthopaedic Institute in Bologna, Italy.

The selection criteria were chosen to widen the range of applicability to different clinical scenarios and,

at the same time, guarantee the optimal metrological conditions. For these reasons, only vertebrae

with a large vertebral body (generally from T10 to L5), without any fracture signs, without any history

of spinal surgery and spinal fixation and from non-osteoporotic donors were accepted. The batch had

to include vertebrae treated with, and one without, radiotherapy. The patient’s details are reported in

Table 1.

Surgeries were planned and performed according to the location of the lesion in order to minimize

the risk of both neurological lesions and marginal contamination. Clinical CT scans were performed

the day before the surgery (Figure 2).

In the first case (#1), the vertebrectomy was performed through a posterior approach and the

resection was achieved through the disc above and below. In the second case (#2), a double approach

(initially posterior and then combined posterior and anterior extra-pleural retro peritoneal approach)

was performed and the resection was achieved through the cranial and caudal adjacent vertebral

bodies. In the third case (#3) a double approach similar to specimen #2 was performed and the resection

was achieved through the cranial and caudal adjacent discs.
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Table 1. Patients’ and tumors’ details. In particular, for each case, the following details were evaluated: surgical stage (Enneking Classification) [13], tumor extension

(WBB Classification) [14], epidural spinal cord compression (Bilsky Classification) [15], spine instability neoplastic score [4], and margin classification (and for the

Ewing’s sarcoma also the prognostic indicator [16]).

Case Age Sex Tumors Vertebra Grade
Local

Extensions
6-Point
ESCC

SINS
Margins

Classification
Presence of
Metastasis

Months
between

Diagnosis
and Surgery

Previous
Therapy

Current
Therapy

#1 62 M Chordoma T12 IB 7–10 1B 11

Focal margin, in
the posterior

part of the
specimen. Wide,

the other
margins

NO 2 None None

#2 22 M
Ewing’s
sarcoma

L3 IIB 2–6 0 4
Wide (Necrosis
40%, Bologna

system 1)
NO 4 Chemotherapy

Chemotherapy
and

Radiotherapy

#3 11 F
Ewing’s
sarcoma

L3 IIB 7–11 1A 6
Wide (Necrosis
80%, Bologna

system 1)
NO 6 Chemotherapy

Chemotherapy
and

Radiotherapy
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Figure 2. Transverse and sagittal planes of the CT scans for each vertebra before the resection.

The arrows indicate the position of the tumor, the vertical and horizontal lines indicate the relative

position of the plans.

In all cases, the posterior arc was removed and the dural sac was protected with the Chiripa

technique [17]. In cases #1 and #2, the osteotomies were performed with the Gigli saw and the Resegone

retractor (K2M, Leesburg, VA, USA); in case #3 the discectomy was performed with forceps.

At the end of the surgery, x-ray images of the resected vertebral body were acquired and the bone

integrity was checked. Thus, the vertebral bodies were sent to the department of pathological anatomy

for the margin evaluation, then to the biomechanics lab for the mechanical tests. Finally, the specimens

were sent back to the hospital for the histological analysis.

2.3. Mechanical Tests

The specimens were aligned with a well-established anatomical reference frame to guarantee the

repeatability of the measurements [18] and the extremities were potted in bone cement.

The tests were performed using a uniaxial testing machine (Instron 8032 with the Instron 8800

controller, Instron, Cambridge, UK) and a 10 kN load cell (Instron, Cambridge, UK). Each specimen

was fixed on the caudal side and compressed from the cranial side. To generate presso-flexion [11,19],

the compression force was applied with an anterior offset of the 10% of the antero-posterior dimension
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of the vertebral body with respect to the center of the vertebral body. To avoid transmission of any

undesired component of load (simulate the role of the intervertebral discs), free rotation of the cranial

pot was allowed by means of a ball joint, while free horizontal translations were granted by means

of two low-friction orthogonal linear bearings (Figure 3). The specimen was loaded initially with a

very small load of 50 N so as to preliminarily check the strain distribution was performed, and the

average strains were computed. Based on this pre-tuning of the load, the actual load was computed so

as to reach an expected average compressive strain of 1500 microstrain (which is the strain magnitude

associated with physiological loading conditions) on the anterior surface of the vertebral body [20–22].

The tests were performed with extreme caution to ensure that no damage was induced in the specimen

that would compromise the diagnosis for the patients. In fact, in case of load drop, indicating a fracture,

the entire test would have been immediately stopped (this event did not occur in any specimen).

 

Figure 3. Left: loading setup with 3D-DIC cameras and light system. The low friction linear bearings

and the ball joint are covered by the blue towels. On the right, a detail of the specimen with the speckle

pattern (anterior view).

2.4. Strain Measurements

Before the test, a white-on-black speckle pattern [23–25] was prepared on the anterior surface of the

vertebral body to measure the strain on the anterior cortical surface with a validated three-dimensional

Digital Image Correlation [11,25]. Briefly, the dark background was prepared by staining the anterior

surface of the vertebral body with a saturated solution of methylene blue; this solution does not change

the mechanical properties of biological specimens [23,25]. The white speckle dots were obtained

spraying a water-based white paint (Q250201 Bianco Opaco, Chrèon, Como, Italy) with an airbrush

airgun (AZ3 HTE 2, nozzle 1.8 mm, Antes Iwata, Italy).

The 3D-DIC system (Q400, Dantec Dynamics, Skovlunde, Denmark) used was equipped with

two cameras (5MPixels, 2440 × 2050, 8-bit, Stingray F-504b, Allied Vision, Stadtroda, Germany)

with metrology-standard 35 mm lenses (Apo-Xenoplan 1.8/35, Schneider-Kreuznach, Bad Kreuznach

Germany; 135 mm equivalent), and a custom set of LEDs, with a luminous flux of 10,000 lumen.

To optimize the field of view and the resolution, the cameras were vertically positioned in front of

the specimen (Figure 3). The distance between the cameras and the specimen was adjusted for each

vertebra to optimize the framing, obtaining an averaged pixel size of 25 µm. Images were acquired at

10 frames per second during the load application, with the lens aperture equal to f/16 and a shutter

time of 1/50 s.

The tensile and compressive strains on the anterior surface of the vertebral body were computed

with Istra 4D (v.4.3.1 Dantec Dynamics) using a facet size in the range 45–49 pixels, a grid spacing

between 17 and 30 pixels, and a filter kernel size with 11 × 11 measurement points. This combination of
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optimized parameters [26] allowed a measurement spatial resolution below 3 mm and the minimization

of the noise on the measurements.

Finally, in order to provide a quantitative estimate of the damage extent caused by the tumor,

the ratio between the average principal strains on the surface in front of the tumor and the average

principal strain on the vertebral body were computed. In fact, in a healthy vertebra, a uniform strain

distribution is expected [21], while in case of tumor lesions strain concentrations could occur [11].

3. Results

To better understand the detailed strain analysis below, the reader should bear in mind two points:

(1) the geometry and material properties of healthy vertebrae are optimized for their daily loads so

as to provide a uniform distribution of strain. In fact, differences of less than 5% were measured

in vitro around the vertebral bodies of healthy vertebrae in axial compression [21]. While a uniform

strain distribution corresponds to and optimized structure and a reduced risk of fracture, the opposite

happens when high strain peaks occur for some reason (e.g., tumor lesions). (2) Under physiological

loading, the strain experienced by bone tissue is the range 2000/−2000 microstrain [27]. When strains

exceed 7000/−10,000 microstrain, damage occurs in healthy cortical bone [28].

The maximum load was tuned for each specimen so as to reach an average compressive strain of

1500 microstrain (which is the strain magnitude associated with physiological loading conditions).

To achieve such strain magnitudes, the loads (force applied with a 10% anterior offset) for the three

specimens were, respectively, 214, 397 and 191 N.

The tensile and compressive strains were analyzed in detail under such maximum load.

All specimens showed a highly inhomogeneous strain distribution on the anterior surface of the

vertebral body (Figure 4). The average compressive strains were around 1500 microstrain, as described

above, but the tensile peak strains reached 40,000 microstrain while the compressive peak strain were

−20,000 microstrain. In all three specimens, the strain peaks on the anterior surface of the vertebral

body were in correspondence of the tumor. The ratios of the principal strains between the region in

front of the tumor and the vertebral body were, for the tensile strain: 3.2 (#1), 1 (#2) and 2.7 (#3), and for

the compressive strain: 1.8 (#1), 1.7 (#2) and 3 (#3).

ƺ
ƺ

ƺ

 

Figure 4. Compressive and tensile strains experimentally measured on the vertebral anterior surface.

The coronal sections show the position of the tumor (arrows). The false color map represents in

reddish color the tensile strain, and in bluish color the compressive strain. The green bracket indicates

the physiological strain range, the red bracket indicates the elastic strain range for healthy cortical

bone [20,28].
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4. Discussion

This work aimed to verify the feasibility of investigating by means of a biomechanical analysis

the reduction of spinal stability in case of primary tumor, in order to create a reliable tool applicable to

obtain evidence. En bloc resected vertebrae were subjected to mechanical testing and the altered strain

distribution due to the tumors was measured. The results showed that for the tested specimens with

primary tumor, the spine was largely unstable. Indeed, the specimens were tested with loads lower

than the ones associated with typical physiological activities but an alarming strain distribution with

strain peaks over the typical failure limit (circa 6-fold the typical tensile fracture strain and twice the

typical compressive fracture strain, which are 7000 microstrain in tension and −10,000 microstrain in

compression [20,28]) were measured.

The comparison with the strain distribution in healthy vertebrae [11,21] revealed that stability

was influenced by the presence of the tumor both in terms of absolute strain and in terms of strain

distribution. In particular, the qualitative strain analysis highlighted the vertebral weakness in

correspondence of the tumor mass. This suggested that a slight misalignment of the load, during daily

activities, could result in a vertebral fracture, worsening the medical case. At the same time, despite

the strain values were over the typical bone fracture threshold, the vertebrae did not show any sign

of fracture. This behavior indicated the regions in correspondence of the tumor had also different

mechanical properties that micro-/nano-indentation tests can confirm [29,30].

In the literature, some works evaluated the strain on vertebrae affected by metastasis but, to the

best of the authors’ knowledge, this is the first case in which the strain distribution was measured

in vitro on en bloc resected vertebrae, and generally other bones, with primary tumor. From a

biomechanical point of view, several aspects are similar in the case of primary and secondary tumors

(metastasis). The presence of a lytic mass inside the vertebra causes a reduction of the vertebra strength

and, indirectly, increases the risk of clinically observed fractures [31–33]. This increased risk of facture

is due to a dramatic alteration of the strain pattern with respect to the naturally optimized structure of

the healthy vertebra [11,34,35], with strain peaks above the typical yield strain of healthy bone.

The lack of evidence in the biomechanical field of the effects of the primary tumors on the spine

directly impinges on the clinical practice: clear guidelines are currently missing to face the dilemma

between therapy and surgery in case of primary tumor, both benign and malign such as Ewing’s

sarcoma, chondrosarcoma, giant cell tumor, hemangioma, osteoblastoma, etc. Indeed, treatment

decision is still based predominantly on retrospective case series and institutional expertise [36].

A better scenario, instead, is available for the treatment of spinal metastasis, where the SINS [4],

the Tomita [37] and the Tokuhashi classifications [5] provide basic guidelines for the clinicians. However,

the indications from these classifications are conceived for secondary tumors and cannot be directly

extended to primary ones. Only the SINS can provide this sort of information in the case of primary

tumors. However, in two cases of this study (#2 and #3, with SINS scores = 4 and 6, respectively)

the SINS would have suggested no spinal stabilization, and only in one case (#1, SINS score = 11)

consultation with a spine surgeon would have been recommended, while our biomechanical evidence

highlighted that all three cases were highly at risk of fracture.

The main limitations of this study were due mainly to the rarity of the pathologies (0.2% of all

malignant tumors [2]) and the need not to jeopardize the diagnosis for the patients, as imposed by

the ethical committee for this pilot study. First of all, the number of specimens, the kind of tumors

and the intrinsic biological variability did not allow to generalize the clinical outcomes of the study.

Despite the results being consistent, other tests must be performed to build a statistically robust body

of information. The study was performed to define a reliable path applied to vertebrae with different

conditions, including different types of tumor, but also subjected or not subjected to radiotherapy

(which is known to affect the mechanical behavior of the bone [38]), to verify the ability of capturing

the effect of the tumor. A description of the vertebra behavior up to failure and of the strain inside

the vertebral body were not allowed, but they would help to understand which part of the vertebra

is largely stressed. Moreover, the results invite to perform a micro-/nano-indentation analysis for
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the different kind of tumors to characterize the tumor tissue and understanding the role played in

weakening the vertebra.

In this paper, we presented how the proposed biomechanical test can be used to investigate the

alterations associated with bone tumors. This approach can be extended and applied in different

contexts. For instance, breast tumor is known to affect the stiffness of the extracellular matrix which,

in turns, modulates the response of tumor cells [39,40]. Therefore, also in this area, investigating

the alterations of the strain distribution could provide useful information for the diagnosis and/or

treatment [41].

In conclusion, this work showed the feasibility of assessing the biomechanical effect of vertebral

primary bone tumors by measuring the strain distribution on the anterior surface of en bloc resected

specimens. The strain pattern showed the specimens were highly unstable due to the presence of the

tumor, and close to failure even with loads lower than the physiological ones. This study could raise

awareness among the surgeons in taking care of the balance between a proper drug treatment for the

tumor and the urgency of a spine stabilization to reduce the risk of fracture. This work could pave

the way to the idea of identifying an assessment, based on evidence, that takes into account both the

clinical condition of the patient and the biomechanical condition of the spine.
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