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REVIEW ARTICLE OPEN

Loss of oral mucosal stem cell markers in oral submucous

fibrosis and their reactivation in malignant transformation
Mohit Sharma 1, Felipe Paiva Fonseca2, Keith D. Hunter3 and Raghu Radhakrishnan4

The integrity of the basal stem cell layer is critical for epithelial homoeostasis. In this paper, we review the expression of oral

mucosal stem cell markers (OM-SCMs) in oral submucous fibrosis (OSF), oral potentially malignant disorders (OPMDs) and oral

squamous cell carcinoma (OSCC) to understand the role of basal cells in potentiating cancer stem cell behaviour in OSF. While the

loss of basal cell clonogenicity triggers epithelial atrophy in OSF, the transition of the epithelium from atrophic to hyperplastic and

eventually neoplastic involves the reactivation of basal stemness. The vacillating expression patterns of OM-SCMs confirm the role

of keratins 5, 14, 19, CD44, β1-integrin, p63, sex-determining region Y box (SOX2), octamer-binding transcription factor 4 (Oct-4),

c-MYC, B-cell-specific Moloney murine leukaemia virus integration site 1 (Bmi-1) and aldehyde dehydrogenase 1 (ALDH1) in OSF,

OPMDs and OSCC. The downregulation of OM-SCMs in the atrophic epithelium of OSF and their upregulation during malignant

transformation are illustrated with relevant literature in this review.
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INTRODUCTION
The basal stem cell layer of normal oral mucosa (NOM) is a self-
perpetuating reservoir of cells with a mechanism for self-renewal,
a property referred to as clonogenicity or stemness. The integrity
of the basal stem cell layer is thus essential for epithelial
homoeostasis. Breakdown in cell-cycle turnover is antecedent to
the development of oral potentially malignant disorders (OPMDs)
and oral squamous cell carcinoma (OSCC). Oral submucous fibrosis
(OSF) is an OPMD commonly present among people in the Indian
subcontinent and Southeast Asia.1,2 Various epidemiological
studies implicate areca nut chewing as the main aetiological
factor in OSF. There is overwhelming evidence suggesting that the
chewing of commercial addictive products, such as pan masala,
gutka, mawa and betel quid (BQ) containing considerable
amounts of areca nut, tobacco and slaked lime, predisposes
patients to OSF.1,3 Areca nut has cytotoxic effects on oral mucosal
cells,4 and disturbingly, oral cancer arising in the background of
OSF seems to develop earlier and has a greater propensity to
invade and metastasize.1

Considering OSF as an over-healing wound, the role of stem cell
activity in its genesis is well documented.2,5,6 Several reports
suggest downregulated basal stem cell activity as a tipping event
triggering epithelial atrophy in OSF.4,7–14 Limited scientific
evidence supports a rebound amplification of stem cell activity
in the epithelium transitioning from atrophic OSF to oral epithelial
dysplasia (OED) and eventually to OSCC. A comprehensive
assessment of oral mucosal stem cell markers (OM-SCMs) in
relation to the progression of OSF, OED and OSCC is performed in
this review (Figs. 1–5).

STEMNESS REGULATION: THE ROLE OF WILD-TYPE VERSUS
MUTATED P53
When mutated, p53 triggers a cascade of events leading to
malignancy. However, its role in OSF and its malignant
transformation are not clear. Since p53 antibodies (e.g., p53-duo)
do not distinguish between wild-type p53 (Wt-p53) and mutated
p53 (Mut-p53), it is critical to delineate their role in the
progression of OSF.
Wt-p53 expression seems to be vital for the initiation of fibrosis

to the extent that the expression of profibrotic plasminogen
activator inhibitor-1 (PAI-1) is re-established following the expres-
sion of Wt-p53.15 Transforming growth factor-beta (TGF-β) induces
the complex formation between Wt-p53 and Smads2/3/4 in the
PAI-1 promoter, recruiting the histone acetyltransferase CREB-
binding protein (CBP). CBP augments histone H3 acetylation in the
PAI-1 promoter, activating PAI-1 transcription.16 Thus, Wt-p53 is
expressed intensely in the basal layer of the atrophic epithelium in
OSF compared to the hyperplastic epithelium,13 suggesting that
Wt-p53 plays a key role in the initiation of fibrosis and epithelial
atrophy by reducing stemness.
Wt-p53 represses stemness by inducing miR-145,17 which exerts

tumour-suppressor functions through the downregulation of
c-MYC, octamer-binding transcription factor 4 (Oct-4) and sex-
determining region Y-box 2 (SOX2).17,18 Notably, atrophic
epithelium in OSF shows high p53 levels, low c-MYC expression
and stable hypoxia-inducible factor (HIF) expression.13 The clonal
expansion and evolution of dysplasia is the outcome of high
c-MYC activity and Mut-p53 expression.13 The downregulation of
Oct-4 in the atrophic epithelium of OSF in contrast to the normal
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epithelium4 (Fig. 1a) and its rebound expression in the malignant
transformation of OSF suggests altered stemness (Fig. 1b).19 Thus,
it could be concluded that Wt-p53 works as an anti-stemness
factor and is associated with fibrosis and atrophy, while Mut-p53 is
associated with dysplasia and malignant progression.20

ALTERATIONS IN THE EXPRESSION PATTERN OF OM-SCMS IN
OSF, OPMD AND OSCC
The OM-SCs in the basal layer of the oral mucosa are the normal
stem cells essential for maintaining the integrity of the oral
mucosa.21 Contact with the basement membrane is required to
maintain basal keratinocyte stemness. The severity of the contact
of OM-SCs with the basement membrane promotes their
differentiation.22 Their biological attributes, such as inherent
longevity and the ability to self-replicate, make these cells an
ideal candidate to accumulate a full complement of mutations
triggering tumorigenesis. Hence, their breakdown is reflected in
the aberrant expression of OM-SCMs in various OPMDs and OSCC.
Although the stem cells associated with cancer are quite similar to
normal stem cells and express the same markers, certain unique
characteristics, such as the loss of growth control, justify their
separate designation as cancer stem cells (CSCs) or tumour-
initiating cells.21,23,24

Several studies have shown that CSCs play a crucial role in the
growth, spread and recurrence of oral cancer.25–31 CSCs in oral
cancer demonstrate elevated expression levels of stem cell
markers, such as Oct-4, SOX2, Nanog, Nestin, CK19, B-cell-
specific Moloney murine leukaemia virus integration site 1 (Bmi-
1), CD117 (c-kit), CD44 and CD133, and decreased expression
levels of involucrin and CK-13.25,26,32–34 Evidence supporting this
stems from the finding that the signalling pathways regulating
normal stem cell division (i.e., Notch, Wnt, Hedgehog and Bmi-1)

are involved in oral cancer development.27,30,31,35,36 Recent
evidence indicates that CSCs within surgical margins play a crucial
role in the clinical outcomes of cancer.37–39 Lazarevic et al.38

showed that the surgical margins of oral cancer express stem cell
markers, such as CD44, Oct-4, CD133, Nanog and SOX2, which
have the ability to form spheroids to become resistant to
chemotherapy. CSCs survive and promote cancer, as they
maintain low levels of reactive oxygen species (ROS) levels and
exhibit redox patterns matching those of normal stem cells.23,40

This explains their resistance to elimination by radiotherapy.23,40

Xu et al.41 showed that enhanced aerobic glycolysis and
L-lactate production in oral CSCs is mediated via the epidermal
growth factor (EGF)/epidermal growth factor receptor (EGFR)/
phosphoinositide 3-kinase (PI3K)/HIF-1α pathway, and is evi-
denced by the upregulation of the CD44+CD24− population of
CSCs along with the expression of other CSC markers, such as
Bmi-1 and aldehyde dehydrogenase 1 (ALDH1). Zhao et al.42

showed that the cancer stem cell-like state in oral cancer is
primed by lactate uptake, and is evidenced by the expression of
CD133 and upregulated Wnt signalling.
Individually, ALDH1 and CD44 are considered markers of CSCs

in oral cancer,31,43 and together, they identify the specific CSC
compartment.43–46 ALDH1 was found to be upregulated at the
invasive tumour front (ITF), and the adjacent non-tumour
epithelium correlated with tumour aggressiveness.47 Aldehyde
dehydrogenase 1 family member A1 (ALDH1A1) may thus serve as
a marker for premalignant cells in oral cancer.48 CD44high/
ALDH1high cells exhibit a greater tumour sphere-forming capability
than CD44high/ALDH1low cells.46 Remarkably, vimentin-positive
spindle-shaped cells were found in the CD44high/ALDH1high cell
population but not in the CD44high/ALDH1low cell population,46

indicating the propensity of the former to undergo
epithelial–mesenchymal transition (EMT) and seed new tumours.
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Certainly, the increased expression of vimentin correlates with
higher migratory activity and oral cancer progression.39

Other stemness markers, such as CD44, CD133, glucose-
regulated protein 78 (Grp-78), Grp-96, Oct-4, Nanog and SOX2,
are upregulated upon exposure to areca nut and correlate with
worse prognosis in areca nut-induced cancers.49,50 Furthermore,
areca nut-induced chemoradioresistance results from the upregu-
lation of ATP-binding cassette subfamily G member-2 (ABCG-2), a
drug- efflux pump and a stem cell marker.22,49,50 Oral cancers
among habitual areca nut chewers demonstrate an aggressive
phenotype, chemoradioresistance and a much lower 5-year
survival rate than those without areca habits.18

Studies on oral premalignant lesions have shown that CSC
markers, such as ABCG-2 and Bmi-1, predict the transformation of
oral leukoplakia to cancer.51 The expression patterns of CSC
markers, such as ALDH1 and CD133, correlate with a high risk of
malignant transformation of oral leukoplakia.52 In addition, the
coexpression of the CSC markers ALDH1 and Bmi-1 is a strong
indicator of malignant transformation of oral erythroplakia.20 It is
well established that the CSC markers ALDH1, Bmi-1 and ABCG-2
drive the process of field cancerization in oral erythroplakia.53,54

An intriguing correlation of stem cell activity in OSF, OPMD and
OSCC was uncovered through our literature search. While
Rajendran et al.7 was the first to propose downregulated stem
cell activity in OSF, it was subsequently confirmed to be due to the
adverse effects of nitric oxide and areca nut-associated carcino-
gens on basal stem cells.11 The reduced stem cell activity in
atrophic OSF was evidenced by a decrease in the expression of
proliferative/stem cell markers, such as Ki-67, Cyclin-D1 (CCND-1)
and c-MYC,10,13 and an increase in their expression in the
malignant transformation of OSF.10,13

The OM-SCMs involved in molecular signalling pathways
include keratins 5/14, 15, 19, α6β4-integrin

+CD71−, β1-integrin,
collagen IV, p75NGFR, stage-specific embryonic antigen 1 (SSEA1),

CD24, CD44 (CD44H), CD71, CD117 (c-kit), CD133, melanoma-
associated chondroitin sulfate proteoglycan (MCSP), Nestin, p63,
octamer-binding transcription factor-3/4 (Oct-3/4), Nanog,
SOX2, ABCG-2, ALDH1 and Bmi-1 (Supplementary Information
(SI)).22,55–65 The crucial role of keratins 5, 14, 19, CD44, β1-integrin,
p63, SOX2, Oct-4, c-MYC, Bmi-1 and ALDH1 in potentiating stem
cell behaviour in OSF is further discussed in sections “β1-integrin
as a stem cell marker in OSF and its malignant evolution”, “p63 as
a stem cell marker in OSF and its malignant transformation”, “c-
MYC as a stem cell marker in OSF and its malignant evolution”,
“Bmi-1 is a stem cell marker in OSF and its malignant evolution”,
“Keratin 5/14 as a stem cell marker in OSF and its malignant
evolution” and “Keratin-19 as a stem cell marker in OSF and its
malignant evolution”.

β1-integrin as a stem cell marker in OSF and its malignant
evolution
β1-integrin functions as OM-SCM since it is downregulated in
differentiated cells. The modulation of collagen synthesis during
wound healing occurs via β1-integrin. Polymerized collagen
inhibits an excessive accumulation of ECM by activating β1-
integrin.9,66 When fibroblasts interact with polymerized type I
collagen, caveolin-1 (Cav-1) forms a complex with phosphatase
and tensin homologue (PTEN) and β1-integrin on the plasma
membrane.66 This places PTEN in the correct spatial location to
inhibit the PI3K/AKT signal generated through the β1-
integrin–matrix interaction,66 thus promoting fibroblast apoptosis
(Fig. 2a). Conversely, the downregulation of β1-integrin leads to
reduced membrane accumulation of the PTEN–Cav-1–β1-integrin
complex.9,66 This hampers the ability of PTEN to inactivate AKT
signalling,66 leading to fibroblast persistence and promoting
fibrosis (Fig. 2b).
Hyperplastic OSF and OSCC demonstrate increased stem cell

activity, as evidenced by the upregulation of β1-integrin.
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increased β1-integrin expression pattern correlates with a greater
tumorigenic potential, as indicated by the augmented tumour
spheres and holoclonal colony formation in oral cancer cells
compared to control cells.67 The β1-integrin-driven transition from
dormancy to tumorigenicity occurs through its activation by
fibronectin/type-1 collagen and/or the activation of uPA receptor
(uPAR).68 β1-integrin, through the integrin-linked kinase (ILK)/AKT
pathway, inhibits various proapoptotic enzymes, such as BCL-2-
associated X apoptosis regulator (BAX), BCL-2-associated agonist
of cell death (BAD) and caspase-3/-9, and thereby promotes
apoptosis resistance in cancer cells.69 Increased ILK also upregu-
lates CCND-1, which promotes cellular proliferation, and matrix
metalloproteinase-9 (MMP-9), promoting the invasive potential.69

β1-integrin also upregulates c-MYC through the focal adhesion
kinase (FAK)/PI3K/AKT pathway,69,70 resulting in increased stem-
ness and hyperplastic epithelium in OSF (Fig. 2d). Conversely, the
downregulation of β1-integrin in the epithelial compartment
should lead to an atrophic epithelium. Certainly, very advanced
OSF with a severely atrophic epithelium does show the lowest
stem cell activity, evidenced by the downregulation of β1-integrin
in buccal mucosa (Fig. 2c).9

p63 as a stem cell marker in OSF and its malignant transformation
The p63 gene products occur in six different protein isoforms, of
which ∆Np63α, ∆Np63β and ∆Np63γ are devoid of the N-terminal
transactivation domain, whereas TAp63α, TAp63β and TAp63γ act
as transcription factors. Among these, ∆Np63α is the predominant
isoform whose expression is reduced in OSF without OED and
increased in OSF with severe OED.12,14 The expression of ∆Np63α
confirms the regenerative potential, as it is restricted to the basal
stem cell layer in NOM.61 Downregulated ∆Np63α mediates

senescence,61,71 which is considered to be a barrier to tumour
development. Oxidative stress and DNA damage, which mediate
cell-cycle arrest and the senescence of keratinocytes in OSF
following exposure to areca nut extract (ANE), are a result of the
overactivity of p16, p21, p38, nuclear factor kappa B (NF-κB), IL-6
and COX-2 (Fig. 3a).72

∆Np63α functions as a dominant-negative inhibitor of p53,
competing with its DNA-binding sites to promote oral cancer.73

Thus, the downregulation of ∆Np63α activates Wt-p53,15 further
contributing to apoptosis and epithelial atrophy in OSF. Likewise,
∆Np63α inhibits TAp63, which mirrors p53 function.12,74 If ∆Np63α
is reduced, the unhampered TAp63 mediates apoptosis and
epithelial atrophy in OSF (Fig. 1a).
TGF-β1-TGFβR1 (ALK-5)-mediated serine-66/68 phosphorylation

of the ∆Np63α isoform induces 26S proteasomal degradation
(Fig. 3a).61 Impaired ∆Np63α isoform function through TGF-β1

61

might be responsible for oxidative stress-mediated epithelial
atrophy in OSF, as reported by Khan et al.4 and Wang et al.75

(Fig. 3a). Indeed, ∆Np63α has the ability to inhibit the cell death
induced through oxidative stress, DNA damage and anoikis via the
upregulation of glutathione biogenesis, and it cooperates with
B-cell lymphoma 2 (BCL-2) to promote clonogenic survival (Fig. 3a,
b).75 Since ∆Np63α is a positive regulator of OM-SCMs, ALDH1 and
CD44, its downregulation61,76 is reflected in impaired basal stem
regeneration (Fig. 3a).61,76 The decreased stem cell maintenance
manifests as stem cell hypoplasia, epithelial atrophy and loss of
rete ridges (Fig. 3a).
The augmentation of ∆Np63α in keratinocytes mediates

senescence bypass through the chromatin- remodelling protein
lymphoid-specific helicase (Lsh) and endows them with self-
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population.77 In addition, ∆Np63α promotes the repression of
p16Ink4a and p19ARF, especially in the presence of retrovirus-
associated DNA sequencing (RAS), thus promoting malignant
transformation (Fig. 3b).58,71,77

Recently, the mechanism by which ∆Np63 maintains stem cell
potential has been elucidated.78 ∆Np63 augments hexokinase-2
(HK-2) expression by binding to the p63-binding motif in the 15th
intronic region of the HK-2 genomic sequence, which works as an
enhancer.78 HK-2, via its mitochondrial-binding motif (MBF), affixes
voltage-dependent anion channel 1 (VDAC-1) in the outer
mitochondrial membrane (OMM, red).78 VDAC-1 in turn interacts
with adenine nucleotide translocase-1 (ANT-1) located in the inner
mitochondrial membrane (IMM, blue), forming a channel between
IMM and OMM.78,79 This mechanism allows rapid ADP/ATP cycling
through increased coupling between glycolysis and OXPHOS.78

Augmented coupling between glycolysis and OXPHOS protects
cells from oxidative stress by reducing ROS formation79 and
thereby preventing senescence.80 This allows for higher respira-
tory rates and increases the stem cell capacity (Fig. 3b).78,79

In addition, ∆Np63α-arbitrated lymphoid-specific helicase (Lsh)
upregulation77 can epigenetically suppress fumarate hydratase
(FH), a Krebs cycle enzyme.81 This leads to the accumulation of
fumarate, considered an oncometabolite, which then inhibits the
inhibitors of hypoxia-inducible factor (HIF), the prolyl hydroxylases
(PHDs).82 Consequently, amplified HIF can promote malignancy
through the Warburg effect by providing cancer cells with
building blocks (Fig. 3b).83

∆Np63α has been shown to be reactivated in OED and
OSCC.14,78 Upregulated ∆Np63 promotes oral cancer chemoresis-
tance and proliferation by activating EGFR, multidrug resistance-
associated protein 1 (MRP1)/ATP-binding cassette subfamily C
member 1 (ABCC-1), ALDH1 and CD44 (Fig. 3b).76 A pervasive
signalling network promoting stemness in oral cancer exists,
involving ∆Np63α, hyaluronan synthase 3 (HAS-3), hyaluronic acid
(HA), CD44, EGFR and signal transducer and activator of
transcription-3 (STAT-3).76 ∆Np63α binds to the HAS-3 and CD44
promoter, upregulating their expression and promoting their
translocation to the cell membrane.76,84 Membranous HAS-3
promotes the intracellular synthesis of HA from precursors uridine
diphosphate N-acetylglucosamine (UDP-GlcNAc) and uridine
diphosphate–glucuronic acid (UDP–GlcA), and then HA is
extruded out of the cell membrane.84 The exteriorized HA then
binds to its receptor CD44, which transactivates EGFR.76 Activated
EGFR through STAT-3 upregulates ∆Np63α.85 ∆Np63α has STAT-3-
binding elements in its promoter, fulfilling this purpose (Fig. 3b).86

This mechanism explains the attainment of stem cells in oral
cancer via EGF. ∆Np63α indirectly upregulates ALDHA1 through
the ∆Np63α/GSK-3/β-catenin (β-CAT)/ALDHA1 pathway (Fig. 3b
and Supplementary Information).62,63

c-MYC as a stem cell marker in OSF and its malignant evolution
Stromal hypoxia is an essential factor in the pathogenesis of
OSF,2,13,14 and is mediated through several pathways.2 Hypoxia-
induced enzymes, such as Cathepsin-D, H and E3 ubiquitin ligases
such as F-box and WD-repeat domain containing 7 (FBXW-7) and
DNA damage-binding protein 1 (DDB-1) can promote the
proteolysis and proteasomal degradation, respectively, of the c-
MYC protein.87 This can result in the loss of proliferative potential
and epithelial atrophy. Similarly, the downregulation of c-MYC
through hypoxia-induced HIF-2α can decrease stemness,88 leading
to atrophy in OSF. As discussed previously, the atrophic
epithelium in OSF shows low c-MYC expression (Fig. 1a).13

Several studies have shown c-MYC to be a necessary positive
modulator of the proliferative compartment.89,90 The nuclear
expression of c-MYC in the basal and parabasal cells of NOM
ascribes its proliferative potential. The loss of nuclear c-MYC
expression in the differentiated layers of oral mucosa further
substantiates its role in maintaining basal stemness.13 c-MYC

overexpression in tumours has been attributed to multiple
mechanisms, including stabilizing mutations, amplifications and
chromosomal translocations.87 In addition, it is upregulated by β1-
integrin through the FAK/PI3K/AKT pathway (Fig. 2d),69,70 and by
NF-κB through the Src/Rac and integrin-linked kinase (ILK)/AKT
pathways.69 Interestingly, the NF-κB1/p50 subunit of NF-κB has
been shown to inhibit c-MYC protein degradation via its inhibition
by the E3 ubiquitin ligase FBXW-7,91 thus leading to elevated
c-MYC levels (Fig. 1b).
Oct-4 and SOX2 are upregulated due to the downregulation

of miR-145 by arecoline.18 As miR-145 is a positive regulator of
E-cadherin and a negative regulator of Snail (SNAI1) and Slug
(SNAI2), EMT occurs. The exposed epithelial cells thus acquire
increased chemoresistance, augmented migration, increased
invasiveness and anchorage-independent growth. Furthermore,
SOX2 and Oct-4 expression is inversely related to miR-145
expression in the tissues of individuals with areca quid-induced
OSCC.18 Since miR-145 downregulates c-MYC, the suppression of
miR-145 drives the upregulation of c-MYC (Fig. 1b).92

Bmi-1 is a stem cell marker in OSF and its malignant evolution
Bmi-1 is positively regulated by c-MYC and increases cellular
proliferation by suppressing the INK4a locus (Fig. 2d).93–95

Downregulated Bmi-1 can propagate epithelial atrophy in
OSF71,77 via enhanced senescence (Fig. 2c).95

The β1-integrin/FAK/PI3K/AKT/AP-1 pathway leads to the
activation of Bmi-196 through c-MYC (Fig. 2d).95 Whilst Bmi-1
expression is limited to the basal layer in normal epithelium,
dysplastic and carcinomatous epithelium show Bmi-1 expression
in the superficial layers.95

Importantly, the knockdown of Bmi-1 in normal epithelium did
not cause an immediate arrest of replication or a loss of viable
cells, whereas in OSCC cells, it had these two effects.95 In addition,
the knockdown of Bmi-1 was shown to inhibit the tumour-
initiating properties of ALDH1+ cells,27,97 enhance their radio-
sensitivity and27,97 chemosensitivity27 and inhibit metastasis.97 On
the other hand, the overexpression of Bmi-1 alters ALDH1− cells to
become ALDH1+ cells, increasing tumour volume and enhancing
metastatic foci.97 The coexpression of Bmi-1/Snail/ALDH1 corre-
lates with the worst prognosis in oral cancer patients.97 Bmi-1 is
thus considered to be a potential chemotherapeutic and radio-
therapeutic target for increasing the sensitivity of CSCs.27

Keratin 5/14 as a stem cell marker in OSF and its malignant
evolution
Downregulated epithelial stemness via K-5/14 inhibition. Keratin 5/
14 are normally expressed in basal-proliferating keratinocytes
through activator protein 1/2 (AP-1/2) or specificity protein 1,3
(SP-1,3)64 along with ∆Np63. The expression of keratin 5/14 is
mediated by the binding of ∆Np63 with AP-1,2 or SP-1,3 in the
K-14 enhancer. In addition, in the K-14 promoter, ∆Np63 binds
with AP2 to upregulate K-14 expression. In the K-5 promoter,
∆Np63 binds to upregulate its expression.61,65 The primary
aetiological agent of OSF, ANE, ostensibly downregulates Keratin
5/14 through TGF-β1-mediated ∆Np63 abrogation,61,65 although it
upregulates AP-1/2 and SP-1,3 (Fig. 4a).64

Regaining epithelial stemness through K-5/14 upregulation. EMT in
OSF is mediated through the downregulation of membranous
E-cadherin and β-CAT, as well as miR-205 and par-3 family cell
polarity regulator (PARD-3), and the upregulation of N-cadherin,
Twist-1, Zinc finger E-box-binding homeobox 1 (ZEB-1), MMP-9
and Vimentin, a mesenchymal-specific protein and a tell-tale
marker of EMT in epithelial cancers.12 Subsequently, the expres-
sion of vimentin, which is associated with some degree of fibrosis
in OSF,98 has been shown to upregulate keratin 5/14 through
∆Np63 in OSCCs.65 Even ∆Np63 itself promotes EMT,12 which is
shown to promote stemness (discussed later). It has been
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established that a higher coexpression of vimentin and K-14
correlates with the recurrence and poor survival of OSCC
(Fig. 4b).65

Keratin-19 as a stem cell marker in OSF and its malignant
evolution
Keratin-19 expression, restricted to epithelial cells, is essential for
the maintenance of the proliferative potential of the basal stem
cell layer in nonkeratinized mucosa. Its loss correlates with the loss
of self-renewal capacity and subsequent atrophy in OSF.8,99 The
atrophic epithelium further facilitates fibrosis through enhanced
permeability.8 High-throughput oligonucleotide microarray analy-
sis has demonstrated K-19 to be the topmost among 129
downregulated genes in OSF.8 Incidentally, K-19 expression shows
an inverse correlation with arecoline concentration.99

Cytokeratin fragment antigen 21-1 (CYFRA21-1), a cytokeratin
fragment produced through the action of caspase-3 on keratin-19,
has been reported in the serum and saliva of patients with fibrosis,
including OSF, as well as in those with malignancy.100 In vitro
experiments have shown the cessation of CYFRA21-1 release into
the culture supernatant with the addition of a caspase-3- specific
inhibitor (Fig. 5a).101 Stromal hypoxia leading to caspase-3 and -9
activation is the most plausible explanation for the downregula-
tion of K-19 and the appearance of CYFRA21-1 in OSF.102,103

CYFRA21-1 is thus a promising noninvasive proxy marker of
hypoxia-initiated epithelial apoptosis and atrophy in OSF patients
(Fig. 5a).101

While K-19 is downregulated in OSF, it is upregulated in
OED.100,104 Furthermore, it demonstrates a sequential increase
with progressive grades of OED and OSCC.104,105 Moreover, the
expression of K-19 is the highest at the invasive front,105 and

serves as an independent predictor of poor prognosis.106 Although
the mechanism for alterations in K-19 expression in the malignant
transformation of OSF has not been studied, increased K-19
expression in OED, OSCC and malignant OSF could be mediated
through enhanced matrix stiffness, which itself is due to
progressive matrix cross-linking. The increased stiffness in OSF
mucosa is evident by a thickened basement membrane, sub-
epithelial fibrosis and increased collagen density.12 The enhanced
matrix stiffness increases myofibroblast formation, which in turn
intensifies collagen formation.2 The increased collagen bioavail-
ability and its binding to discoid domain receptor-2 (DDR-2)
enhances constitutive src activation.107 The upregulation of K-19 is
due to the phosphorylation of its tyrosine 394 residue by the
constitutive activation of src kinase, which otherwise is not
phosphorylated in the basal state (Fig. 5b).108 This will lead to a
complex phenotype of increased K-19 breakdown evidenced by
CYFRA21-1 expression in saliva/serum with a superimposed
upregulation of K-19 through a previously discussed fibronectin-
and/or type-1 collagen/β1-integrin/Src-based mechanism.
Increasing matrix stiffness through a progressively cross-linked

ECM might mediate the upregulation of Yes-associated protein 1
(YAP-1) and its transcriptional coactivator with PDZ-binding motif
(TAZ)109–111 in OSF. Interestingly, ∆Np63α forms a complex with
YAP-1, which promotes stem cell survival.112 Moreover, YAP-1 can
trigger SOX2 transcription by physical interaction with OCT-4.113 In
addition, TAZ binds to the promoter of SOX2, which then drives
stemness in oral cancer.113 YAP-1 upregulates CTGF (which
induces proliferation) and c-MYC (which enhances clonogenicity),
downregulates caspase-7 and BAX and upregulates Bcl-2 (which
enhances apoptosis resistance) (Fig. 5b).114 These mechanisms
might be relevant to the malignant transformation of OSF.
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RISE OF CANCER STEM CELLS—DICHOTOMY OF ARECA NUT
INGREDIENTS IN EPITHELIAL AND STROMAL COMPARTMENTS
The origin of CSCs in OSCCs has been attributable115 to various
factors, which are described as follows.

The genetic alterations in the basal epithelial stem cells
It has been experimentally demonstrated that CD44+ is expressed
in the basal cell compartment and absent in differentiated cells.26

The protracted contact of arecoline with oral keratinocytes leads
to the upregulation of various stem cell markers, such as ALDH1,
CD44, Nanog, Oct-4 and SOX2.18

Upregulation of EMT in epithelial cells
The chronic use of areca nut leads to widespread effects, such as
autophagy induction, promotion of EMT and increased stemness,
which then promote oral cancer.18 CSCs are a plastic state of
tumour cells undergoing EMT. Approximately 40–50% of oral
cancer recurrence is attributed to EMT. Lazarevic et al.39 stated
that EMT preferentially occurs at tumour margins, as they are sites
of vessel invasion. The expression of EMT markers tended to be
higher in surgical margins than within tumours.39

Oral cancer cells expressing SNAI1 (a master mediator of EMT)
acquire a CSC-like phenotype, chemoresistance and migration and
invasion potential.45 In cells expressing both ALDH1+ and CD44+,
Snail coexpresses with ALDH1. Its experimental suppression
decreases the expression of ALDH1, inhibits CSC-like properties
and decreases tumorigenic potential. This suggests that in
ALDH1+ cells, CSC properties are mediated by Snail, and that its
reversal reduces chemoresistance.43

Epithelial stemness augmentation by mesenchymal stem cells
Resident and bone marrow-derived mesenchymal stem cells
(MSCs) are precursors of stroma associated with cancer.29 These
stem cells contribute to angiogenesis and lymphangiogenesis,
modulate the immune system and produce tumour-associated
myofibroblasts.29 In OSCC, fibroblasts can be activated into
myofibroblasts either through genetically transformed keratino-
cytes or exogenous agents such as irradiation or viruses.28 This in
turn can stimulate the transformed keratinocytes by influencing
stem cell division patterns towards symmetry, with an increase in
the stem cell pool within the lesion.28

Via TGF-β, arecoline drives the upregulation of the mesench-
ymal stem cell (MSC) marker STRO-1 in OSF.116 The increased

conversion of fibroblasts into myofibroblasts and upregulated
stemness are indicated by their increased contraction, migration,
invasion and expression of α-SMA and the pro α-1 chain of type-1
collagen.116 These MSCs can serve as a source of multipotent cells
that can rapidly repopulate the wound in response to epithelial
injury.116

Ye et al.117 showed that growth-regulated oncogene-α (GRO-α)
secretion by OSF fibroblasts promotes oral keratinocyte malignant
transformation by augmenting EGFR/ERK signalling, F-actin
rearrangement and stemness. Transformed keratinocytes can
then acquire further genetic alterations with the evolution of
more invasive clones. Highly motile myofibroblasts may also come
into close contact with the highly spindled transformed stem cells
and fuse to produce a more aggressive cell with the myofibroblast
property of high motility and the stem cell property of high self-
renewal.28

Thus, there seems to be a dichotomy with respect to epithelial
and mesenchymal clonogenicity in OSF in response to chronic
areca nut chewing. Interestingly, the increased stemness of the
stromal cell compartment drives a secondary increase in epithelial
stemness, which could be an important mechanism of malignant
transformation in OSF.

FUTURE PERSPECTIVES
Various molecular pathways (Figs. 1–5) and pervasive
epithelial–stromal interactions underlie the mechanisms of the
upregulation of epithelial stem cells and their role in malignancy.
Practically, the normal buccal mucosal epithelium, with an intact
basal stem cell layer, has the potential to ameliorate fibrosis
through the recompensation of basal stem activity. The restora-
tion of the basal stem cell layer via stem cell therapy should be
considered an important component of OSF therapy.4,8

Recent studies have demonstrated the importance of the
perivascular stem cell niche in oral cancer. It is present in the ITF
where CSCs reside, in close proximity to the blood vessels.
Endothelial cell-initiated signalling has been shown to be critical
for the survival and self-renewal of CSCs, and may play a role in
resistance to therapy. Therefore, oral cancer patients might benefit
from therapies that target CSCs directly or their supportive
perivascular niche.118,119

Newly designed chemotherapy and radiotherapy regimens for
the treatment of solid cancers have failed to improve patient
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survival. The underlying reason for this therapeutic failure is that
these regimens target fast-dividing cells instead of slow-dividing
CSCs.120–123 The slow cycling and constitutive expression of
multiple members of the ATP-binding cassette (ABC) family of
transporters is responsible for tumour stem cells exhibiting a high
degree of chemoresistance.124,125 Thus, the final therapeutic goal
should be to restore epithelial homoeostasis. Reinstating the
renewal ability of the basal layer of oral mucosa should reverse
fibrosis and prevent malignancy.2,8,126–129 Indeed, the coculture of
normal buccal mucosal epithelial cell fibrotic fibroblasts causes the
downregulation of connective tissue growth factor (CTGF),128 a
profibrotic mediator in OSF.2 The undifferentiated keratinocytes
reinstate the normal healing patterns in fibrosis through the
downregulation of TGF-β and the stabilization of desmosomal
assembly.129 Targeting the reactive tumour–stroma could be
another approach to halt the signals from the microenvironment
that prevent stem cell recovery.28,31

CONCLUSION
There is compelling evidence to suggest that the aberrant self-
renewing capacity of the basal stem cell layer in OSF with atrophic
epithelium and its restitution in hyperplastic and/or dysplastic
epithelium are associated with the progression to malignancy.
Tumour–stroma interactions provide a niche to potentiate cancer
stem cell behaviour, and the tumour-associated stroma has been
shown to revive basal stem cell activity by initiating a vicious cycle
between epithelial and stromal stem cell compartments.
It is possible that a reduction in stem cell activity causes

epithelial atrophy in OSF, and its restitution promotes malignancy.
The vacillating expression of keratin 5, 14, 19, CD44, β1-integrin,
p63, Oct-4, c-MYC, c-MET and ALDH1 supports this hypothesis.
There are no reports highlighting an oscillating relationship of
OM-SCMs in atrophic OSF versus OPMDs and OSCCs. How the
restitution of stem cell activity contributes to malignant transfor-
mation has been schematically illustrated for the first time.
Furthermore, the role of OM-SCMs in atrophic OSF versus
hyperplastic OSF, OED and OSCC is a fertile area of research,
which may provide further credence in the treatment and
management of OSF.
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