The
University
g Of

(T

i . ..;"k.l':{éi Shﬁfﬁe]d.

This is a repository copy of Real-time deep reinforcement learning based vehicle routing
and navigation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/165017/

Version: Accepted Version

Article:

Koh, S., Zhou, B., Fang, H. et al. (5 more authors) (2020) Real-time deep reinforcement
learning based vehicle routing and navigation. Applied Soft Computing, 96. 106694. ISSN
1568-4946

https://doi.org/10.1016/j.as0c.2020.106694

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’'t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose .
| university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s://eprints.whiterose.ac.uk/

Real-time Deep Reinforcement Learning based Vehicle
Routing and Navigation

Songsang Koh?, Bo Zhou?, Hui Fang”*, Po Yang?, Zaili Yang?®, Qiang
Yang®, Lin Guan®, Zhigang Ji®*,

?Department of Computer Science, Liverpool John Moores University, Liverpool, United
Kingdom L3 8AF
b Department of Computer Science, Loughborough University, Loughborough, United
Kindoms LE11 3TU
¢College of Electrical Engineering, Zhejiang University Hangzhou, PRC 310027
4 Department of Computer Science, Sheffield Unviversity, Sheffiled, United Kingdom S10
2TN
¢ National Key Laboratory of Science and Technology on Micro/Nano Fabrication,
Shanghai Jiaotong University, Shanghai, PRC 200240

Abstract

Traffic congestion has become one of the most serious contemporary city is-
sues as it leads to unnecessary high energy consumption, air pollution and
extra traveling time. During the past decade, many optimization algorithms
have been designed to achieve the optimal usage of existing roadway capac-
ity in cities to leverage the problem. However, it is still a challenging task
for the vehicles to interact with the complex city environment in a real time
manner. In this paper, we propose a deep reinforcement learning (DRL)
method to build a real-time intelligent vehicle routing and navigation system
by formulating the task as a sequence of decisions. In addition, we pro-
vide an integrated framework to facilitate the intelligent vehicle navigation
research by embedding smart agents into the SUMO simulator. Nine real-
istic traffic scenarios are simulated to test the proposed navigation method.
The experimental results have demonstrated the efficient convergence of the
vehicle navigation agents and their effectiveness to make optimal decisions
under the volatile traffic conditions. The results also show that the proposed
method provides a better navigation solution comparing to the benchmark
routing optimization algorithms. The performance has been further vali-
dated by using the Wilcoxon test. It is found that the achieved improvement
of our proposed method becomes more significant under the maps with more

edges (roads) and more complicated traffics comparing to the state-of-the-art
navigation methods.

Keywords: Routing and navigation optimization; Deep reinforcement
learning; Deep-Q learning; SUMO; Intelligent vehicle.

1. Introduction

In recent years, traffic congestion in the urban area has become a serious
problem due to the rapid development of urbanization. It brings a major
impact on urban transportation networks that lead to extra traveling hours,
increased fuel consumption and air pollution. According to the study in Mc-
Groarty (2010), the congestion can be categorized into recurring congestion
(RC) and non-recurring congestion (NRC). NRC is defined as the congestion
made by unexpected events, such as construction work, inclement weather,
accidents, and special events Hall (1993). Unsurprisingly, NRC accounts for
a larger proportion of traffic delays in urban areas comparing to the RC due
to its unpredictable nature Sun et al. (2017). There are three categories of
methods proposed to tackle the NRC problem: (1) detecting and predicting
traffic congestions by utilizing both the historical and real-time sensor data
Zygouras et al. (2015); Ghafouri et al. (2017); (2) optimizing traffic signal
control and management Wen (2008); Mousavi et al. (2017a); and (3) vehicle
routing and navigation optimization Ritzinger et al. (2016); Jabbarpour et al.
(2018); Okulewicz and Mandziuk (2017); Abdulkader et al. (2015). Wherein,
the vehicle routing and navigation, as the most promising solution, has been
investigated extensively during the past decades.

Classical vehicle routing problem (VRP) is defined as finding the mini-
mum cost of the combined routes of a given number of vehicles m to serve n
customers. One of the typical examples is path planning for collecting and
sending packages from a delivery company. Traditional VRP is formed and
classified as an NP-hard problem Jabbarpour et al. (2018). Many optimiza-
tion algorithms are proposed to find the sub-optimal solution under different

*Corresponding author
Email addresses: S.S.Koh@2014.1jmu.ac.uk (Songsang Koh), b.zhou@ljmu.ac.uk
(Bo Zhou), H.Fang@lboro.ac.uk (Hui Fang), po.yang@sheffield.ac.uk (Po Yang),
z.yang@ljmu.ac.uk (Zaili Yang), qyang@zju.edu.cn (Qiang Yang),
L.Guan@lboro.ac.uk (Lin Guan), zhigangji@sjtu.edu.cn (Zhigang Ji)

Preprint submitted to Applied Soft Computing May 7, 2020

constraints, e.g. genetic algorithm Ruiz et al. (2019), firefly algorithm Al-
tabeeb et al. (2019), hybrid algorithm Hosseinabadi et al. (2019) or backbone
algorithm Bertsimas et al. (2019). However, this type of routing problem def-
inition assumes a relatively stable traffic condition, and target on the travel
salesman problem. The proposed optimization algorithms search for the op-
timal solution under a static context. Different from the classical VRP, This
study targets the vehicle routing and navigation problem as controlling the
vehicle to make path planning from a given start node to a destination node
with the shortest travel time under a dynamic traffic conditions Guo et al.
(2019). The objective is to find a path or a set of optimal actions to mini-
mize the travel time during the journey with the real-time collected input of
current traffic conditions. In the past few years, many heuristic and evolu-
tionary optimization algorithms are proposed to solve the problem Gawron
(1998); Lanning et al. (2014); Nahar and Hashim (2011); Zong et al. (2010);
Kaparias and Bell (2010). Although the recent research on vehicle routing
and navigation has achieved reasonable results, the state-of-the-art methods
suffer from several drawbacks: firstly, the shortest path type of methods, e.g.
Lanning et al. (2014); Kaparias and Bell (2010); Guo et al. (2019), becomes
less efficient to provide optimal solutions due to the unpredictable nature of
the more complicated dynamic traffic and lack of ability to react instantly to
NRC issue. Secondly, it is hard to solve the problem in a real-time manner
when using optimization algorithms, e.g. Samaras et al. (2019); Zong et al.
(2010); Anjum et al. (2019). The searching space grows exponentially when
more routing edges are added into the map. Thirdly, optimization based
vehicle routing and navigation algorithms, such as Dean et al. (2019); Nahar
and Hashim (2011); Boesen (2017); Kponyo et al. (2012), lack of ability to
self-evolution and self-adaptation. To address the limitations of the methods,
this paper proposes a deep reinforcement learning (DRL) method to achieve
real-time intelligent vehicle navigation to alleviate the NRC issue.

By formulating the vehicle routing and navigation task as a sequence of
decisions, the DRL framework can be utilized to solve the automated control
problem through taking real-time observations and evaluating the outcomes
from actions under a complex environment. Inspired by the recent success of
deep reinforcement learning methods, the enhanced deep-Q network (DQN)
method is adopted to deal with the real-world complexity given the fact that
the navigation task can be modeled as a Markov Decision Process (MDP).
Comparing to the DQN in Mnih et al. (2015), our method enhances it in three
aspects: (1) we design a suitable reward function for the vehicle routing and

3

navigation task; (2) several advanced schemes, including double DQN, duel-
ing DQN and priority experience replay, are integrated into the framework
to achieve a more reliable convergence of the network; and (3) a distance
ranking sampling strategy is proposed to speed up the convergence speed.

In our work, a traffic simulator, SUMO, is seamlessly connected to smart
navigation agents to provide the integrated experimental framework. It can
simulate real-world traffic conditions as well as embed the agent decisions
into the traffic simulator. Once the agents are required to make navigation
decisions, observations generated from the simulated traffic environment are
fed into the navigation agents as the current traffic state representations.
The agents can, therefore, make automated real-time navigation decisions
that minimize the travel time to reach their destination. The proposed DRL
framework provides an appealing and innovative solution for the vehicle rout-
ing and navigation problem as the learning process is fully automated which
does not require any labeling or guidance. Furthermore, the agents can auto-
matically adapt their policy networks by analyzing the global environment as
the context and eventually decrease the travel time to the destination when
new data is generated.

The main contributions of our research can be highlighted as follows: (1)
this work proposes a novel DRL algorithm to achieve an effective real-time
vehicle routing and navigation system; (2) the DRL agents are embedded into
the traffic simulator SUMO to achieve an integrated framework to facilitate
the intelligent vehicle navigation research under the context of a dynamic
urban transportation system; and (3) the potential practical usage is tested
in nine different road and traffic combined conditions. The efficiency has
been validated by using the Wilcoxon test.

The remainder of the paper is organized as follows: The background of
our research is described in Section 2 to clarify the motivation and the aim of
the work. Section 3 provides an overview of the proposed framework and in-
troduces the main components in our system. Section 4 and Section 5 explain
the detail of two main components, i.e. the traffic simulator and DRL smart
agents. In Section 6, the experimental results are presented to demonstrate
the convergence of the DRL agents, how the agents navigate vehicles to make
routing choice and their performance compared to the SUMO build-in route
optimization algorithms. Finally, Section 7 presents the conclusive remarks
and suggests future work.

2. Background

The original idea for solving the problem of traffic congestion was via traf-
fic control and optimization in which a significant number of research works
had conducted. In particular, many of the works focus on path planning and
directing vehicles to their destination as soon as possible with considerations
of static conditions, e.g. travel distance and speed limit.

The very first solution in the early years for vehicle navigation problems
was the shortest path algorithm, which aims to find a path between two
nodes with minimum traveling distance. Dijkstra proposed a static algo-
rithm to find the shortest path without considering any external factors such
as congestion, accident, or average vehicle speed Dijkstra (1959). Therefore,
this solution is no longer considered applicable to today’s traffic congestion
problem given the fast development of modern transportation networks and
the constraints it brought into. Although in general common GPS applica-
tions, e.g. Google map or Waze still rely on shortest path algorithm Lanning
et al. (2014), they also allow drivers to access certain real-time traffic infor-
mation. e.g. accidents, construction, road blocking that may be biased and
inaccurate due to the information rely heavily on human input.

Another direction for vehicle navigation path planning is to use the Ant-
colony algorithm, which was first proposed by DorigoDorigo et al. (1996).
It was inspired by the natural behavior performed by ants in finding food
resources. Previous experiments have proven that ants can find the shortest
route between two individual sections by leaving pheromone trails to allow
other ants to track the path. Nahar and Hashim Nahar and Hashim (2011)
proposed a traffic congestion control method based on different preferences
to create an optimal traffic system and reduce the average traveling time by
adjusting the ant colony variables. The experiment showed that the number
of ants is directly correlated with the algorithm performance. Therefore, this
method does not perform well when there are only a limited number of agents
in the network. A multi-agent evacuation model was introduced by Zong et
al. Zong et al. (2010) to minimize the total evacuation time for vehicles and
balance the traffic load. Ants belong to one colony find their routes with
the same properties. During the process of searching for routes, the two ant
colonies will interact and share information. Experiments have shown that
the Multi-Ant colony system is more effective than a single agent system.
Kponyo et al. Kponyo et al. (2012) also proposed a distributed intelligent
traffic system that uses vehicle average speed as a parameter to determine

the traffic condition. This system guides vehicles to paths with less traffics.
Therefore, this system selects the best path more efficiently comparing with
selecting the path in a random fashion. More recently, some other additional
objectives such as work load balancing (in terms of time and distance) or min-
imize vehicles emission are considered in research. Galindres-Guancha et al.
proposed a multi-objective problem of multi-depot vehicle routing (MOMD-
VRP) with the aim to minimize the total distance travelled and the balance
of routes. They developed a three-stage solution approach using constructive
heuristic, iterated local search multi-objective meta-heuristics (ILSMO) and
concepts of dominance Galindres-Guancha et al. (2018). Weiheng Zhang et
al. presented a Multi-Depot Green Vehicle Routing Problem (MDGVRP)
that applies a Two-stage Ant Colony System (TSACS)Zhang et al. (2020)
to find a feasible and acceptable solution to minimize the total carbon emis-
sions. Although these Ant-colony methods have achieved promising results,
they did not perform well when it comes to a more realistic, complex and
dynamic transportation system and cannot deal with unexpected events in-
stantly.

With the rapid development and recent success of machine learning tech-
nologies lately, many researchers started to focus on solving the traffic con-
gestion problem based on the deep learning based methods. Karlaftis et al.
conducted an overview comparing statistical methods with neural networks
in transportation-related research and it demonstrated that solutions based
on deep reinforcement learning are very promising Karlaftis and Vlahogianni
(2011). Most research projects in this area apply deep learning for traffic pre-
diction Lv et al. (2015); Polson and Sokolov (2016) or accident prediction Ren
et al. (2018); Sun et al. (2017) to detect traffic congestions in advance. For
traffic prediction, Lv et al. proposed a deep learning-based traffic flow pre-
diction method by using a stacked auto-encoder model to learn generic traffic
flow features Lv et al. (2015). Polson et al. presented a deep learning predic-
tor for spatial-temporal relations presented in traffic speed measurements.
It focused on forecasting traffic flows that occur unexpectedly and hardly
predictable such as special events or extreme weather Polson and Sokolov
(2016). Both approaches aforementioned provide a relatively accurate traffic
prediction and allow the user to foresee the potential upcoming traffic con-
gestion. Nevertheless, these predictions lack of providing a decision-making
method for users to plan their route to avoid traffic congestion. Ren et al.
Ren et al. (2018) collected traffic accident data and analyzed the spatial and
temporal patterns of the traffic accident frequency for the accident risk pre-

6

dictor. Sun et al. Sun et al. (2017) proposed a deep neural network DxNAT
to identify non-recurring traffic congestion by converting traffic data in Traf-
fic Message Channel (TMC) format to an image, and use a convolutional
neural network (CNN) to identify non-recurring traffic anomalies. Similarly,
although the papers above can identify the non-recurring traffic congestion,
a decision-making method that aims to help the user to avoid those traffic
congestions is missing. Furthermore, several works attempted to handle the
traffic at the intersections such as controlling the traffic light signal Van der
Pol and Olichoek (2016); Mousavi et al. (2017b); Genders and Razavi (2016)
and navigating vehicles at occluded intersections Isele et al., 2017, 2018). Al-
though these approaches demonstrated promising result for reducing traffic
congestion in certain ways, a real traffic network involves heavily in route
planning and navigation, which are not covered by the study above.

Traffic optimization can potentially be more efficient if it combines with
an intelligent vehicle navigation system in a complex traffic network via DRL
methods. After identifying the challenges of traffic optimization and dis-
cussing the strengthes and weaknesses of the related works, our proposed
framework that uses DRL method for intelligent vehicle navigation is pre-
sented in Section 3.

3. The Framework

Our framework encapsulates the use of SUMO (Simulation of Urban Mo-
bility) with Traffic Control Interface (TraCI) that allows us to connect with
the DRL agent. I this study, an improved Deep Q-Learning Network (DQN)
methodMnih et al. (2015) is adopted to train intelligent agents to navigate the
vehicles to their destinations and avoid congestions. As shown in Figure 1,
the designed framework consists of three parts: The first part is the SUMO,
which is the environment simulator for creating realistic traffic scenarios; the
second part is the middleware that connects the SUMO environment with
the DRL agents; and finally, the third part is the DRL agents which are
capable of maintaining and updating the navigation policies and providing
commands for the navigation simulation.

Our training framework coordinates the environment simulator SUMO
with the observations, actions, and rewards needed and produced by the DRL
agent. After the training is being initialized, we can load, progress and reset
the simulation in SUMO with required information such as the transportation

Proposed Framework

SuUMo Middleware RL Agent
Network and vehicles L - Neural network
Training initialised > S
loaded initialised
» Initial state observed > £t ooy
evaluated
Samuiation «€—— Action Assigned <
progressed
Reward calculated m———>» New state observed > FEaReiian Slofed e
replay memory

)) Mini-batch selected
If vehicle arrives from replay memory

destination
i ‘ True |
—{Simulation terminatedf AHIE! RonaG:

False

updated

Figure 1: The Framework consists of SUMO simulator, Middleware and DRL Agent for
the vehicle navigation task

network and vehicles via TraCI. More details about the simulator and TraCI
can be found in section 4.

Our objective is to train the policy network that can navigate a vehicle
to find the best route to its destination and avoid congestions. To justify the
feasibility of the proposed training framework, several experiments with dif-
ferent transportation maps are carried out and the policy network is trained
with different levels of traffics for performance comparison. In every train-
ing step, the training framework obtains the environmental observations in

SUMO and sends them to the DRL agent via the middleware. Based on the
observations, the DRL agent evaluates the current traffic environment and
assigns an action based on the policy neural network. The framework then
sets the action accordingly to update the state and move to the next step
in SUMO until the simulation is completed. The reward is calculated and
passed to the DRL agent for optimization at the end of each simulation run.

4. Traffic Simulator

Simulation is considered an efficient approach in computer science for
research in investigating different scientific problems. Facilitating the in-
creasing processing power possessed by computers, simulation allows testing
the complex scientific models in a reasonable time with minimum cost. Traf-
fic simulator is especially widely used in transportation research as running
experiments with vehicles in the real world is simply not practical Kotu-
sevski and Hawick (2009). There are several widely used traffic simulators,
including Quadstone Paramics Cameron and Duncan (1996), VISSIM Fellen-
dorf (1994), AIMSUN Casas et al. (2010), MATSIM Axhausen et al. (2016)
and SUMO Krajzewicz et al. (2012). These simulators provide different fea-
tures and models for commercial and research purposes. Kotusevski et al.
carried out a comprehensive comparison of these simulators with their fea-
tures, characteristics and limitations Kotusevski and Hawick (2009). Among
them, SUMO comes with an outstanding ability to simulate a very large and
complex transportation network of up to 10,000 edges (roads).

As SUMO is an open-source, microscopic, multi-model traffic and exten-
sible simulator, it has been widely used in research projects with worldwide
community support. It allows the users to simulate specific traffic scenarios
performing in given road maps. In our experiments, SUMO is used as the
traffic simulator because: (i) it performs an optimized traffic distribution
method based on vehicle types or driver behaviors to maximize the capacity
of the urban transportation network; (ii) it provides flexibility and scalabil-
ity to create the scenario maps; and (iii) it supports TraCl, a Python-based
API to communicate the traffic simulation with the controls from the smart
agents.

A SUMO map can be either generated manually with simple XML-data
containing nodes and edges, or from third-party sources such as Open Street
Map. To import external maps, SUMO provides an additional tool called
“netconvert” to convert the map from other formats into a compatible SUMO

version for traffic simulation. There are two main sources for the map gen-
eration. Firstly, it could read maps from other traffic simulators such as
VISUM, Vissim, or MATsim, and compute the needed input for SUMO to
generate its maps in the compatible XML format. Secondly, it could also
import common maps such as those from Open Street Map. Open Street
Map is a valuable source for real-world map data which is free to be viewed
and enhanced. Figure 2 shows an example of converting an Open Street Map
to the SUMO map.

Figure 2: (a) openstreetmap (b) sumo map

Another distinctive feature of SUMO is TraCl. It is a Python-based API
that treats the SUMO simulator as a server. The users gain real-time in-
formation from a running traffic simulation and update the simulation cor-
respondingly. TraCI enables third party systems (or libraries) to integrate
with the SUMO traffic simulation at runtime. In our training, TraCI plays
the role of a communicator to link the SUMO and the DRL agent. It re-
trieves the information of vehicles on the road map in the simulation and
provides useful features for the DRL agent to respond to the states of the
environment.

5. Deep Reinforcement Learning for smart vehicle navigation

5.1. Problem statement

In our work, the graph theory is used to represent the traffic network in
the SUMO simulator. The traffic network is represented as G ={N,E}, where
N represents junctions and E represents roads in the map. Each intersection

10

in the network between roads is a node in our graph and an edge is defined
if there is a road segment that connects the two corresponding intersections.
As shown in Figure 3, the left sub-figure is a normal urban road traffic
network that runs in SUMO simulator and the right sub-figure is its graph
representation.

Figure 3: Sumo network and node map

Based on the graph representation, we further define our problem state-
ment of vehicle navigation as follows. As illustrated in Figure 4, assume
that each vehicle has an acting agent defined as v € {vy,vs,...,v,} to nav-
igate the vehicle to reach its destination. Once the vehicle approaches a
junction node N, an observed state s; is derived from the current traffic en-
vironment to form the state space S (s; € S). The state s; is fed into the
agent v; as the representation of current traffic observation. Based on the
s¢, the agent v; requires to select a decision from an action space A, where
a ={ay,as,...,a,} € A. Also, we defined a decision zone that has a fixed
distance towards each junction to make sure that the acting agent manages
to change lane in our simulator to reach all possible actions in the action
space. After taking an action based on current state s;, the agent receives
a reward 7(s;, a;) from the traffic environment. The goal of each reinforce-
ment learning agent is to drive its vehicle to reach its destination as quickly
as possible to achieve a higher reward.

5.2. Key elements of DRL vehicle navigation

There are four key elements in the DRL system, named as vehicle agent,
observation/state, action and reward scheme. The vehicle agent takes obser-
vation from the traffic environment as input and provides a recommended
action as its output to maximize the final reward defined by reducing the
traveling time to its destination. Their details are explained as follows:

11

[Vehicle Position,

State Destination,
Edge Expected Travel Time,
Edge Vehicle Number]

[573.49, 142.51,

0.05, 247.52,

28.3952, 9.6904, 11.0004, ...
2,0,1..]

|
Lo N o N

Vehicles in Network

Observe

~Reward=>

|

: ctionl? .
[K’ —Action2—

Control ——————

=Decision Zone=

Action3 |

\S 1 Z

Figure 4: Problem statement of the DRL based multi-agents navigation

Vehicle Agent is a self-evolved neural network (NN) model, that takes
traffic observations as its input and produces action decisions as to its out-
put. The archietecture of the NN is a multi-layer perceptron network (MLP)
with five layers (its details are explained in Section 6). At its early training
stage, the agent has a high exploration rate to take more random actions
to explore different routes to reach its destination. During the training, a
so-called exploration rate decay (ERD) is set to make the agent learn a more

12

deterministic policy m : S — A so that the expectation of traveling time
under similar travel conditions can be reduced significantly.

Action refers to the navigation decision made by a vehicle agent. The
actions are discrete values corresponding to the decisions of navigating vehicle
to m connected edges from the current edge. For example, the actions include
left-turn, right-turn or go-straight as illustrated in Figure 4 where m = 3. In
our experiments with realistic city maps, m is set to the maximum number
of connected edges on the map.

State is an efficient representation of current traffic condition. The
representation variables contain multiple parameters reflecting the circum-
stances in the global urban transportation network to precisely describe the
complexity of its dynamics. Here, the state is defined as a vector with
[Mey Ne, le, Ty, yy] Where the m, is the numbers of vehicles in the edges, n,
is the average driving speeds in the edges, [. is the road lengths of the edges,
and the z, and y, represent the location of the agent and its destination.

Figure 5 illustrates an example of the state representation in a sample net-
work and how the traffic conditions are observed and extracted. From the ex-
ample, there are 8 roads in the network as £ € {AC,CA, BC,CB,CD, DC,
CE,EC}. Road DC has three vehicles as npc = 3; road CA, EC have
two vehicles as nca,ngc = 2; road AC, BC, CD each has one vehicle as
nac,npc,ncp = 1 and road BC has none as nge = 0. Meanwhile, to reduce
the dimensionality of the state space, feature construction is applied for the
calculation of expected traveling time on the road, which is obtained from
several features in the network. The calculation is shown by following:

B f}—z, ifn, >0
te_{ nlz_l’ ifn,=0 }
where [, is the length of the road, v, is the average driving speed on the road,
m, is the speed limit on the road and n, is the number of vehicles on the
road. In the example, vehicle position z, is the coordination of middle point
of road AC where the vehicle agent (the red vehicle on the left) is at the
current time stamp. While the destination y, is the coordination of the road
CE. As the vehicle agent only requires the latest state to make decision, we

compartmentalise a segment in each edge named Decision Zone to indicate
the best timing for obtaining a state. The decision zone d,, is expressed as:

dv = min[ledge, Umazx + Umaxb(v)Tv]

13

where lq4 is the length of the edge, vpq, is the maximum speed of in-
dividual vehicle v, b, is the deceleration function of vehicle v and 7 is the
driver’s reaction time. The decision zone is determined by both vehicle type
and driver’s reaction time due to the safety consideration of the urban trans-
portation network.

B
| x-axis - |[— speed Limit = 10

Edge Length = 40 || <iX

Vehicle

Agent Average DriviTng Speed =5

@y X _ @mp» X
Decision Zone : l
Vehicle Road = (5' 5) @@ Destination = (10, 15)
Middle Point @ Vehicle Number = 3
of road X
y-axis
(0, 0) D

Figure 5: Observation that in a simple junction

Reward is the most important factor in the DRL system as it guides
each agent to converge to an optimal policy 7y by encouraging good actions
taken from the function approximations. The overall principle of the reward
setting in our work is to maximize the expected future discounted returns.
The expected reward is described as:

14

T
R= Z ’Ykrs-i-k
k=0

In the proposed system, the reward function r, is set in an instant reward
manner that can be formulated as ry;, = —(T;,,, — Ts,) where T, is the
total traveling time to the state Sy;; and 7Ty, is the total traveling time
to the state S;. The traditional way to set the reward of each action in a
sequential decision making process suffers from the long delay issue. With the
proposed reward scheme, the convergence performance of our DRL method

is significantly better comparing to a discounted reward scheme.

5.3. DRL method for Realtime Intelligent Vehicle Navigation

In our work, an improved DQN architecture is designed for real-time
intelligent vehicle navigation. DQN is an online training method to maximize
an action-value function Q(s,a), defined in Eqn.1, that is an estimation of
expected cumulated return from a sequential decision-making process. In this
method, multi-layer neural networks are utilised as function approximators
that map from a state to Q-values Q(s,a) ~ Q(s,ald).

Q(s,a) = E[R|st = s,a; = d] (1)

According to the Bellman equation, if the Q values for all actions in the
next state s;,1 are known in Q7 (441, ai11), the Q-value in current state is the
summation of the immediate reward r; and the maximum cumulated reward
in the next step. Therefore, we can set the target maximum expected reward
for current stage as r; + ymazrQT(si41,a), where 0 < v < 1 is a discount
factor. By updating the Q value iteratively, the expected return is defined
in Eqn.2:

Qi11(s,a) = Q(s1, ar) + a(ry + ymazQy(si1,a) — Q(st, at)) (2)

The parameter 6 is trained by minimizing the error between the expected
cumulated return and Q-value that predicted by the agent. Same as the
work in Mnih et al. (2015), two neural networks, including a target network
and an online trained network, are adopted in our work. The target network
is used to estimate the Q) values and being updated after a certain amount

15

of epochs. The loss of individual experience to train the online network is
defined in Eqn.3:

L(0) = (re +ymazQ(si11,al07) — Q(st, al6))? (3)

When sampling the experiences (s, as, 14, ;1) from replay memory, pri-

oritised experience replay algorithm Schaul et al. (2015) is used in our work

to update the DQN network 6. In this method, the probability p, defined in

Eqn.4 is calculated to increase the possibility of sampling experiences that
are new in the memory for faster convergence.

1
b= rank () (4)
Here rank(i) is the rank of transition i when the replay memory is sorted
according to new or old degree.

The techniques used in Double DQNs Van Hasselt et al. (2016) and Du-
eling DQN Wang et al. (2015) are also implemented in our DRL networks.
The double DQNs method is integrated into our method for solving the Q
value overestimation problem and the dueling DQN is for achieving better
convergence when presenting many similar-valued actions.

In the proposed method, a two-stage exploration scheme is designed to
improve the network convergence as well as the converging speed. In the first
stage, the conventional e-greedy policy is used to control the ratio between
exploration and decisions made by the current neural network. In the second
stage of the scheme, a distance-based method is used to replace the random
selection for edge exploration. As illustrated in Figure 6, when the agent
vehicle is in the decision zone (the vehicle in red colour), the edges with
blue colour are those edges that link to the agent vehicle’s current edge,
known as possible actions of the agent vehicle in this particular case. We
calculate their FEuclidean distances between the end of blue edges and the
end of destination edge. After keeping all the Euclidean distances of each
edge to the destination of the vehicle, where {d;,ds,...,d,,} € D and m is
the number of connected edges, the probability P, which is calculated from
Eqn.5, is set for selecting the explored edge.

(5)

where D is the average value of the distances in D, and o is its standard
deviation of distances in D.

D-D
stoflfmax()

16

Figure 6: Comparison of different DQN methods

1200

: : :
— Do — DN
—— Combo-DQN 3300000 1 combo-Dan

1000 —— Proposed Method | —— Proposed Method
3000000

8004 2500000
2000000

£ ¢
T T
E 600 E e
€ W = 1500000
2 kel
L I Y | M/\] 4 “
,W\,\M Wi, 1000000 /
A\ p " $800d
200 A~F i
WV st
T

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
episode episode

Figure 7: Comparison of different DQN methods

As illustrated in Figure 7, comparing to the traditional DQN and the
combination of double DQN, dueling DQN method and priority experience
replay (named as Combo-DQN here), our proposed DRL method has the
best convergence performance on both the converged travel time and the
converging speed. It shows that the average converged travel time by using
our proposed method after 10,000 epochs is 100 time steps which is much

17

lower than the DQN and Combo-DQN. Furthermore, it shows that the cu-
mulative travel time of the proposed method during the training is also the
best among the three methods. The pseudocode of our algorithm is presented
in Algorithm 1 to clarify the details of the method. In addition, the next
section explains all the implementation details for its reproducibility.

Algorithm 1: Deep Q-Learning with memory replay

1 initialise replay memory D to capacity N; action-value function Q
with 6; target-value function @ with = =6

2 for episode=1, M do

3 repeat

4 observe state s

5 with probability € select a random action a,

6 otherwise select a; = argmax,Q(s, a;0)

7 execute action a, observe reward r and next state s

8 store transition (s, a, r, s’) in D

9 sample random minibatch of transitions from D

10 if s} is terminal then

11 ‘ Yj <715

12 else

13 ‘ Yy;j < 15 + ymar,Q(sj, a;0)

14 end

15 if episode > 9 then

16 perform a gradient descent step on (y;-Q(s;, a;; 0))* with
respect to the network parameters 6

17 end

18 until simulation is terminal,

19 Every C steps reset Q + Q

20 end

6. Experiment Preparation

This section presents the preparation of the experiment for implementing
our proposed method. It includes simulation environment building, demand
traffic generation and smart agent training process.

18

6.1. Building a Simulation with SUMO

This subsection presents the implementation of how to build a simulation
for experiment. Figure 8 illustrates the SUMO traffic simulation process
diagram.

Network Building Demand Traffic
NETCONVERT NETEDIT DUAROUTER
.net .rou

v

CONFIGURATION

.cfg

| |

SUMO SUMO-GUI

Simulation

Figure 8: SUMO traffic simulation process diagram

Network building: The experiment targets on optimizing the vehicle
route in a real-time manner in an urban transportation network, therefore
all of the simulations are using real urban map that converted from Open-
StreetMap via the SUMO method called NETCONVERT. For toy data sim-
ulation, the network is built by using a SUMO graphical network editor

19

NetEdit. Eventually, the SUMO networks are designed by microscopic road
traffic simulations, which is ready for the routing navigation purpose.

Demand Traffic: Each vehicle in SUMO simulation is defined explic-
itly since SUMO is a microscopic traffic simulator. A unique identifier, its
departure time, and the vehicle’s route are provided via the SUMO net-
work. Here, the route is the complete list of connected edges between the
origin/destination pair. A trip is defined as the trajectory of a single vehicle
that contains the origin/destination pair and the departure time. The trip
data is stored in .trips.xml file.

Moreover, vehicle’s properties can be further categorized based on vehicle
type. The considered properties for the description of vehicle type in this
experiment are described as follows:

e id: Unique identifier for this vehicle type.
e accel: The acceleration ability of vehicles of the corresponding type.
e decel: The deceleration ability of vehicles of the corresponding type.

e sigma: An evaluation of the imperfection of the driver which value is
between 0 to 1.

e mazxspeed: The maximum velocity of the vehicle.
e color: The color for this vehicle type (only applied in SUMO-GUI).

e probability: The probability of the distribution for this vehicle type.

Two vehicle types are defined in this experiment which is "normal_car”
and "truck”. The definition details of these two vehicle types are displayed in
Table 1 and stored in .add.zml file. As shown in Table 1, each type of vehicle
has its attributes, i.e. length, acceleration, deceleration, sigma, maximum
speed, color and probability. Here the color is only for visualization purposes.
These .trips.xml and .add.zml files are supplied to route generation method
to generate the route file .rou.xml for traffic simulation.

6.2. Data Eztraction and pre-processing

This subsection presents how the environment class extracts the data from
SUMO simulation to compose the observation for state space and aggregate
rewards. This experiment imports SUMO API TraClI to interact with SUMO

20

V{;;l;cée Length | Accel. | Decel. | Sigma | Max Speed | Color | Prob.
Normal Car 5.0 2.0 5.0 0.5 20.0 yellow | 0.8
Truck 8.0 1.0 5.0 0.5 5.0 green 0.2
Table 1: Definition of vehicle type
Features TraCI method

Number of vehicles in edge traci.getLastStepVehicleNumber()
Expected travel time in edge | traci.getTravelTime()

Current Edge traci.getShape()

Destination Edge traci.getShape()

Table 2: Traci function for extracting features data

and extracts the data during the simulation. Table 2 shows the TraCl meth-
ods that used to retrieve features in the network, i.e. the number of vehicle
on each road n., the expected travel time of each road t., the current position
of the agent ¢, and its destination d,.

6.3. Deep Neural Network Architecture and Training

This subsection presents the deep neural network structures and the train-
ing parameters used in the proposed framework. The neural network contains
five fully connected layers with its input layer, two hidden layers and dueling
structure, and its output layer. The first hidden layer has 150 neurons and
the second hidden layer has 100 neurons. Both hidden layers use RELU Mnih
et al. (2015) as the activation function. A dueling network splits into two
streams of fully connected layers which are the advantage stream and value
stream. The value stream only has one output and the advantage stream has
the output as many as the number of actions, which is the maximum number
of connected roads in the urban network. The neural network is created by
using the Tensorflow library Abadi et al. (2016).

As shown in Table.3, we run 10000 episodes in SUMO with 0.001 learning
rate to train the vehicle agent. The exploration rate, also known as the
greedy rate, decreased from 1 to 0.05. The target network parameters will
be replaced every 3000 learning steps. The discount factor for the reward is
0.99. The total replay memory size for storing the transactions is 10000, and
the mini-batch for training is 32. The prioritization exponent is set to 0.6

21

and the prioritization important sampling is increased from 0.4 to 1.

Parameter Value
Episodes 10000
Learning Rate 0.001
Exploration 1.0 — 0.05
Target Network Update per learning step | 3000
Discount Factor 0.99
Replay Memory Size 10000
Mini Batch for Update 32
Prioritisation Exponent 0.6
Prioritisation Important Sampling 04— 1.0

Table 3: Vehicle agent hyper parameters for intelligent navigation

7. Experiment Evaluation

There are two subsections in the experimental evaluation: Firstly, two toy
data maps are generated for testing the convergence of intelligent navigation
agents. Additionally, the toy data simulation can further provide a tool to
gain insight of the decisions made by the intelligent agent during the navi-
gation. Secondly, nine traffic conditions based on three regions in Liverpool
city center are simulated to demonstrate the efficiency of the DRLs.

To further demonstrate the performance of the proposed method, we com-
pare our proposed method with five algorithms, which are GDUE-Dijkstra,
GDUE-A*, Dynamic-Dijkstra, Dynamic-A* and Ant-Colony. GDUE-Dijkstra
and GDUE-A* are the default traffic assignment algorithm in SUMO, where
GDUE stands for Gawron’s Dynamic User Equilibrium Gawron (1998). GDUE
uses Dynamic Traffic Assignment (DTA) to model the traffics via a discrete
time-dependent network. It assigns routes for all trips using some shortest
path algorithms (e.g., Dijkstra’s algorithm and A* algorithm) as an initial-
ization step by taking the edge length as edge cost. After running the traffic
simulation, it records the actual traveling time on each edge, and uses the
same shortest path algorithms to re-assign the routes. This step is done
iteratively until the edge cost for all roads is relatively converged. Dynamic-
Dijkstra and Dynamic-A*Kaparias and Bell (2010) uses a dynamic vehicle
route planning method. These routing approaches re-compute their route

22

periodically, or at a specific time, dynamically by using one of the shortest
path methods. The routing takes into account the current and recent state
of traffic in the network and thus adapts to traffic jams and other changes in
the network. Based on these methods, vehicles can be re-routed dynamically
while a simulation is running. Furthermore, we also implemented the Ant
Colony algorithm in Kponyo et al. (2012) to find the shortest traveling time
for a vehicle to its destination. The core idea is to let the vehicle to choose,
in probability, the path marked by stronger pheromone concentrations.

7.1. Toy Data

In our toy data experiments, two simple maps are built to train and
test the intelligent vehicle agent. The first map has 12 edges and each edge
connects with two other edges (m=2) as illustrated in Figure 9a. The second
map has 18 edges and each edge connects with three other edges (m=3)
as illustrated in Figure 9b. In these maps, two location icons (red and
green icons) are used to show the starting point and the destination of the
navigation tasks. In the experiments, two types of vehicles, normal _car and
truck, are injected into the maps to simulate realistic traffic conditions by
using SUMO tools randomTrip and duarouter. The two types of vehicles
have a different maximum speed, acceleration and deceleration. The number
of vehicles is set as 10 and 20 respectively and these vehicles are added into
the map randomly during the time stamp between 0 and 30.

In Figure 9a and 9b, the right subfigures illustrate the convergence of
the intelligent agent during the training process. It demonstrates that all
the cases converged within 1000 episodes from random explorations. The
converged average traveling time is about 100 time steps. Comparing to the
simple map one, the average traveling time of the agent trained in the simple
map two is much longer as the agent has more action selections at the start
of the training stage. However, both finally converged to similar traveling
time levels due to the similar routing distance and traffic complexity. In the
experiments, it is also found that the convergence of the run with 10 vehicles
in the maps is slightly faster than the run with 20 vehicles.

When the decision network converges, it is capable of selecting optimal
decisions to navigate its vehicle to the destination based on its observations
of the current traffic states. The average decision-making process timing is
2.7 millisecond and it means that the agent is suitable to make real-time
decisions for the navigation task. The routing selected by using Dijkstra and
A* methods is shown in Figure 10 (a). It is static and not able to be adapted

23

—— 20 vehicles

10 vehicles
350 +

300 4

mean travel time

f.fﬁ \MM

LT
° 6 200 400 efiode 660 800 1000

|

100

50

(a) Simple map 1

&
3
=]

—— 20 vehicles
10 vehicles

w
&
=

w
=]
S

mean travel time
w N
S &
3 3
I
e
——

-
7]
=)

H
=]
=]

50

episode

(b) Simple map 2

Figure 9: Simple map structure and mean step in 100 episodes

to the volatile traffic states. However, the DRL based agent (illustrated from
Figure 10 (b) to Figure 10 (e)) makes flexible routing decision based on its
observation when it approaches each decision zone. In Figure 10 (b), the Q
value of the decision to travel straight is much higher than the Q value of
the decision to turn left. It is consistent with an intuitive observation that a
truck with lower speed is on the left edge. In Figure 10 (c), the selection of
the left edge is reasonable as the vehicle number on the right edge is much
more than the number on the left edge. The route selected by the intelligent
agent is illustrated in Figure 10 (f). In this demonstration, it takes 39 time
steps to reach the destination by using the proposed algorithm while it takes
56 time steps when using the routing algorithm of Dijkstra and A*. In other
words, the proposed navigation method improves 30.4% in terms of traveling

24

)

Figure 10: Simulation Result

time in this case.

7.2. Realistic scenario analysis

We further tested the effectiveness of our framework in a more realistic
scenario. In this experiment, three busy traffic regions in Liverpool city
center are selected on OpenStreetmap and converted into the SUMO maps
in our system. The highlighted regions on GoogleMap, OpenStreetMap and
SUMO generated maps are illustrated in Figure 11. In each map, three
demand traffics with different number of vehicles are made accordingly to
test the proposed DRL method in the integrated environment. The details
of the map information are presented in Table 4.

25

(c) Liverpool city map 3

Figure 11: Real world city map for SUMO environment

City Map 1 City Map 2 City Map 3

Total edges 40 60 80
Avg edge length (m) 107.79 143.23 173.95
Edge max speed range (mph) 20-30 30-50 30-50

Table 4: Maps information

The convergence under these traffic conditions is illustrated in Figure 12.
In these three maps, all the cases converged to certain levels ranging from 78
to 160 time steps. This is highly correlated to the complexity of the maps as
the converged average traveling time in the third map is the longest while the

26

time in the first map is the shortest. Another finding is that the converging
speed is relatively slower when there are more vehicles in the simulation due
to the more volatile road conditions.

zzzzzzzzzz
eeeeeeeeee
eeeeeeeeeee

" l

i \ 5
] Jl
200 200 L i e
%J‘MWMM‘MA I L IR ST T g
s

episode cpisode episode

Figure 12: Convergence of the smart agent in (a) City Map 1 (b) City Map 2 (¢) City
Map 3

For vehicle route navigation, it is very important to recognize the po-
tential traffic congestion to arrive at destination as fast as possible. From
our experiments, it is illustrated in Figure 12 that under the same city map,
when the demand traffic is higher, it is more likely to get a sharp peak while
training. This is because of the higher possibility that certain roads on the
map are suffering from traffic congestion. In the city map 3, instability was
observed at the beginning stage of the training as illustrated in Figure 12.
The reason is that city map 3 contains the highest number of edges which
represents more exploration options during the training. While our proposed
scheme solves the slow convergence problem so that it takes similar time
stamps to achieve the convergence.

When the RL agent converges, 100 runs are made on each traffic condition
to compare the proposed DRL agent with the GDUE Dijkstra, GDUE A*,
Dynamic Dijkstra, Dynamic A* and Ant Colony methods objectively. The
average traveling time of the runs and the standard deviation is presented
in Table 5. The results show that the proposed method outperforms other
algorithms in all of the traffic conditions. According to the comparison table,
in the smallest map, i.e. city map 1, our proposed method reduces at most
5.3%, 5.1% and 16.4% traveling time with different demand traffic. Further,
in the largest map city, i.e. city map 3, our proposed method reduces at most
4.9%, 12.4% and 22.5% traveling time in different demand traffic.

To further prove the effectiveness of the proposed method, Wilcoxon test
McDonald (2009) is used to run the significance analysis to compare with the
benchmark methods. The Wilcoxon test is a nonparametric statistical test

27

Map1 Map 2 Map 3

Methods 20 30 50 30 50 80 50 80 120
vehicles | vehicles | vehicles | vehicles | vehicles vehicles vehicles vehicles vehicles
GDUE 81.43 81.78 92.66 109.48 118.23 131.26 162.94 180.04 206.82

Dijkstra | (£3.31) | (£3.61) | (£14.47) | (£5.74) | (£11.59) | (£19.03) | (£12.75) | (£16.72) | (£25.37)
GDUE | 8248 | 82.96 9554 | 110.78 | 119.14 | 131.77 | 163.86 | 181.70 | 20851
A (£4.34) | (£3.87) | (£13.82) | (£8.62) | (£11.76) | (£19.48) | (£13.06) | (£17.44) | (£28.26)

Dynamic | 79.26 | 79.70 90.84 | 105.74 | 110.96 | 12642 | 14898 | 161.34 | 194.32
Dijkstra | (£4.94) | (£2.98) | (£11.99) | (£4.68) | (£8.82) | (£9.46) | (£11.50) | (£11.07) | (49.80)
Dynamic | 81.25 | 80.26 9118 | 107.98 | 111.36 | 127.76 | 149.16 | 16212 | 195.96
A (£6.40) | (£4.01) | (£13.36) | (£5.90) | (£8.62) | (£9.82) | (£11.65) | (£9.91) | (£8.92)
Ant 7956 | 79.84 90.98 | 10690 | 113.36 | 127.98 | 151.08 | 176.80 | 205.12
Colony | (£4.79) | (£4.72) | (£12.64) | (£4.63) | (£11.82) | (£12.44) | (£9.07) | (£18.00) | (£30.97)
RL 7810 | 78.72 8406 | 10344 | 107.66 | 117.00 | 14364 | 147.82 | 159.02

Agent | (£2.66) | (£4.19) | (£5.29) | (£248) | (£4.43) | (£6.85) | (+£4.84) | (£5.60) | (£8.73)

Table 5: The objective performance comparisons under a various of traffic conditions

) Map 1 Map 2 Map 3
Pi&ﬁf”&g&g 20 30 50 30 50 80 50 80 120
vehicles | vehicles | vehicles | vehicles | vehicles | vehicles | vehicles | vehicles | vehicles
GDUE-Dijkstra 711e73 | 4.55e 7 | 3.34e™” | 248e77 | 1.56e® | 3.27e 0] 1.26e7° | 3.73¢ 1| 7.58¢
GDUE-A* 3.33¢7 7 | 5.12e7® | 6.27e7 | 4.65¢7 | 6.77e 8 | 3.55e¢710 | 2.31e7? | 4.12¢711 | 7.79¢ !

-

Dynamic-Dijkstra | 1.90e=® | 2.86e=2 | 4.70e=7 | 2.52¢~1 | 9.71e® | 8.20e¢ " | 2.15¢7° | 3.25¢7? | 5.98¢1°
Dynamic-A* 7.21e™7 | 3.90e7 | 2.63¢7° 1.23¢7 5 | 5.74¢7F 1.02¢7% | 2.21e7® | 7.06e 10 | 6.86¢~1°

=

Ant-Colony 1.87e3 | 2.30e73 | 3.24e77 | 2.71e® | 4.53¢ 0| 3.24e7% | 2.0le™ 7 | 8.24¢ 10| 6.99¢7 1!

Table 6: The significance analysis by using Wilcoxon test

where the data population does not require to follow a normal distribution
assumption. According to the significance level analysis presented in Table
6, all the significant level comparisons between the proposed method and
individual benchmark algorithms are smaller than 0.05. It shows that the
performance of our proposed method is superior over the state-of-the-art
methods. Furthermore, the improvement becomes more significant when the
city map is larger and the demand traffic is higher.

8. Discussion and conclusion

In the past 60 years, global urbanization has resulted in enormous eco-
nomic growth and concentration of populations in densely populated cities.
However, the urban traffic congestion issue has been worsened due to the
growing number of vehicles in cities. It brings a major impact on urban
transportation networks that lead to extra traveling hours, increased fuel
consumptions and vehicle emissions that cause air pollution. Currently, most
vehicle navigation system struggles to respond instantly to non-recurrent con-
gestion problem and lacks the ability to self-evolve and adapt rapidly to the

28

changing environment. Consequently, this causes a serious traffic conges-
tion problem and leads to environmental damage. Therefore, in this paper
we proposed a novel DRL based vehicle route optimization approach to re-
route vehicles to their destinations, making them adapt to the complexity
of urban transportation network to avoid traffic congestion. The proposed
method provides not only just a case of designing a DRL framework to lever-
age one of the most challenging contemporary issues, but also an implication
to connect statistical theory with the DRL to improve the efficiency of the
convergence process.

The major contributions of this paper are: 1) We designed a novel frame-
work to facilitate the vehicle route optimization research under complex ur-
ban transportation context. It enables an accessible way to optimize vehicle
route planning problem using DRL methods. It enhances SUMO simulator
to make it more suitable for optimising vehicle route selection with DRL
algorithms. 2) We also designed an effective observations, reward scheme
and DRL algorithms to achieve efficient convergence of the DRL training.
This paper describes an effective observation as the representation of current
traffic conditions within a specific area of urban networks. The representa-
tion variables contain multiple parameters reflecting the circumstances in the
global urban transportation network to precisely describe the complexity of
its dynamics. 3) The integration of the proposed vehicle route optimization
approach with the real urban map to achieve real-time intelligent vehicle
navigation, and finally, 4) this work carried out an objective comparison
against the existing routing methods and analyzed their significance levels
to demonstrate the potential of the proposed system.

Unlike existing navigation systems that focus on individual vehicles, our
solution takes the complex traffic conditions across the observed area into
account, guiding to all the vehicles involved to maximize the efficiency of the
transportation network. The improved design of a DQN architecture makes
our solution best suited for real-time smart vehicle navigation. The method
is considered to be deployed into affordable hardware devices so that it can
be embedded into the next generation smart vehicle navigation system.

Nonetheless, although this paper shows a significant reduction of the ve-
hicle traveling time when applying the DRL method to train the model for
vehicle agent, the performance is expected to be further improved when more
efficient features can be extracted from the environment. Furthermore, the
proposed framework needs to not just focus on traveling time but also the
vehicle emissions to achieve a more sustainable transportation network. The

29

third limitation is that the model is trained based on the simulation traffic
data. Thus, it is required to be fine-tuned when deployed on the real traffic
data.

To further improve the proposed vehicle route optimization for urban
transportation networks, several future works are worth mentioning: 1) opti-
mization of the proposed framework towards a more sustainable urban trans-
portation network. A method that can index the impact of vehicle emission
for vehicle navigation is needed in the next stage. Besides, abnormal driving
behaviors for emergency vehicles should be considered by the DRL agent,
for example exceeding the speed limit, overtaking on the right or driving in
opposite direction. 2) More efficient features can be investigated to represent
a more realistic urban traffic condition and vehicle behavior. The features in
the proposed approach have confirmed the effectiveness of optimizing vehi-
cle routes in the urban transportation network. However, in practice, more
factors could affect the urban traffic condition and to be investigated in the
future, and finally 3) Collection of real traffic data to narrow the gap between
real-data and simulation data generated by the simulator. Another potential
future work is to use transfer learning and domain adaptation techniques to
fill the gap so that the concept can be commercialized.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. Tensorflow: A
system for large-scale machine learning, in: 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16), pp. 265—
283.

Abdulkader, M.M., Gajpal, Y., ElMekkawy, T.Y., 2015. Hybridized ant
colony algorithm for the multi compartment vehicle routing problem. Ap-
plied Soft Computing 37, 196-203.

Altabeeb, A.M., Mohsen, A.M., Ghallab, A.,; 2019. An improved hybrid
firefly algorithm for capacitated vehicle routing problem. Applied Soft
Computing 84, 105728.

Anjum, S.S., Noor, R.M., Aghamohammadi, N., Ahmedy, I., Kiah, M.L.M.,
Hussin, N., Anisi, M.H., Qureshi, M.A., 2019. Modeling traffic congestion

30

based on air quality for greener environment: an empirical study. [EEE
Access 7, 57100-57119.

Axhausen, K.W., Nagel, K., Horni, A., 2016. The multi-agent transport
simulation matsim .

Bertsimas, D., Jaillet, P., Martin, S., 2019. Online vehicle routing: The
edge of optimization in large-scale applications. Operations Research 67,
143-162.

Boesen, P.V., 2017. Vehicle with interaction between vehicle navigation sys-
tem and wearable devices. US Patent App. 15/356,978.

Cameron, G.D., Duncan, G.I., 1996. Paramics—parallel microscopic simula-
tion of road traffic. The Journal of Supercomputing 10, 25-53.

Casas, J., Ferrer, J.L., Garcia, D., Perarnau, J., Torday, A., 2010. Traffic
simulation with aimsun, in: Fundamentals of traffic simulation. Springer,
pp- 173-232.

Dean, R., Nagy, B., Stentz, A., Bavar, B., Zhang, X., Panzica, A., 2019.
Autonomous vehicle routing using annotated maps. US Patent 10,416,677.

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs.
Numerische mathematik 1, 269-271.

Dorigo, M., Maniezzo, V., Colorni, A., et al., 1996. Ant system: optimization
by a colony of cooperating agents. IEEE Transactions on Systems, man,
and cybernetics, Part B: Cybernetics 26, 29-41.

Fellendorf, M., 1994. Vissim: A microscopic simulation tool to evaluate
actuated signal control including bus priority, in: 64th Institute of Trans-
portation Engineers Annual Meeting, Springer.

Galindres-Guancha, L., Toro-Ocampo, E., Rendén, R., 2018. Multi-objective
mdvrp solution considering route balance and cost using the ils metaheuris-
tic. International Journal of Industrial Engineering Computations 9, 33—46.

Gawron, C., 1998. Simulation-Based Traffic Assignment. Computing user
equilibria in large street networks. Ph.D. thesis. Universitat zu Koéln.

31

Genders, W., Razavi, S., 2016. Using a deep reinforcement learning agent
for traffic signal control. arXiv preprint arXiv:1611.01142 .

Ghafouri, A., Laszka, A., Dubey, A., Koutsoukos, X., 2017. Optimal de-
tection of faulty traffic sensors used in route planning, in: Proceedings of
the 2nd International Workshop on Science of Smart City Operations and
Platforms Engineering, ACM. pp. 1-6.

Guo, D., Wang, J., Zhao, J.B., Sun, F., Gao, S., Li, C.D., Li, M.H., Li,
C.C., 2019. A vehicle path planning method based on a dynamic traffic
network that considers fuel consumption and emissions. Science of The
Total Environment 663, 935-943.

Hall, R.W., 1993. Non-recurrent congestion: how big is the problem? are
traveler information systems the solution? Transportation Research Part
C: Emerging Technologies 1, 89-103.

Hosseinabadi, A.A.R., Slowik, A., Sadeghilalimi, M., Farokhzad, M., Sanga-
iah, A.K., et al., 2019. An ameliorative hybrid algorithm for solving the
capacitated vehicle routing problem. IEEE Access 7, 175454-175465.

Isele, D., Cosgun, A., Fujimura, K., 2017. Analyzing knowledge transfer in
deep g-networks for autonomously handling multiple intersections. arXiv
preprint arXiv:1705.01197 .

Isele, D., Cosgun, A., Subramanian, K., Fujimura, K., . Navigating inter-
sections with autonomous vehicles using deep reinforcement learning. may

2017. URL http://arxiv. org/abs/1705.01196 .

Isele, D., Rahimi, R., Cosgun, A., Subramanian, K., Fujimura, K., 2018.
Navigating occluded intersections with autonomous vehicles using deep re-
inforcement learning, in: 2018 IEEE International Conference on Robotics
and Automation (ICRA), IEEE. pp. 2034-2039.

Jabbarpour, M.R., Zarrabi, H., Khokhar, R.H., Shamshirband, S., Choo,
K.K.R., 2018. Applications of computational intelligence in vehicle traffic
congestion problem: a survey. Soft Computing 22, 2299-2320.

Kaparias, 1., Bell, M.G., 2010. A reliability-based dynamic re-routing algo-
rithm for in-vehicle navigation, in: 13th International IEEE Conference on
Intelligent Transportation Systems, IEEE. pp. 974-979.

32

Karlaftis, M.G., Vlahogianni, E.I., 2011. Statistical methods versus neu-
ral networks in transportation research: Differences, similarities and some

insights. Transportation Research Part C: Emerging Technologies 19, 387—
399.

Kotusevski, G., Hawick, K., 2009. A review of traffic simulation software.
Computer Science, Institute of Information and Mathematical Sciences .

Kponyo, J.J., Kuang, Y., Li, Z., 2012. Real time status collection and dy-
namic vehicular traffic control using ant colony optimization, in: 2012 in-
ternational conference on computational problem-solving (ICCP), IEEE.
pp. 69-72.

Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L., 2012. Recent develop-
ment and applications of sumo-simulation of urban mobility. International
Journal On Advances in Systems and Measurements 5.

Lanning, D.R., Harrell, G.K., Wang, J., 2014. Dijkstra’s algorithm and
google maps, in: Proceedings of the 2014 ACM Southeast Regional Con-
ference, ACM. p. 30.

Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y., 2015. Traffic flow prediction
with big data: a deep learning approach. IEEE Transactions on Intelligent
Transportation Systems 16, 865-873.

McDonald, J.H., 2009. Handbook of biological statistics. volume 2. sparky
house publishing Baltimore, MD.

McGroarty, J., 2010. Recurring and non-recurring congestion: Causes, im-
pacts, and solutions. Neihoff Urban Studio-W10, University of Cincinnati

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare,
M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.,
2015. Human-level control through deep reinforcement learning. Nature
518, 529.

Mousavi, S.S., Schukat, M., Howley, E., 2017a. Traffic light control using
deep policy-gradient and value-function-based reinforcement learning. IET
Intelligent Transport Systems 11, 417-423.

33

Mousavi, S.S., Schukat, M., Howley, E., 2017b. Traffic light control using
deep policy-gradient and value-function-based reinforcement learning. IET
Intelligent Transport Systems 11, 417-423.

Nahar, S.A.A., Hashim, F.H., 2011. Modelling and analysis of an efficient
traffic network using ant colony optimization algorithm, in: 2011 Third

International Conference on Computational Intelligence, Communication
Systems and Networks, IEEE. pp. 32-36.

Okulewicz, M., Mandziuk, J., 2017. The impact of particular components
of the pso-based algorithm solving the dynamic vehicle routing problem.
Applied soft computing 58, 586—-604.

Van der Pol, E., Oliehoek, F.A., 2016. Coordinated deep reinforcement learn-
ers for traffic light control. Proceedings of Learning, Inference and Control
of Multi-Agent Systems (at NIPS 2016) .

Polson, N., Sokolov, V., 2016. Deep learning predictors for traffic flows. arXiv
preprint arXiv:1604.04527 .

Ren, H., Song, Y., Wang, J., Hu, Y., Lei, J., 2018. A deep learning approach
to the citywide traffic accident risk prediction, in: 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), IEEE. pp. 3346
3351.

Ritzinger, U., Puchinger, J., Hartl, R.F., 2016. A survey on dynamic and
stochastic vehicle routing problems. International Journal of Production
Research 54, 215-231.

Ruiz, E., Soto-Mendoza, V., Barbosa, A.E.R., Reyes, R., 2019. Solving the
open vehicle routing problem with capacity and distance constraints with a
biased random key genetic algorithm. Computers & Industrial Engineering
133, 207-219.

Samaras, C., Tsokolis, D., Toffolo, S., Magra, G., Ntziachristos, L., Samaras,
7., 2019. Enhancing average speed emission models to account for con-
gestion impacts in traffic network link-based simulations. Transportation
Research Part D: Transport and Environment 75, 197-210.

Schaul, T., Quan, J., Antonoglou, I., Silver, D., 2015. Prioritized experience
replay. arXiv preprint arXiv:1511.05952 .

34

Sun, F., Dubey, A., White, J., 2017. Dxnat—deep neural networks for ex-
plaining non-recurring traffic congestion, in: 2017 IEEE International Con-
ference on Big Data (Big Data), IEEE. pp. 2141-2150.

Van Hasselt, H., Guez, A., Silver, D.; 2016. Deep reinforcement learning with
double g-learning, in: Thirtieth AAAI Conference on Artificial Intelligence.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., De Freitas,
N., 2015. Dueling network architectures for deep reinforcement learning.
arXiv preprint arXiv:1511.06581 .

Wen, W., 2008. A dynamic and automatic traffic light control expert system
for solving the road congestion problem. Expert Systems with Applications
34, 2370-2381.

Zhang, W., Gajpal, Y., Appadoo, S., Wei, Q., et al., 2020. Multi-depot green
vehicle routing problem to minimize carbon emissions. Sustainability 12,

3500.

Zong, X., Xiong, S., Fang, Z., Li, Q., 2010. Multi-ant colony system for
evacuation routing problem with mixed traffic flow, in: IEEE Congress on
Evolutionary Computation, IEEE. pp. 1-6.

Zygouras, N., Panagiotou, N., Zacheilas, N., Boutsis, 1., Kalogeraki, V.,
Katakis, I., Gunopulos, D., 2015. Towards detection of faulty traffic sensors
in real-time., in: MUD@ ICML, pp. 53-62.

35

	Introduction
	Background
	The Framework
	Traffic Simulator
	Deep Reinforcement Learning for smart vehicle navigation
	Problem statement
	Key elements of DRL vehicle navigation
	DRL method for Realtime Intelligent Vehicle Navigation

	Experiment Preparation
	Building a Simulation with SUMO
	Data Extraction and pre-processing
	Deep Neural Network Architecture and Training

	Experiment Evaluation
	Toy Data
	Realistic scenario analysis

	Discussion and conclusion

