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Abstract—The concept of flexible AC transmission systems
(FACTS) that has been successfully used in power flow control
could potentially benefit the distribution networks equally, in
particular for supporting the integration of distributed gener-
ations (DGs). This paper considers an emerging distribution-
level FACTS (D-FACTs) device, namely soft open point (SOP)
that provides both active and reactive power flow capabilities.
To use distributed generations (DGs) at distribution level to
accommodate local increasing energy consumption can reduce
the power losses due to long distance power transmission, while
maximizing the utilization of local renewable and clean energies.
This paper investigates the optimal sizing and location of DG
units with smart inverters assisted with SOPs in the distribution
systems. To solve the non-convex and non-linear optimization
problem, a fast IPOP-CMA-ES algorithm is proposed and its
efficiency is validated in a modified IEEE 33-bus test system
under different operating conditions. Simulation results have
revealed that the optimal DG allocation can achieve up to 93.26%
power loss reduction and 93.62% voltage deviation reduction,
while the line congestion level revealed by load balancing index
has significantly dropped from original 6.26 to 0.35 only.

Index Terms—Distributed generation (DG), optimal DG loca-
tion, power flow control, distribution-level FACTS (D-FACTS),
soft open point (SOP), fast IPOP-CMA-ES algorithm.

I. INTRODUCTION

The last decade has witnessed massive applications of

active components, such as distributed generators (DGs) in

the development of distributed networks around the world

[1]. According to different power sources and grid connection

types, DGs show different characteristics. An inverter-based

DG unit could supply real power and either generate or

consume reactive power. By utilizing the cost effective and

environmentally friendly renewable energy sources (RES) such

as wind energy, it will relieve the pressure induced by the

increasing demand, pollutant and green house gas emissions

from thermal generators, and delay network reinforcement at

the operation stage. Studies show that the capacity and location

of DGs are not identical in distribution network [2]. Improper

placement will deteriorate the power flow that causes negative

impacts on the system reliability. Due to the high R/X ratio in

distribution systems, it is of great significance to find suitable

place and proper size of DG units to minimize the loss.

The soft open point has been proposed as a promising D-

FACTS design to replace the normally opened tie-switches to

improve the active/reactive power control capabilities among

feeders with reasonable cost [3]. In [4], the authors have judi-

ciously examined the benefits of a distribution network assisted

with SOPs by their flexible power control capabilities. SOP

has been demonstrated to be supportive to DG penetration.

Therefore, the power loss and voltage profile can be enhanced

by optimal allocation of DGs with SOP in the distribution

system. For example, Shafik et al. [5] have proposed a model

to detect the number, sitting and sizing of DG units with and

without SOP based on power losses, voltage profile and DG

penetration level, but the reactive capability of DG units was

not considered.

The aforementioned performance of DG units and SOP for-

mulates a non-linear, higly-constrained optimization problem

to determine the size and location of DG units. The main

objective for such a problem is to minimize the power losses

while satisfying the physical operation constraints predefined

by distribution system operators (DSO). Various optimiza-

tion techniques were investigated for solving optimal sizing

and sitting of DGs in the literature. Basically they can be

categorised into three groups: classic approaches, analytical

approaches and metaheuristic approaches. The computation of

the classic approaches such as linear programming (LP) and

mix-integer non liner programming (MINLP) is fast. However,

the utilization of convex relaxations or linearization sometimes

does not meet the practical situations [6]. Analytical approach

introduces sensitivity index to locate the DG, but the approach

can not guarantee the global optimum and computation is time

consuming [7]. Metaheuristic algorithms based on artificial

intelligence now become popular for handling non-convex and

non-linear problems in the power systems. Some of these

methods include the Genetic Algorithm (GA) [8] and modified

Particle Swam Optimization (PSO) [5]. These methods do

not need preconditioning of objective function and converge

to near global optimum in acceptable time. In this paper, a

fast Covariance Matrix Adaptation Evolution Strategy with an

Increasing Population size (IPOP-CMA-ES) is used. The main

contribution of this paper is to propose an efficient algorithm

for DG allocation considering DG reactive capability and

power flow control assisted with SOP in regard to power

losses, voltage profile and congestion management.

The remainder of the paper is organized as follows. Section

II introduces the envisaged SOP and DG models. Section

III formulates the optimization problem. Section IV details

the proposed optimisation method and its adaptation. Section

V interrogates simulations and provides numerical results.

Finally Section VI concludes the paper.



II. MATHEMATICAL MODELS

A. Modelling of Soft Open Point (SOP)

A back-to-back voltage source converter (VSC) based SOP

is placed between two feeder ends to replace the traditional

tie-line switch. In the power flow control mode [9], one VSC

works with P–Q control scheme while the other operates with

the Vdc−Q control scheme. It provides decoupled active power

and reactive power control at both terminals. Fig. 1 shows

a power injection model of SOP connected to two feeders.

PSOP
m and PSOP

n denote the active power of SOP entering

feeder ends at bus m and n, respectively. It follows

PSOP
m + PSOP

n + PSOP
loss = 0, ∀(m,n) ∈ NSOP (1)

where PSOP
loss is the internal power loss of the SOP and NSOP

is the set of all SOPs. As to a high efficiency SOP, PSOP
loss

is very small and can be neglectable. The reactive power

outputs of SOP are independent, which implies that both power

compensation and absorption are available.

m nSOP

VSC1 VSC2

Fig. 1: power injection model of SOP

The operational limits of power entering the feeders are

constrained by the capacities of the two back-to-back VSCs,

it follows

(PSOP
m )2 + (QSOP

m )2 6 (SSOP
m )2 (2)

(PSOP
n )2 + (QSOP

n )2 6 (SSOP
n )2 (3)

where SSOP
m and SSOP

n are the rating power of VSC1 and

VSC2. The steady-state model represents the capability of SOP

to control the active/reactive power flow of the joint feeders,

as well as the volt/VAR control at the terminals.

B. Modelling of Inverter-based Distributed Generation (DG)

DG unit possesses smaller unit size and can be powered by

renewable sources including the popular wind turbines (WT)

and photovoltaic (PV) panels. Through the power electronic

device, i.e. inverter interface, DG unit is connected to the

distribution network. The reactive power is dynamically ad-

justable due to power factor required by DSO. The capacity

and operation constraints of the inverter-based DG is mathe-

matically formulated as:

SDG
min ≤ SDG ≤ SDG

max (4)

pf DG
min ≤ pf DG ≤ 1 (5)

PDG = SDG · pf DG (6)

QDG = ±SDG · sin
(

cos−1(pfDG)
)

(7)

where SDG, PDG, QDG are the apparent, active and reactive

power output of DG respectively. pf DG is the power factor

which is maintained within [pfDG
min lagging, pfDG

min leading].

III. PROBLEM FORMULATION

Denote a branch l by (i, j) or i→ j if it points from bus i to

bus j where (i, j) ∈ Nbr. Pij and Qij are the real power and

reactive power at the sending end of a branch, respectively.

The branch impedance is simplified as zij = rij + jxij .

Therefore, the real power loss in the branch (i, j) is

PLoss
ij =

P 2
ij +Q2

ij

|Vi|2
rij (8)

where |Vi| is the voltage magnitude on bus i.

A. Objective Function

The objective of optimal DG allocation with SOP in distri-

bution system is to minimize the total power loss for efficient

energy utilization. It can be formulated as follows:

min PTLoss(x) = min

Nbr
∑

ij=1

PLoss
ij , ∀(i, j) ∈ Nbr (9)

where PTLoss is the total power losses of all branches. The de-

cision variables x include the bus number nDG, capacity SDG

and power factor pfDG of DG and SOP generated/absorbed

power at two terminals PSOP
m,n and QSOP

m,n .

B. Constraints

1) Distribution Power Flow Equations: At every bus, based

on the definition of Ohm’s law and power balance, total active/

reactive power satisfies the branch flow equations [10].

pj =
∑

k:j→k

Pjk −
∑

i:i→j

(

Pij − rij
P 2
ij +Q2

ij

|Vi|2

)

, ∀j (10)

qj =
∑

k:j→k

Qjk −
∑

i:i→j

(

Qij − xij

P 2
ij +Q2

ij

|Vi|2

)

, ∀j (11)

|Vj |
2 = |Vi|

2 − 2(rijPij + xijQij)+(r2ij + x2
ij)

P 2
ij +Q2

ij

|Vi|2
,

∀(i, j) ∈ Nbr

(12)

where pj and qj are net injection real and reactive power that

are equal to total generation minus load pj = PG
j − PL

j and

qj = QG
j − QL

j at bus j. SOP and DG can be regarded as

generator or negative load. In the study, an iterative method

based on the Backward/Forward Sweep (BFS) is utilized for

power flow calculation.

2) Voltage constraint: the voltage at each bus should be

within the permissible limits and remains 1 p.u. at substation.

Vi,min ≤ Vi ≤ Vi,max, ∀i ∈ Nbus (13)

Vsub = 1 p.u. (14)



3) Branch constraint: The current of each line is main-

tained within the limits

|Iij | ≤ Iij,max, ∀(i, j) ∈ Nbr (15)

Besides, a series of technical and operational constraints of

SOP and DG are subject to Equation (1)-(5).

IV. OPTIMIZATION METHOD AND ALGORITHM

A. Overview of CMA-ES Algorithm

Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) [11] was proposed by Hansen and Ostermeier in 2010.

It inherits the merits of Evolution Strategy (ES) that uses

weighted recombination of µ parents through adaptive co-

variance matrix to generate λ offsprings. The core idea of

CMA-ES or called (µ/µW , λ)-ES algorithm is to learn the

dependencies and relative ratios along different directions of

a multivariate normal distribution N (m,σ2C). Mean value

m, step-size σ and covariance matrix C will be strategically

evolved in every iteration step. The pseudocode of the algo-

rithm can be found at the right column. The details of the

parameters can be found in [12].

The algorithm conducts three major steps: selection and

recombination, adapting the covariance matrix and step-size

control. One iteration is implemented as follows: 1) Gener-

ate λ samples according to multivariate normal distribution

N (mg, σ
2
gCg). 2) Evaluate the fitness based on the objective

function and take out the best µ individuals to update the

distribution mean value mg+1 along the weighted average
∑µ

i=1 ωi. 3) Construct the evolution path pc,g+1 by accumu-

lating consecutive steps that can cancel the movements of

opposite directions. 4) Update the covariance matrix along

with rank-one term and rank-λ term. 5) Adapt the step-size

by constructing a conjugate evolution path pσ,g+1.

B. Fast IPOP-CMA-ES Algorithm

Introducing a new start trigger for CMA-ES with increasing

population size (IPOP) is proven to be a simple and effective

strategy for global optimization [13]. By comparing the iter-

ating CMA-ES solutions, the best one in the loop is chosen to

be the algorithm result. In each iteration, the calculation stops

when convergence is observed or its parameters do not indicate

further improvement [14]. A new start is then launched by

increasing the population size with a factor of 2. The default

stagnation factor is set to 10 + ⌈30n/λ⌉.
Learning faster So far the rank-one update guarantees

the direction of the best solution appears with maximum

likelihood in the next iteration. However, the true potential is

still underestimated. In this study, the historical best candidate

xbest,g−1 will be part of the offsprings in next iteration if it

is superior to the current best one as below:

xbest,g =

{

xbest,g−1 f(x1:λ,g) > f(xbest,g−1)
x1:λ,g f(x1:λ,g) < f(xbest,g−1)

(16)

zbest,g =

{

zbest,g−1 f(x1:λ,g) > f(xbest,g−1)

(BD)−1 xbest,g−mg

σg
f(x1:λ,g) < f(xbest,g−1)

(17)

Algorithm 1 (µ/µW , λ)-ES algorithm

1: Set λ, ωi=1...λ, cσ ,dσ , cc, c1 and cµ
2: Initialize m,σ, pσ = 0,pc = 0, C = I and g = 0
3: while not terminate do

4: eigenvalue decomposition Cg = BD2BT

5: for k = 1 to λ do

6: zk ∼ N (0, I)
7: yk = BDzk ∼ N (0, Cg)
8: xk = mg + σgyk ∼ N (mg, σ

2
gCg)

9: end for

10: sort f(x1:λ) 6 f(x2:λ) 6 ... 6 f(xλ:λ) // sort

fitness

11: mg+1 ←
∑µ

i=1 ωixi:λ // selection and recombina-

tion

12: pc,g+1 ← (1− cc)pc,g +
√

cc(2− cc)µeff
mg+1−mg

σg

13: Cg+1 = (1 − c1 − cµ)Cg + c1pc,g+1p
T
c,g+1 +

cµ
σ2
g

∑µ
i=1 ωi(xi:λ − mg)(xi:λ − mg)

T // covariance

matrix adaptation

14: pσ,g+1 ←
√

cσ(2− cσ)µeffC
−1/2
g

mg+1−mg

σg
+ (1 −

cσ)pσ,g
15: σg+1 = σg · exp(

cσ
dσ

(
‖pσ,g+1‖
E‖N (0,I)‖ − 1)) // step-size

control

16: g ← g + 1
17: end while

where BD is derived from the eigenvalue decomposition of

covariance matrix Cg in the current iteration.

V. SIMULATION RESULTS AND DISCUSSION

To evaluate the effectiveness, the proposed algorithm is

implemented in MATLAB on a PC with Intel Core i5 2.70

GHz CPU and 16 GB RAM.

A. Experimental Set-up

In this paper, a modified 12.66kV IEEE 33-bus system is

used to investigate the DG allocation with SOP. The system

consists of 33 buses and 32 branches. The line and topology

data can be found in [15]. The basic total load is 3715 kW

and 2300 kVAR. A single line diagram is presented in Fig.

2. The modified system is equipped with SOP in replace of

normally open tie-line between bus 18 and 33. The voltage

range of all buses except the substation is set to [0.95, 1.05]

p.u.. The power factor of DG is considered to be within [ 0.95

lagging, 0.95 leading] according to grid codes [16].

The base case where the system has no DG and SOP is

firstly examined and is used as a benchmark to evaluate the

performance of DG allocation. The total real power loss is

212.50 kW. In the study, five cases with different configura-

tions are considered as follows:

1) one DG without reactive capability and no SOP insertion

2) one DG with reactive capability and no SOP insertion

3) one DG with reactive capability and SOP installation

4) two DGs with reactive capability and SOP installation

5) three DGs with reactive capability and SOP installation
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Fig. 2: A single line diagram of a modified IEEE 33-bus distribution system

Apart from power loss, the system technical performance

is evaluated by two indexes. Load balancing index (LBI)

represents the congestion level in the system.

LBI =
1

Nbr

Nbr
∑

i=1

(

|Iij |

Iij,rate

)2

(18)

where |Iij | and Iij,rate are the current magnitude and rating

of branch (i, j) respectively. Voltage deviation index (VDI)

is used for evaluating the voltage magnitude deviation from

unity at each bus.

V DI =
1

Nbus

Nbus
∑

i=1

(

|Vi| − Vnorm

Vnorm

)

(19)

where Vnorm is the nominal voltage.

B. Numerical Results and Analysis

1) Algorithm Assessments: The simulation results of place-

ment of single and multiple DG units are presented in Table

1. The proposed algorithm is compared with GA [8] and

MPSO [5]. It is evident that the proposed algorithm fast

IPOP-CMA-ES is superior in finding the optimum to its

competitors in all five cases. For instance, in case 5, it reaches

the maximum power loss reduction of 93.26% compared to

the base case, whereas GA and MPSO achieves 89.44% and

89.94% reduction respectively. However, this improvement is

achieved at the cost of the computation efficiency as shown in

the Table 1. For the DG placement problem, the computation

time is not the most important aspect to consider, and the

proposed algorithm is appropriate to be used in the study.

2) Effectiveness of reactive capability of DG: The reactive

capability of DG unit contributes to better energy usage. By

introducing the reactive power, the system power loss reduces

from 115.84 kW in case 1 to 78.81 kW in case 2. Meanwhile,

LBI drops from 3.02 to 1.78 which presents a significant

improvement on the transmission line congestion.

3) Effectiveness of SOP capacity: Fig. 3 illustrates the

power loss under the optimal allocation of one DG with several

different SOP capacities. It reveals that the capacity of SOP is

negatively correlated with power loss. However, for capacity

above 600 kVA, the reduction of power loss can be ignored.

To maximize the economic benefit, the capacity of SOP is set

to 600 kVA.
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Fig. 3: Power loss of single DG system with different SOP

capacity

4) Effectiveness of DG numbers: Cases 3, 4 and 5 consider

different DG numbers. The advantage of introducing more DG

units with SOP in the distribution system is evident. The power

loss is reduced by more than half from 43.25 kW to 14.32 kW

with an increase of 1277 kVA DG power.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
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.)
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 Base Case
 Case 1
 Case 2
 Case 3
 Case 4
 Case 5

Fig. 4: Voltage profile of the system with single and multiple

DG units and SOP

Fig. 4 illustrates the improvement of voltage profile with

different number of DG units assisted with SOP. In the case

of 3 DG units with SOP, the voltage is almost flat and VDI is

reduced to 0.34 % from 5.38 % in the base case and LBI is



TABLE I: Comparisons of simulation results of power losses with single and multiple DG units and SOP

Scenario Method Bus no. DG power (kVA) Power factor Computation time (s) Total power loss (kW)

Base Case 212.50
Case 1

( One DG without reactive

capability and no SOP )

fast IPOP-CMA-ES 7 2897 1 8.9 115.50
GA [8] 6 3179 1 5.0 116.61

MPSO [5] 7 2898 1 3.4 115.51
Case 2

( One DG with reactive

capability and no SOP )

fast IPOP-CMA-ES 6 2992 0.95 24.9 78.81
GA [8] 6 2838 0.96 9.1 81.55

MPSO [5] 6 2982 0.95 12.9 79.12
Case 3

( One DG with reactive

capability and with SOP )

fast IPOP-CMA-ES 30 1880 0.97 53.4 43.25
GA [8] 29 2121 0.96 29.4 51.27

MPSO [5] 30 1922 0.96 26.4 47.41
Case 4

( Two DG with reactive

capability and with SOP )

fast IPOP-CMA-ES 24, 30 1271, 1756 0.95, 0.95 82.4 25.17
GA [8] 8, 30 1540, 1265 0.95, 0.98 25.2 47.69

MPSO [5] 11, 29 1059, 1306 0.98, 0.97 24.4 34.29
Case 5

( Three DG with reactive

capability and with SOP )

fast IPOP-CMA-ES 11, 24, 30 768, 1175, 1214 0.98, 0.95, 0.97 116.3 14.32
GA [8] 14, 24, 29 796, 920, 1291 0.98, 0.95, 0.98 25.2 22.43

MPSO [5] 11, 24, 30 796, 1412, 1363 0.97, 0.98, 0.97 31.7 21.38

also reduced to a low level, standing at only 0.35 compared

with 6.26 in base case.

VI. CONCLUSION

This paper presents a novel algorithm called fast IPOP-

CMA-ES for solving optimal DG allocation problem with

a D-FACTS device, namely SOP. The proposed algorithm

is validated on a modified IEEE 33-bus system with five

different cases and compared with two popular optimization

algorithms GA and MPSO. Different factors are considered

while valuing the placement of DG units, including the DG

reactive capability, DG number and SOP capacity. Simulation

results reveal that the proposed algorithm outperforms the

other two well-known approaches. It is also shown that the

system performance will be greatly enhanced as the DG

number increases when SOP is applied. For example, inclusion

of 3 DG units will result in a 93.26 kW reduction in terms

of power loss. In addition, the line congestion level reflected

by LDI is significantly dropped by 94.41% and the voltage

profile is improved with a 93.26% deviation reduction. The

algorithm can also be applied to practical cases involving

probabilistic load models. Future work will be dedicated

to cases considering the load dynamics in the optimization

problem.
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