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Abstract 

 

Gene co-expression analysis is widely applied to transcriptomics data to associate clusters of 

genes with biological functions or identify therapeutic targets in diseases. Recently, the 

emergence of high-throughput technologies for gene expression analyses allows researchers 

to establish connections through gene co-expression analysis to identify clinical disease 

markers. However, gene co-expression analysis is complex and may be a daunting task. Here, 

we evaluate three co-expression analysis packages (WGCNA, CEMiTool, and coseq) using 

published RNA-seq datasets derived from ischemic cardiomyopathy and chronic obstructive 

pulmonary disease. Results show that the packages produced consensus co-expression 

clusters using default parameters. CEMiTool package outperformed the other two packages 

and required less computational resource and bioinformatics experience. This evaluation 

provides a basis on which data analysts can select bioinformatics tools for gene co-expression 

analysis.   

 

Keywords: RNA-seq; co-expression; ischemic cardiomyopathy; Chronic obstructive 

pulmonary disease; WGCNA; CEMiTool; coseq 

 

 

 

 

 

 

 

 

 

 

 

 



1.0 Introduction 

 

With the emergence of next-generation sequencing technologies, many researchers have 

needed to interrogate gene expression patterns to answer their research questions. However, 

many genes have unknown functions, which makes interpretation challenging. Co-

expression analysis (see Box 1 for an explanation of all special terms used in gene co-

expression analysis) performed systematically can help alleviate this challenge. Co-

expression analysis uses global gene expression levels to cluster genes into several modules 

based on the correlation estimation. The derived modules allow researchers to understand 

how genes are interacting with one another and to predict their possible roles, because genes 

with similar biological functions tend to exhibit a strong correlation in expression levels [1, 2]. 

Gene expression levels can be derived from RNA-seq or microarray data sets. Following 

identification of gene modules, gene set enrichment analysis is usually performed to uncover 

if the gene set is enriched for biological pathways or functions. In addition, the gene modules 

identified can be further used to correlate with clinical traits to reveal potential associations. 

Finally, gene co-expression analysis is a robust approach to investigate the functional roles of 

a gene.  

 

A fundamental objective of RNA-seq analysis is to identify genes that are significantly up- or 

down-regulated between conditions. However, differentially expressed genes with unknown 

functions or a low number of hits are challenging to interpret. Thus, gene co-expression 

analysis is thought to be a plausible approach to RNA-seq data to identify functional genes. 

However, it is unclear whether all available packages have equivalent performance to derive 

biological conclusions. Besides, co-expression analysis considers the variability in gene 

expression levels and that improving the accuracy of the co-expression networks using RNA-

seq data which may be confounded by technical variation [3]. Gene co-expression analysis 

has been used for many studies, including antigen discovery [4], identification of regulatory 

genes [5-9], and functional classification of genes [10, 11]. 



Numerous gene co-expression analysis packages are available to researchers, including 

Weighted gene co-expression network analysis (WGCNA) [12], co-expression modules 

identification tool (CEMiTool) [13], co-expression of RNA-seq data (coseq) [14, 15], petal  [16], 

Co-expressed biological processes (CoP) [17], and CoXpress [18]. Currently, a 

comprehensive study in which these packages are compared is lacking. As the workflow of 

co-expression analysis is complex and time-consuming, it can appear as a daunting approach 

to users with little bioinformatics experience. In this study, three main Bioconductor packages 

for gene co-expression analysis are discussed: WGCNA, coseq, and CEMiTool. These 

packages are freely available to the research community, are user-friendly and well-

maintained. Three real RNA-seq data sets of ischemic cardiomyopathy (ICM) and chronic 

obstructive pulmonary disease (COPD) were downloaded to evaluate the performance of 

these three packages. The ICM dataset contained 28 healthy controls and 29 ICM patients 

whereas the COPD dataset consisted 91 normal spirometry controls and 98 COPD patients.   

 

Gene co-expression analysis begins with the identification of the association between genes 

through correlation estimation. The association represents the similarity between expression 

levels of the genes across samples. Two correlation measurements are commonly applied to 

gene co-expression construction, Pearson’s and Spearman’s correlations. Subsequently, 

groups of co-expressed genes are clustered based on several methods, including hierarchical 

clustering and K-means clustering, which are discussed in detail elsewhere [19]. WGCNA and 

CEMiTool are both based on hierarchical clustering, while coseq uses K-means clustering. 

WGCNA and CEMiTool packages are similar in principle, but the latter provides an automated 

pipeline. CEMiTool is more efficient in co-expression analysis with its automated pipeline - 

and users do not require extensive bioinformatics experience. On the contrary, WGCNA 

involves complex workflows, requiring users to have extensive bioinformatics skills and higher 

computational power. coseq proposes to offer flexibility in identifying groups of co-expressed 

genes due to its clustering and transformation models [14]. Currently, however, the consensus 

outputs by these clustering methods remain to be discussed.  



 

Although multiple gene co-expression analysis packages have been developed, there remains 

a lack of independent comparison of these packages; especially those available in R. Russo 

and colleagues [13] performed an extensive evaluation between WGCNA and CEMiTool with 

at least 1000 sample size but did not compare the performance with other clustering methods, 

such as K-means clustering in coseq. The K-means algorithm is suggested to produce highly 

specific modular genes [15]. To this end, we applied real data from ICM and COPD patients 

to compare three main packages, WGCNA, CEMiTool, and coseq, for gene co-expression 

analysis and fill the gap in choosing an appropriate package based on the research aim and 

resources available. This study will aid researchers in choosing an appropriate package for 

gene co-expression analysis, taking into consideration the research aims, computational 

resources, and bioinformatics skills.  

 

Box 1. Explanation of all special terms used in gene co-expression analysis.  

Batch effect: This is an artificial source of variation introduced by different sequencing 

platforms, sample source, and experimental design.  
 

Beta value (b): This is a number represents the power at which the gene co-expression 

modules achieve scale-free topology. This is also known as the soft-threshold value. 
 

Centered Log Ratio (CLR): It is a transformation method for genes expression profiles 

in coseq. This transformation considers the geometric mean of the genes and therefore, able 

to identify the small differences in genes with homogeneous expression levels across 
conditions.  

 

Co-expression analysis: This is an approach to cluster genes with highly correlated 
expression levels into multiple modules. 

 

Connectivity: This value indicates the connection strength between a gene and other genes 

in the network. 
 

Differentially expressed genes (DEGs): These are the genes that achieved difference 

statistically in their expression levels between two conditions. The level of significance is 
usually determined by p-value below 0.05. 

 

Eigengene: The is a weighted mean value of the expression levels of all genes within a gene 
co-expression module. 

  

Gene Ontology (GO): This is an algorithm to annotate the biological functions of a group of 

genes.  
 



Hierarchical clustering: This is a method that uses an agglomerative approach where genes 

with similar expression levels are merged into clades.  

 
K-means clustering: This is a clustering method where genes are assigned to the cluster 

based on the minimum distance to the cluster mean (centroid). The number of clusters is 

determined by k value.  
 

Module: Modules consist of clusters with many interconnected genes. 

  

Scale-free topology (SFT): This is a degree distribution of which the network follows power-
law.  

 

Slope heuristics approach: This is a model selection algorithm to determine the number of 
co-expressed gene clusters in coseq. The algorithm uses the asymptotic penalised likelihood 

criterion for model selection, and the lowest penalty score defines the best possible number 

of clusters.  

 
Topological overlap matrix (TOM): This defines how well the genes are connected and 

derive the weighted networks. TOM considers the adjacency and strength of connectedness 

between genes and their neighbours.  
 

Variance-stabilizing transformation (VST): This is a method to fit the mean-variance 

relationships to the transformed data, making expression levels the more homoscedastic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.0 Methods 



 

2.1 Ischemic cardiomyopathy RNA-seq dataset  

 

For a practical comparison, two real ICM RNA-seq datasets were used. RNA-seq studies of 

ischemic cardiomyopathy (ICM) were downloaded from the Gene Expression Omnibus (GEO) 

database (GSE48166 and GSE116250). In total, 28 ICM samples and 29 non-heart failure 

(NF) samples were used to compare three gene co-expression analysis packages. ICM 

samples were obtained from the left ventricle of patients undergoing heart cardiac 

transplantation, whilst patients with no major cardiac history served as NF group [20, 21].     

 

2.2 Chronic obstructive pulmonary disease dataset 

 

To increase robustness of the study, we downloaded another RNA-seq dataset derived from 

lung tissues of chronic obstructive pulmonary disease (COPD) patients. The dataset was 

available from GEO with accession number GSE57148. The dataset included 91 control 

individuals and 98 COPD patients from a Korean population [22]. The total RNA was isolated 

from fresh frozen lung tissue that was remote from the lung cancer.  

 

2.3 Bioinformatics processing 

 

Raw fastq files obtained from GEO were subjected to initial quality assessment using FASTQC 

[23]. All the outputs from FASTQC were merged using MULTIQC [24]. The raw fastqc files 

were trimmed and filtered using TrimGalore [25], raw reads below 20 bases long and bases 

quality below 20 were removed. Subsequently, all the cleaned reads were aligned to the Homo 

sapiens genome Ensembl GRCh38.p13 using STAR version 2.7 [26] with the following 

alignment parameters: --sjdbOverhang 100 --outFilterScoreMinOverLread 0 --

outFilterMatchNminOverLread 0 --outFilterMatchNmin 0. Reads alignment were performed on 



a single-end mode. The mapped reads were quantified using featureCounts release 1.6.5 [27]. 

Gene expression levels were expressed as raw read counts.  

 

2.4 Differential gene expression analysis 

 

Raw read counts were processed using DESeq2 version 3.9 [28]. Pre-filtering was applied to 

the data sets to filter low read counts; genes with less than 10 reads were removed from the 

analysis. Since the RNA-seq data were downloaded from two independent studies, batch 

effect correction was applied prior to read counts normalisation in DESeq2. The read counts 

across the samples were normalised using the DESeq method, based on median ratio of gene 

counts. Subsequently, variance stabilizing transformation estimated from the fitted dispersion-

mean relation was applied to obtain normalised gene expression values. Principal component 

analysis (PCA) plots were used to assess the quality of the data. For the ICM dataset, two 

PCA plots were constructed before and after batch effect removal as this dataset contained 

two independent studies. Differentially expressed genes (DEGs) were identified between 

control and diseased groups in ICM and COPD dataset. P-value for each DEG was adjusted 

for multiple testing using the Benjamini-Hocberg correction [29]. DEGs with a p-adjusted 

threshold below 0.05 were deemed significantly differentially expressed.   

 

2.5 Gene co-expression analysis 

 

The summary of the co-expression analysis packages is presented in Table 1. A more detailed 

explanation of these packages can be found within the developers’ publications. All the 

workflows in the present study are in accordance with the recommendations provided by the 

developers. In order to standardise the input data and assess the performance of the three 

packages, top 5,000 most variable genes were selected from DESeq2 (supplementary file 1 

for ICM; supplementary file 2 for COPD). The selection criteria of the most variable genes 

were based on the transformed expression profiles using variance stabilizing transformation. 



The selected genes were used to construct gene co-expression analysis in WGCNA, 

CEMiTool, and coseq. The parameters and codes used to construct the analysis are provided 

as supplementary code.  

 

Table 1. Software packages for gene co-expression analysis 

Method Version 

Clustering 

Algorithm 

Publish Year Reference 

WGCNA 1.68 

Hierarchical 

clustering 

2008 [12] 

CEMiTool 1.8.3 

Hierarchical 

clustering 

2018 [13] 

coseq 1.8.0 K-means 2018 [14, 15] 

 

 

2.6 WGCNA 

 

WGCNA was used to construct signed weighted gene co-expression modules from the top 

5,000 variable genes. WGCNA identifies modules of genes based on correlation estimates. 

Two types of correlations can be performed on WGCNA to cluster genes into several modules: 

signed and unsigned adjacency matrix correlations. These two types of adjacency matrix 

correlations are defined as: 

𝑠𝑖𝑔𝑛𝑒𝑑	𝑎)* = (1 + 𝑐𝑜𝑟(𝑥) , 𝑥*))/2
𝛽
 

𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑	𝑎)* = 𝑐𝑜𝑟(𝑥) , 𝑥*)
𝛽
. 

Where	𝑎𝑖𝑗 is the network adjacency between gene expression profiles 𝑥) and 𝑥*. In the signed 

adjacency matrix, the correlation interval is scaled into 0 and 1. Signed correlations cluster 



positively and negatively correlated genes into modules. Previous studies suggest that signed 

correlations provide more insight into the enrichment of functional groups [30]. Using unsigned 

correlations, positively and negatively correlated genes are clustered into the same modules, 

which are difficult to discriminate in the analysis. Module detection was based on the 

hierarchical clustering of adjacencies given by the topological overlap measure. A soft 

thresholding power b -value was chosen using “picksoftThreshold” function. A series of b -

values (ranging between 1 and 30) was screened to evaluate the average connectivity 

degrees of different modules. A b -value was selected by plotting the R2 against soft threshold 

b. In the ICM dataset, b=9 was selected because it represents the lowest power for which the 

scale-free topology index. For the COPD dataset, b=11 was selected. Subsequently, the 

adjacency matrix was transformed into a topological overlap matrix (TOM) to measure the 

connectivity of genes within the network [31]. The connectivity of genes is defined as the sum 

of its adjacency in relation to all other genes in the network. The TOM is measured between 

a value of 0 and 1. Based on TOM, a higher value (towards 1) indicates the set of genes are 

highly connected, and therefore, the strong interconnectivity will create a meaningful co-

expression association. Contrary, when the TOM value is closer to 0, it signifies no 

connections between genes. A minimum module size was set to 40, highly correlated modules 

were merged by setting merging modules threshold to 0.2, and each of the modules was 

assigned a unique colour. Based on the recommended parameters, WGCNA generated 13 

co-expressed modules in the ICM dataset while 14 modules in the COPD dataset.  

 

2.7 CEMiTool 

 

CEMiTool is similar to WGCNA but runs on an automated pipeline. The automated pipeline 

could improve the reproducibility of the results because the analysis parameters are 

standardized in the pipeline. The package also incorporates functional enrichment analysis to 

identify potential biological functions. Moreover, CEMiTool implements automated gene 



filtration on gene expression profiles based on the inverse gamma distribution. To account for 

potentially inconsistent results in relation to the two other packages due to the difference in 

the number of input genes, the automated gene filtration function was disabled by setting 

‘filter=FALSE’ in CEMiTool command. The number of modules was determined using the 

same algorithm as WGCNA by computing the soft thresholding power b. Based on the 

automated pipeline, CEMiTool derived 14 modules in the ICM dataset and 19 modules in the 

COPD dataset. The package provides a user-friendly and automated pipeline, outputs 

publication-ready figures, and generates a report in HTML format.   

 

2.8 coseq 

 

coseq is another Bioconductor package in R to generate gene co-expression analysis based 

on K-means clustering [15]. Prior to the clustering algorithm, the expression levels of the genes 

will be normalised. The normalisation method is represented as: 

𝑝)* =
;<= >=?@

∑=B;<=B/>=C?@
, 

where 𝑝𝑖𝑗 represents the proportion of normalised reads observed for gene i across all 

samples, 𝑠* are normalization scaling factors correspond to library sizes and 𝑦𝑖𝑗 indicates 

the raw read count for gene i in sample j. coseq uses a novel transformation strategy called 

Log Centered Log Ratio (logCLR) to transform RNA-seq expression data follow by K-means 

clustering algorithm. The logCLR is defined by 

𝑙𝑜𝑔𝐶𝐿𝑅	 𝑥* ≔	

−[ln	(1 − ln[
𝑥*

𝑔 𝑥
])]O

(ln[
𝑥*

𝑔 𝑥
])O

					
𝑖𝑓	𝑥*/𝑔 𝑥 ≤ 1,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

where the logCLR is defined by 𝑙𝑜𝑔𝐶𝐿𝑅	 𝑥*  and 𝑔	(𝑥)is the geometric mean of 𝑥. 

Therefore, K-means clustering algorithm based on logCLR is represented by 



𝑆𝑆𝐸WXYZ[\ 𝐶 ] ≔ ||𝑙𝑜𝑔𝐶𝐿𝑅 𝑋) − 𝜇a,WXYZ[\||
2

2
)∈Zc

]
]d@ , 

where SSE refers to sum of squared errors and 𝜇a,WXYZ[\||
2

2
 is the arithmetic mean of the 

transformed data. Then, the number of clusters is identified through slope heuristics approach. 

It is defined as 

𝐾 ∶=
argmin crit	 𝐾 .

𝐾	 ≤ 𝑛
 

The logCLR, together with K-means clustering was shown to produce tights and distinct 

clusters of genes [15]. The read counts of the top 5,000 variable genes identified through 

DESeq2 were used as the input for coseq. The gene expression matrix was normalized using 

trimmed means of M values and transformed by logCLR. K-means clustering algorithm was 

fit to the transformed data, computed K= 2, …., 40 clusters, and iterated for 1000 cycles. 

Based on the slope heuristics approach for model selection in ICM dataset, the K=17 was 

selected and derived 17 clusters, each of the clusters contained a different number of genes. 

For the COPD dataset, the K=12 was selected and generated 12 co-expressed clusters. coseq 

pipeline is easy to use and does not require high computational power. However, users are 

advised to repeat the process several times to ensure reproducible results. Results from one 

run to another might differ due to their dependency on the initialization point. 

 

2.9 Clinical traits association  

 

WGCNA and CEMiTool have the function to correlate clinical parameters to the gene modules. 

Module-trait associations were estimated from the correlation between module eigengenes 

(ME) and clinical parameters. The ME of a module implies the first principal component of the 

module. This process allows easy identification of a module that is strongly correlated to 

clinical parameters. In the present study, disease status (ICM or COPD) served as a clinical 

parameter and estimated the correlations against the gene expression profiles. coseq does 



not provide an algorithm to study the association of clinical parameters to gene expression 

profiles. 

 

2.10 Functional enrichment analysis 

 

Each of the gene modules derived from ICM and COPD dataset was subjected to functional 

enrichment analysis to determine the biological functions. clusterProfiler version 3.9 [32] 

revealed the potential functions in each module, and Gene Ontology (GO) terms with false 

discovery rate (FDR) threshold below 0.05 were considered statistically significant.  

 

3.0 Results 

 

3.1 Differentially expressed genes analysis 

 

3.1.1 Ischemic cardiomyopathy RNA-seq dataset 

 

The present study utilised two RNA-seq data sets available on public domain (GSE48166 and 

GSE116250) [20, 21]. In total, 57 samples were retrieved from two studies, 28 ICM samples 

and 29 non-heart failure samples. First, PCA plots were used to assess the quality and 

variation of two data sets, using normalised read counts of 21,878 identified genes. In Figure 

1A, samples were clustered according to two library preparation batches indicating technical 

artefacts. On the left side of the plot in Figure 1A, samples were generated from GSE48166 

while on the right they were from GSE116250. The technical artefacts could be introduced by 

library preparation and sequencing machines, which may explain the segregation of samples 

on the PCA plot from two different sources rather than experimental design (Figure 1A). As 

failure to correct batch effects will compromise the co-expression analysis, batch effects were 

adjusted in DESeq2 package. The sources of the samples were flagged as “~Batch” in the 

design function and the estimated batch effect factors were used to model the expression 



values in the regression step.  After batch effects correction, the PCA plot (Figure 1B) showed 

visible separation between control and ICM patients based on global expression of 25,897 

transcripts. Samples were clustered according to control and ICM status (Figure 1B; red and 

turquoise shapes). The first principal component on the X-axis contributes majorly to the PCA 

plot, which explained over 19% of the variance and separated samples into two groups.  

 

Differential expression analysis was performed to identify genes that are up- or down-

regulated in relation to ICM. Negative-Binomial-distribution was used to model the differential 

expression analysis and calculated the dispersion estimate for each gene (Figure 1C). The 

dispersion estimates account for the variance in gene expression and generate more 

homogenous expression levels across genes. DESeq2 identified a total of 4985 differentially 

expressed genes (padj <0.05) (Figure 1D). Of these, 2281 genes were downregulated in ICM 

patients while 2704 were upregulated (supplementary file 3). After batch effects correction, 

5000 genes were selected based on the highest variance to construct co-expression analysis 

using the three packages. The aim was to test the efficiency and reproducibility of each 

package. In each of the co-expression packages, default parameters recommended by the 

developers were used. Using the 5,000 most variable genes, WGCNA identified 13 co-

expression modules while CEMiTool detected 14. Conversely, coseq identified 17 co-

expression modules - the highest number of modules among three packages. 

 

3.1.2 Chronic obstructive pulmonary disease dataset 

 

To demonstrate the consistency of the results in the present study, we downloaded another 

RNA-seq dataset from the public repository (GSE57148) [22]. The COPD dataset consisted 

of 91 controls and 98 COPD patients. The quality of the dataset was first assessed using 

principal component analysis. The PCA was generated using normalised read counts of 

34,187 genes. In Figure 2A, the PCA plot did not show apparent separation between two 

groups of individuals. PCA only considers the variance of the data, and the direction of the 



highest variance may not necessarily represent a true expression profile. Therefore, co-

expression analysis is useful in this case, where it reduces the dimensionality of the data by 

groups genes with similar expression levels.  

 

Subsequently, differential expression analysis was performed to identify differentially 

regulated genes in this COPD dataset. DESeq2 detected a total of 8437 differentially 

expressed genes with the threshold at padj <0.05 and consisted 3905 upregulated genes and 

4532 downregulated genes (Figure 2B and supplementary file 4). For co-expression analysis, 

top 5000 genes with highest variances were selected. Using default parameters in three co-

expression tools, WGCNA identified 14 modules, CEMiTool detected 19 modules and coseq 

derived 12 modules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Differential expression analysis using DESeq2 for ICM dataset. 57 samples 

were derived from GSE48166 and GSE116250. PCA plots were used to identify batch effects, 

before (A) and after (B) batch effect correction. Circle and triangle symbols represent batch 1 

and 2, while red and turquoise colour shapes indicate control and ICM, respectively. (C) 

dispersion plot derived from DESeq2. Red dots represent the trend line for all samples, black 

dots indicate outliers, and blue dots imply corrected dispersion value. (D) volcano plot of 

differentially expressed genes between control and ICM patients. Each dot represents one 

gene and red colour dots denote significant differentially expressed genes that achieved 

adjusted P-value <0.05. 



 

Figure 2. Differential expression analysis using DESeq2 for COPD dataset. 189 samples 

were derived from GSE57148. (A) PCA plot was used to assess the quality of the RNA-seq 

dataset. Red and turquoise colour circles represent COPD and control samples. (B) volcano 

plot of differentially expressed genes between control and COPD patients. Each dot 

represents one gene and red colour dots denote significant differentially expressed genes that 

achieved adjusted P-value <0.05. 

 

 

 

3.2 WGCNA 

 

 

3.2.1 Ischemic cardiomyopathy RNA-seq dataset 

 

WGCNA was used to construct co-expression analysis using the 5,000 most variant genes. 

First, hierarchical clustering was applied to identify the clustering of the samples. From the 

dendrogram, 57 samples were clustered according to the disease status (Figure 3A). We 

found two big clusters with ICM patients (red) and healthy patients (white). Several soft-

thresholding powers were tested to identify the relative balanced scale independence and 

mean connectivity for co-expression network construction. In Figure 3B, power 9 was found 

to be the lowest power at which the scale-free topology fit index R2 flattens out after reaching 

power 9 (Figure 3B). Therefore, power 9 was chosen to generate a hierarchical clustering 



tree. The highly similar modules were merged by cutting the dendrogram at the height of 0.2, 

which corresponds to 0.8 correlation (Figure 3C). This improves the intra-connectedness of 

the modular genes and derived 13 modules (supplementary file 5). Each co-expressed module 

was allocated a specific colour. Among the 13 modules, the grey module contained the highest 

number of genes (2637 genes) followed by red module (413 genes) while the cyan module 

contained the lowest number of genes (81 genes). The relationship of the modules to disease 

status was evaluated (Figure 3D). Six modules were found to be significantly associated with 

disease status (p-value< 0.05). The cyan module shows the strongest association with ICM 

(r=0.77, p-value=2´10-12) followed by the grey module (r=0.74, p-value=3´10-11), blue module 

(r=0.63, p-value=1´10-7), green module (r=0.50, p-value=8´10-5), black module (r=0.34, p-

value=0.01), and salmon module (r=0.32, p-value=0.02). Although the grey module appears 

to be associated with disease status and formed the largest module, careful investigation is 

needed as this module contained a high number of unassigned genes.  

 

3.2.2 Chronic obstructive pulmonary disease dataset 

 

For the COPD dataset, WGCNA was applied to top 5,000 genes to construct co-expression 

modules. In Figure 4A, the dendrogram shows the clustering of 189 samples according to the 

sample condition. The soft-power threshold 11 was selected to construct co-expression 

modules. In Figure 4B, power 11 was found to be the lowest power at which the scale-free 

topology fit index R2 flattens out. Further, modules with high similarity were merged by setting 

a threshold at the height of 0.2 (Figure 4C). After merging modules with high similarity, the 

final 14 modules were derived (supplementary file 6). Each co-expressed module was 

allocated a specific colour. Among the 14 co-expression modules, the turquoise module 

contained the highest number of genes (1153 genes) followed by blue module (583 genes) 

while the tan module contained the lowest number of genes (58 genes). The association of 

the modules to disease status was assessed (Figure 4D). Of the 14 modules, five modules 

were found to be significantly associated with disease status (p-value< 0.05). The magenta 



module shows the strongest association with COPD (r=0.56, p-value=8´10-17) followed by the 

brown module (r=0.29, p-value=4´10-5), black module (r=0.17, p-value=0.02), yellow module 

(r=-0.35, p-value=1´10-6) and greenyellow module (r=-0.17, p-value=´0.02). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. WGCNA outputs for ICM dataset. (A) Sample clustering for the 5,000 genes using 

expression profiles between control and ICM samples. The red colour bar indicates ICM 

patients while white colour bar denotes controls. (B) Determination of network topology using 

various soft-thresholding power b. The bottom panel shows the mean connectivity for various 

soft-thresholding power b (C) Cluster dendrogram of 13 co-expressed genes modules. The 

dendrogram was constructed with unsupervised hierarchical method and each colour bar 

below the dendrogram represents a module. (D) Module-condition correlations with the 

significance level. Each row corresponds to a module eigengene and each cell contains the 

correlation coefficient and p-value in parentheses. The colour of the table represents the 

strength of the correlation from positively correlated (red) to negatively correlated (blue). 



 

 

Figure 4. WGCNA outputs for COPD dataset. (A) Sample clustering for the 5,000 genes 

using expression profiles between control and COPD samples. The red colour bar indicates 

COPD patients while white colour bar denotes controls. (B) Determination of network topology 

using various soft-thresholding power b. The bottom panel shows the mean connectivity for 

various soft-thresholding power b (C) Cluster dendrogram of 14 co-expressed genes modules. 

The dendrogram was constructed with unsupervised hierarchical method and each colour bar 

below the dendrogram represents a module. (D) Module-condition correlations with the 

significance level. Each row corresponds to a module eigengene and each cell contains the 

correlation coefficient and p-value in parentheses. The colour of the table represents the 

strength of the correlation from positively correlated (red) to negatively correlated (blue). 

 



3.3 CEMiTool 

 

3.3.1 Ischemic cardiomyopathy RNA-seq dataset 

 

CEMiTool operates on similar principles as WGCNA, but the pipeline is automated with pre-

defined parameters. Using the 5,000 high variable genes, a dendrogram was generated, 

showing the clustering of 57 samples (Figure 5A). The dendrogram derived from CEMiTool is 

consistent with WGCNA, where samples were clustered according to the disease status. Two 

large clusters belonging to ICM patients (turquoise) and healthy patients (red) were generated. 

In the default settings, the scale-free topology fit index was pre-set at 0.80, and soft-threshold 

value of 14 was selected (Figure 5B). The dissimilarity threshold of 0.8 was used as a cut-off 

on hierarchical clustering, which identified 14 co-expression modules. Gene set enrichment 

analysis was performed to identify the module activity between ICM and healthy patients 

(Figure 5C). Among the 14 co-expressed modules, 11 modules showed significant module 

activity (p-value< 0.05), such as M1, M2, M3, M4, M5, M6, M8, M9, M10, M11, and M12 

(supplementary file 7). Of those, the largest module contained 361 co-expressed genes (M1), 

while the smallest module contained 35 genes (M13). Figure 5D shows the profile plots of four 

co-expressed modules. Each line represents the expression level of each gene in a module, 

and the black line denotes the mean expression of all genes. In Figure 5D, the first plot shows 

the gene expression levels in the M5 module. The expression levels were higher in ICM 

patients (light blue background) with several peaks. In contrast, M8 and M12 had homogenous 

expression levels across all samples with several low peaks. 

 

3.3.2 Chronic obstructive pulmonary disease dataset 

 

For the COPD dataset, the 5,000 high variable genes were applied to CEMiTool. In Figure 6A, 

the dendrogram shows the clustering of 189 samples. The dendrogram is consistent with 

WGCNA, where the samples clustered loosely according to the disease status. Using the 



default parameters, the soft-threshold value of 5 was selected (Figure 6B) which generated 

19 co-expressed modules. CEMiTool performs gene set enrichment analysis automatically to 

identify module activity between COPD and control subjects (Figure 6C). Of those 19 co-

expression modules, 13 modules showed significant module activity (p-value< 0.05), such as 

M11, M17, M2, M3, M7, M12, M13, M14, M8, M9, M4, M18 and M5 (supplementary file 8). 

The M1 module contained the highest number of genes (1116 genes), while M18 module 

contained the smallest number of genes (45 genes). Figure 6D shows the profile plots of three 

co-expressed modules. Each line represents the expression level of each gene in a module, 

and the black line denotes the mean expression of all genes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. CEMiTool outputs for ICM dataset. (A) Clustering dendrogram for 5,000 genes 

based on the expression profiles. Green colour represents ICM patients while red colour 

denotes healthy controls. (B) Scale-free topology index and mean connectivity to identify 

power b between 1 and 20. From the plot, scale-free topology can be achieved at the soft-

thresholding power of 14, above 0.8 scale free topology threshold based on the default 

settings by CEMiTool. (C) Gene enrichment analysis showing the module activity on control 

and ICM group. The size of the circle and colour corresponding to the normalised enrichment 

score. (D) Expression profiles of four co-expressed genes modules in control and ICM 



patients. Each line in the plot represents each gene. The dark bold line indicates the mean 

expression value. 

 

Figure 6. CEMiTool outputs for COPD dataset. (A) Clustering dendrogram for 5,000 genes 

based on the expression profiles. Green colour represents controls while red colour denotes 

COPD individuals. (B) Scale-free topology index and mean connectivity to identify power b 

between 1 and 20. From the plot, scale-free topology can be achieved at the soft-thresholding 

power of 5, above 0.8 scale free topology threshold based on the default settings by CEMiTool. 

(C) Gene enrichment analysis showing the module activity on control and COPD group. The 

size of the circle and colour corresponding to the normalised enrichment score. (D) Expression 



profiles of three co-expressed genes modules in control and COPD patients. Each line in the 

plot represents each gene. The dark bold line indicates the mean expression value. 

 

 

3.4 coseq 

 

3.4.1 Ischemic cardiomyopathy RNA-seq dataset 

 

coseq is a co-expression analysis package based on the K-means approach. In order to 

compare the results to WGCNA and CEMiTool, the top 5,000 variable genes were used as 

the input. Users should also be aware that coseq outputs depend on the initialization points. 

Therefore, the number of co-expressed modules may vary from one computer to another and 

one run to another. The initialization points may hinder the reproducibility of the results, 

however, in the current analysis, 1,000 iterations were used to avoid problems arising from 

initialization points. The results were consistent between each run when the iterations were 

set to 1,000. The K-means algorithm identified 17 co-expressed modules (Figure 7A). Of 

those, nine modules have higher mean expression levels in ICM patients compared to healthy 

patients. The six boxplots in Figure 7A (3, 4, 5, 7, 12, and 14) suggested module-specific 

profiles, where the mean expression levels are higher in ICM patients. Module 10 has the 

largest number of co-expressed genes (1452 genes), while module 2 has only one gene 

(supplementary file 9). The maximum conditional probabilities for each module are presented 

in Figure 7B. It represents the number of co-expressed genes in each module and maximum 

conditional probabilities. In this case, the maximum conditional probabilities threshold was 

fixed at 0.80. Modules contained a high number of genes with maximum conditional 

probabilities above 0.80, suggesting the module assignment is high confidence. Module 10, 

11, and 15 have higher number of co-expressed genes with maximum conditional probabilities 

above 0.80, and therefore, the membership for the genes assigned to the modules has a 

greater degree of certainty.  

 



3.4.2 Chronic obstructive pulmonary disease dataset 

 

For the COPD dataset, the 5,000 variable genes were applied to coseq. At the start of the 

analysis, 1,000 iterations were specified to avoid errors in the results due to initialization points 

and to ensure reproducibility. Through the K-means algorithm implements in coseq, 12 co-

expressed modules were generated (Figure 8A). All the co-expression modules showed 

higher mean expression profiles in COPD subjects compared to controls. Of the 12 modules, 

module 7 contained the largest number of genes (2140 genes), while module 2 and module 3 

contained the lowest number of genes (4 genes) (supplementary file 10). The maximum 

conditional probabilities for each module are presented in Figure 8B. It represents the number 

of co-expressed genes in each module and maximum conditional probabilities. In this analysis, 

the maximum conditional probabilities threshold was fixed at 0.80. Modules contained a high 

number of genes with maximum conditional probabilities above 0.80, suggesting the module 

assignment is high confidence. Module 7, 8, and 12 have higher number of co-expressed 

genes with maximum conditional probabilities above 0.80, and therefore, the membership for 

the genes assigned to the modules are more accurate.  
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Figure 7. coseq outputs for ICM dataset. (A) 17 co-expression clusters derived using K-

means approach. Normalized expression profiles were used to construct the clusters. The red 

and green boxplots represent expression profiles in control and ICM patients, respectively. 

The connected red lines indicate the mean expression profiles for each group. (B) Number of 

observations with a maximum conditional probability in which the genes assigned to each 

cluster. The threshold was set at 0.8 per cluster. 

 

 

 

 

 

 

 



 

Figure 8. coseq outputs for COPD dataset. (A) 12 co-expression clusters derived using K-

means approach. Normalized expression profiles were used to construct the clusters. The red 

and green boxplots represent expression profiles in COPD patients and controls, respectively. 

The connected red lines indicate the mean expression profiles for each group. (B) Number of 

observations with a maximum conditional probability in which the genes assigned to each 

cluster. The threshold was set at 0.8 per cluster. 

 

 

 

 

 

 

 

 

 

 

 



3.5 GO enrichment analysis 

 

3.5.1 Ischemic cardiomyopathy RNA-seq dataset 

 

To compare the outputs across three packages, functional enrichment analysis was applied 

to each module to determine the underlying biological processes (supplementary file 11, 12 

and 13). WGCNA produced 13 co-expressed modules, CEMiTool generated 14 modules, and 

coseq identified 17 modules (Figure 9A). The most representative module of genes was 

reported here such as green module in WGCNA, M6 module in CEMiTool, and module 3 in 

coseq. Between these three modules generated from three packages, there are 32 consensus 

co-expressed genes that contribute to similar GO terms (Figure 9B – D). These modules 

enriched for extracellular structure organization (GO:0043062), extracellular matrix 

organization (GO:0030198), and collagen fibril organization (GO:0030199). 

 

3.5.2 Chronic obstructive pulmonary disease dataset 

 

For the COPD dataset, we compare the functional enrichment analysis of the co-expressed 

gene modules derived from three co-expression tools. The aim was to identify the underlying 

biological processes (supplementary file 14, 15 and 16). WGCNA produced 14 co-expressed 

modules, CEMiTool generated 19 modules, and coseq identified 12 modules (Figure 10A). 

The most representative module from each co-expression package was chosen to 

demonstrate the consensus findings. The most representative module of genes was reported 

here such as blue module in WGCNA, M2 module in CEMiTool and module 7 in coseq. 

Intriguingly, there are 235 similar GO terms found between these three modules (Figure 10B 

– D). These modules enriched for extracellular structure organization (GO:0043062), 

extracellular matrix organization (GO:0030198), connective tissue development 

(GO:0061448), ossification (GO:001503) and cartilage development (GO:0051216).  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Number of clusters generated from each package and enrichment analysis for 

ICM dataset. (A) Number of co-expressed clusters produced from each package; WGCNA, 

CEMiTool, and coseq. Y-axis shows the number of co-expression modules generated by each 

package. Gene enrichment analysis for a representative module from each package. (B) 

WGCNA (C) CEMiTool, and (D) coseq. Each GO term achieves FDR< 0.05 and the size of 

the circle represents the number of co-expressed genes involved in the GO term. 

 

 

 

 

 

 



 

 

Figure 10. Number of clusters generated from each package and enrichment analysis 

for COPD dataset. (A) Number of co-expressed clusters produced from each package; 

WGCNA, CEMiTool, and coseq. Y-axis shows the number of co-expression modules 

generated by each package. Gene enrichment analysis for a representative module from each 

package. (B) WGCNA (C) CEMiTool, and (D) coseq. Each GO term achieves FDR< 0.05 and 

the size of the circle represents the number of co-expressed genes involved in the GO term. 

 

 

 

 

 

 

 



4.0 Discussion 

 

In this study, we tested three main co-expression analysis packages available on R: WGCNA, 

CEMiTool, and coseq. The main objective for this study was to evaluate these packages in 

terms of their reliability, reproducibility, and ease of use. Two publicly available RNA-seq data 

of ischaemic cardiomyopathy (GSE48166 and GSE116250) and one chronic obstructive 

pulmonary disease (GSE57148) were used to assess these three packages. We observed a 

degree of consensus outputs from three packages, despite a different number of co-expressed 

modules derived from each package. Together, the current study presents an overview of the 

three co-expression analysis packages, allowing researchers to choose a suitable co-

expression analysis package for their studies. 

 

WGCNA is a novel package for co-expression analysis. The algorithm is built on hierarchical 

clustering where module construction is based on the gene correlations. Substantial 

biomedical studies have applied WGCNA to identify clinically important therapeutic targets 

[33-35]. Furthermore, WGCNA can provide insights into the module-trait relationship, which 

can identify gene targets. However, the pipeline in WGCNA is complex and users are expected 

to have extensive bioinformatics experience. Multiple steps in WCGNA required empirical 

judgement such as the selection of a soft-thresholding value which may vary between 

scientists. As discussed later, this value impacts the reproducibility of the results. Although 

users are required to specify the parameters, WGCNA offers flexibility to optimise the 

parameters based on the dataset. WGCNA requires high computer resources to run the 

analysis. In the present analysis, WGCNA required around 30 minutes of computing time on 

an 8GB memory machine to generate the results. This does not consider the time required to 

understand the whole pipeline and optimise the parameters. Notably, however, WGCNA has 

extensive tutorials available and a well-documented pipeline. 

 



CEMiTool is a relatively new package for co-expression analysis. The pipeline is adapted from 

the novel principle in WGCNA. The package is easy to use without extensive bioinformatics 

experience required because the algorithm has been automated. The package also produces 

publication-ready figures and an HTML report (supplementary file 17 for ICM dataset; 

supplementary file 18 for COPD dataset). CEMiTool also provides a function to determine 

gene set enrichment analysis to study the association of co-expressed modules with clinical 

traits.  Its simplicity of use and free availability on R facilitates generation of biologically sound 

findings and high levels of adoption of this methodology are expected in the future. Despite 

the advantages of the automated pipeline, the pre-defined parameters might not be optimised 

for all studies. Therefore, careful consideration is needed when using this automated pipeline. 

The whole pipeline was completed with five command lines, and results were generated within 

ten minutes using 5,000 variable genes. 

 

Contrasting with the other two packages, coseq is a robust alternative tool. It fits K-means for 

co-expression analysis and constructs modules. Additionally, coseq is built in with Gaussian 

mixture models for co-expression analysis [14]. coseq is relatively simple to use to construct 

co-expression modules with comprehensive documents available for users. The package 

does not require high computer resources compared to the other two packages; the results 

were produced within three minutes. However, compared to other packages, coseq is unable 

to determine the module-trait association. This might hinder the ability to identify gene targets 

for biomarker discovery studies. Moreover, coseq depends on the initialization point to 

construct co-expression modules. So, the findings may vary from one run to another, and this 

will jeopardise the reproducibility of the results. In the analysis, we set iterations to 1,000 prior 

to the co-expression analysis, to ensure the reproducibility of the results. We observed reliable 

outputs from each run after setting iterations to 1,000.  

 

Soft-thresholding value is used in WGCNA and CEMiTool to construct modules of co-

expressed genes. The soft-thresholding value plays a critical role in determining the number 



of co-expressed modules, and thus has a significant impact on the findings. In the current 

analysis, we observed a lower power value generated by CEMiTool than WGCNA. This is 

consistent with the result obtained by Russo and colleagues [13]. CEMiTool pre-set the scale-

free topology fit index (R2) to 0.80, whereas WGCNA is defined by the user. A pre-defined R2 

will, therefore, ensure the reproducibility of the results as the optimum R2 is rather arbitrary. 

The R2 value may differ between scientists based on their judgement, some may prefer a 

higher value because it yields a more scale-free network. However, CEMiTool has high 

reproducibility compare to WGCNA, owning to the pre-defined R2 value. 

 

Here, 5,000 most variable genes were used to construct co-expression modules in three 

packages. It should be noted that to effectively compare the three packages using the same 

number of genes, the filtering parameters in each package were disabled before proceeding 

with co-expression analysis. Three packages yielded a different number of co-expression 

module. In the ICM dataset, WGCNA produced 13 co-expression modules, 14 modules in 

CEMiTool, and 17 modules in coseq. In the COPD dataset, WGCNA produced 14 co-

expression modules, 19 modules in CEMiTool, and 12 modules in coseq. Although we 

observed a different number of modules generated, there are some overlapping modular 

genes between packages. In the ICM dataset, coseq produced the highest number of co-

expression modules, however, on closer scrutiny, some modules contained fewer genes for 

which the gene assignment was ambiguous - such as module 2, 7, 8, and 14.   

 

Functional enrichment analysis was performed on each module to identify similarities and 

differences on the outputs across three novel packages. One of the most representative 

modules from each package was chosen to show the biological functions for which they were 

enriched. In both the ICM and COPD dataset, it is clear that all the three co-expression 

packages were able to generate similar GO terms. For the ICM dataset, there was a module 

consistently enriched for extracellular structure organization (GO:0043062), extracellular 

matrix organization (GO:0030198), and collagen fibril organization (GO:0030199). 



Interestingly, there are 32 consensus co-expressed genes present in three packages that 

contribute to the GO terms. For the COPD dataset, there was a module enrichment for 

extracellular structure organization (GO:0043062), extracellular matrix organization 

(GO:0030198), connective tissue development (GO:0061448), ossification (GO:001503) and 

cartilage development (GO:0051216). Of those GO terms, there are 235 overlapping GO 

terms between these modules. These results suggest that the co-expression analysis 

produced by the three packages are comparable, and the findings are biologically sound. In 

literature review, extracellular matrix plays a critical role in cardiac homeostasis by providing 

structural support and transferring molecular signals [36-38]. Frangogiannis 2019 reported 

that ischemic injury drives the changes in the cardiac extracellular matrix and essentially 

regulates the cardiac inflammation and repair. This process may be implicated in the 

pathogenesis of cardiac remodelling [37, 38]. Furthermore, the extracellular matrix has been 

described to cross-link with fibrillar collagens in ischemic cardiomyopathy [38]. Fibrillar 

collagens provides mechanical support and acts on the cell surface receptors to transfer 

molecular signals [39]. Multiple studies have reported an increase level of fibrillar collagens 

through activating cardiac fibroblasts in ischemic heart [38]. As expected, these modules 

consistently enriched for collagen fibril organization. Consistently, extracellular matrix 

components in the lungs are associated significantly with COPD [40, 41]. The changes in the 

expression of extracellular matrix proteins is one of the predictive markers characterising the 

disease stages [42]. Based on functional enrichment analysis, three packages produced 

biologically relevant findings and provided insights into ischemic cardiomyopathy and chronic 

obstructive pulmonary disease. In the current analysis, we have not studied the co-expressed 

genes in a greater resolution, further work should emphasize the unifying co-expressed 

modules to identify therapeutic targets for ischemic cardiomyopathy and chronic obstructive 

pulmonary disease.  

 

5.0 Conclusion 

 



In this work, we compared the performance of three main co-expression packages available 

on R using real-world RNA-seq datasets. This serves as a guide to allow researchers to select 

a suitable tool for co-expression analysis. In general, our results showed that three packages 

are comparable based on functional enrichment analysis, although each package has its own 

advantages and disadvantages. CEMiTool has high reproducibility and the automated pipeline 

offers the ease of use for all researchers regardless of bioinformatics experience. In contrast, 

WGCNA presents a more complex pipeline, but offers flexibility to optimise the parameters 

according to the dataset. coseq requires less computer resource for analysis and produces 

comparable results to other packages, but lacks the ability to identify gene targets. We 

acknowledge that care should always be taken when interpreting co-expression modules. To 

improve the accuracy of results, it is advisable to compare the results with multiple packages. 

Therefore, considering the availability of documentation, simplicity of use, running time, and 

computational resources, we consider that CEMiTool outperforms other tools. We hope that 

this comparison of these three packages will assist researchers in selecting the most suitable 

tool for their investigation. 
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Supplementary files  

 

Supplementary codes: Commands and parameters used in generating the results from 
WGCNA, CEMiTool, and coseq. The RNA-seq data were mapped to reference genome with 

STAR aligner and read counts were quantified with featureCounts. Raw read counts and 

differentially expressed genes were processed with DESeq2.   
 

Supplementary file 1: List of 5,000 most variable genes derived from DESeq2 for ICM 

dataset. Variance stabilising transformed normalised read counts for 5,000 genes derived 
from DESeq2 after mapping RNA-seq data to human reference genome. 

 

Supplementary file 2: List of 5,000 most variable genes derived from DESeq2 for COPD 

dataset. Variance stabilising transformed normalised read counts for 5,000 genes derived 
from DESeq2 after mapping RNA-seq data to human reference genome. 

 

Supplementary file 3: Significant differential expressed genes in pairwise comparison 
between ICM and control group. Fold-change is log2- transformed. Genes with an adjusted p-

value below the threshold of 0.05 were considered significantly regulated.  

 
Supplementary file 4: Significant differential expressed genes in pairwise comparison 

between COPD and control group. Fold-change is log2- transformed. Genes with an adjusted 

p-value below the threshold of 0.05 were considered significantly regulated.  

 
 



Supplementary file 5: 13 gene co-expressed clusters derived from WGCNA for ICM dataset. 

Each cluster is labelled with different colour code.  
 

Supplementary file 6: 14 gene co-expressed clusters derived from WGCNA for COPD 

dataset. Each cluster is labelled with different colour code.  

 
Supplementary file 7: 14 co-expressed clusters derived from CEMiTool for ICM dataset. 

Each cluster is labelled with a prefix “M”.  

 
Supplementary file 8: 19 co-expressed clusters derived from CEMiTool for COPD dataset. 

Each cluster is labelled with a prefix “M”.  

 
Supplementary file 9: 17 co-expressed clusters derived from coseq for ICM dataset. Each 

cluster is labelled numerically.  

 

Supplementary file 10: 12 co-expressed clusters derived from coseq for COPD dataset. 
Each cluster is labelled numerically.  

 

Supplementary file 11: Functional enrichment analysis for each cluster in WGCNA for ICM 
dataset. The analysis was carried out with clusterProfiler and significant GO terms are defined 

as having false discovery rate below 0.01. 

 
Supplementary file 12: Functional enrichment analysis for clusters derived in CEMiTool for 

ICM dataset. The analysis was performed using clusterProfiler and significant GO terms are 

defined as having false discovery rate below 0.01. 

 
Supplementary file 13: Functional enrichment analysis for clusters derived in coseq for ICM 

dataset. The analysis was carried out with clusterProfiler and significant GO terms are defined 

as having false discovery rate below 0.01. 
 

Supplementary file 14: Functional enrichment analysis for each cluster in WGCNA for COPD 

dataset. The analysis was carried out with clusterProfiler and significant GO terms are defined 

as having false discovery rate below 0.01. 
 

Supplementary file 15: Functional enrichment analysis for clusters derived in CEMiTool for 

COPD dataset. The analysis was performed using clusterProfiler and significant GO terms are 
defined as having false discovery rate below 0.01. 

 

Supplementary file 16: Functional enrichment analysis for clusters derived in coseq for 
COPD dataset. The analysis was carried out with clusterProfiler and significant GO terms are 

defined as having false discovery rate below 0.01. 

 

Supplementary file 17: Html report generated by CEMiTool for ICM dataset. 
 

Supplementary file 18: Html report generated by CEMiTool for COPD dataset. 
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