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ABSTRACT

Using centralised data storage systems has been the standard prac-

tice followed by online service providers when managing the per-

sonal data of their users. This method requires users to trust these

providers and, to some extent, users are not in full control over

their data. The development of applications around decentralised

data vaults, i.e., encrypted storage systems located in user-managed

devices, can give this control back to the users as sole owners of the

data. However, the development of such applications is not effort-

free, and it requires developers to have specialised knowledge, such

as how to deploy secure and peer-to-peer communication systems.

We present Vaultage, a model-based framework that can simplify

the development of data vault applications. We demonstrate its

core features through a social network application case study and

include some initial evaluation results, showing Vaultage’s code

generation capabilities and some profiling analysis of the generated

network components.
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1 INTRODUCTION

Themajority of online software-based service providers manage the

data of their users in a centralised manner. This practise requires

users to transfer control of their personal data to their service

providers by uploading it to remote servers. This control trans-

fer is almost always an unavoidable step when users want to use

any of the provided services (e.g. email, social networks, search

engines), and it may come with consequences: it limits users’ self-

management of their data, and this data could be used irresponsibly

(i.e. third parties using data without its owners’ consents).

Most service providers use Terms of Service (ToS) to define

how users’ data will be employed and protected, and it is up to

the final users to accept the terms. Unfortunately, most of these

ToSs are expressed in a language that is complex and tedious to

understand [9], and are presented in ways that might direct users

to ignore the terms and immediately jump to use the provided

services [17].

In order to bring back control of personal data to users, the Eu-

ropean Union has issued the General Data Protection Regulation

(GDPR) ś a set of rules regarding the processing, movement, and

protection of personal data [18]. The regulation sets up some rights

to users that providers should ensure when delivering their ser-

vices. These include, among others, the right to be informed of

the processing that users data might receive; the right to object to

certain data processes (e.g. personalised marketing); or the right to

be forgotten (erasure of any user data). While the GDPR is a great

improvement on how user data must be managed, users still need

to trust their service providers would comply with the GDPR rules

along with any other applied regulation.

This situation could be improved by including the requirement

of users having full control of their data in the design phase of an

application development. A potential design to support this require-

ment involves storing users data into their personal devices instead

of handing data over to service providers. These user-managed

storage systems can be denoted as personal or decentralised data

vaults [10]. Following such a design, data is always under user

control, and any external entity requesting access to a data vault

can be granted so directly by the vault owner, i.e., the final user.

In this paper, we present Vaultage, a model-based framework

that can simplify the development of applications based on decen-

tralised data vaults. Vaultage allows modeling both the data to be

stored in a data vault, and the valid requests that a vault might
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receive. From a model containing this information, Vaultage gen-

erates a set of Java classes for the internal usage of the available

data, and a secure communication infrastructure that can be used

to interchange the specified requests and responses between the

data vaults of a specific application.

We have tested Vaultage code generation capabilities by creating

different data vault-based applications. Also, we have started a set of

performance evaluation tests oriented to measure the performance

of the different components of the generated architecture.

The rest of this paper is structured as follows. Section 2 presents

the decentralised data vaults used in Vaultage. Section 3 introduces

the running example that is used to explain the architecture and

main features of Vaultage in Section 4. Section 5 discusses our

evaluation efforts to assess Vaultage. Finally, Section 6 comments

on related work, and Section 7 concludes the paper and outlines

future work.

2 DECENTRALISED DATA VAULTS

A decentralised data vault1 aims to store personal data in user-

managed devices, thus giving these users more control over their

data [10]. This is in contrast with common online services (e.g.

cloud storages, social networks, search engines, etc.) manner of

working, where users are required to trust the management of their

personal data to a third party under often shady terms of service [9].

The data vaults promoted in this paper are composed of the

following parts:

(1) Data schema. Our vaults have a predefined schema of the

data they may store, which depends on the application do-

main. For instance, a medical app might store data about

patients and their treatments. All data vaults of the same

type share the same schema.

(2) Data request operations. Data vaults might receive exter-

nal requests to access certain data contained in them, and

then it is the responsibility of the vault owners/managers to

appropriately respond to these requests, or to reject them.

The explicit set of possible request operations that a concrete

data vault type can expect has to be established. This set of

request operations is similar to the REST API provided by a

web service [12].

Therefore, any application wishing to include data vaults into

its architecture must start by defining the two properties described

above. While this inclusion can improve the privacy, security and

users’ control over any personal data used by the application [6, 7,

10], it does not come without challenges:

(1) Disruption on domain/business and analytical processes

since data might not always be available (i.e. users can turn

off their devices anytime or revoke permissions).

(2) Performance might be reduced since data are stored in per-

sonal devices which are generally less powerful than dedi-

cated servers.

(3) The veracity of certain data items might need to be validated

by requests external to any user-managed data vault, e.g.,

the reputation of a user in a second-hand online market, or

simply the number of likes of a post in a social network.

1For simplicity, in the remaining of the paper we just refer to data vaults.

(4) In terms of application development, the definition of a data

vault must be followed by the implementation of an infras-

tructure to persist the defined data schema, and to enable

communications to receive and respond to the set of possible

requests. The fact that data is stored in a decentralised way

can make network configuration more complex (e.g. routing

or firewall aspects), and asynchronous/parallel processing of

requests and responses is required (synchronisation, locking,

racing, and timing problems).

This paper focuses on the last challenge, related to properly

implementing an infrastructure to integrate data vaults into an ap-

plication. This challenge is orthogonal to any application using data

vaults, which creates an opportunity for code reuse and automatic

generation. Starting from a data vault definition, the objective of the

Vaultage framework is to automatically generate a set of software

artefacts responsible for representing the data that can be stored in

the vault (useful for the internal management of this data), and a

communication network suitable for securely sending requests to

and receiving responses from data vaults.

We use a running example throughout the paper to show how

Vaultage supports developers during the integration of data vaults

into an application. This example is presented in the next section.

3 RUNNING EXAMPLE: FAIRNET

A social network is a platform where users can create relationships

between them based on their shared interests or opinions. In a

very basic form, a social network allows users to create an online

profile; link with other users by establishing friend or follower

connections; and share information such as text posts, images, or

videos. In traditional, centrally-managed systems, all data of such

a social network would be stored in the service provider systems.

Along this paper, we describe how to define Fairnet, a data vault-

based social network application where data is owned by the social

network users.

In Fairnet, each user would be the owner of a data vault, and

would communicate with other users by sending requests to their

respective vaults. We describe next the requirements of Fairnet: the

data schema and the available requests that can be sent to a Fairnet

vault.

3.1 Data Schema

A Fairnet data vault stores the following information of its user:

• As profile information, only the name of the user is stored.

(RA1)

• A list of created posts. A post is composed of an id, a title, a

text content, and a timestamp. Also, a post can be marked

as public, which is a boolean value checked when receiving

requests. (RA2)

• A list of accepted friends. We store the name of each friend.

(RA3)

3.2 Data Vault Requests

There are three different requests that can be sent to a Fairnet vault:

• addFriend: send a friend request to another another Fairnet

vault (i.e. to another user). This request includes information
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to identify the requester, and can be answered with a positive

or negative response. (RB1)

• getPosts: ask for the list of post titles of a user. The title of a

post is considered public in Fairnet, so this request is usually

properly responded by the receiver. (RB2)

• getPost: ask for the data of a concrete post owned by the

user. This user would send the requested data if the post is

marked as public, or if the requester is a friend of the owner.

In any other situation, the request would be rejected. (RB3)

In the following section, we describe how the data schema, pos-

sible requests of a vault such as the one informally presented above

are modelled in Vaultage, and how, from the model of a data vault,

different software artefacts can be generated.

4 VAULTAGE

Vaultage is a framework for simplifying the development of data

vault applications, such as Fairnet. It achieves that by (1) provid-

ing core functionalities that are responsible for exchanging en-

crypted messages between peers, (2) generating application-specific

strongly-typed wrappers of the core functionalities, and (3) generat-

ing skeleton code for application-specific functionalities. This way,

developers can focus on developing the main functionalities of an

application without having to worry about message/data exchange

and encryption.

In Sections 3.1 and 3.2, we presented the two main requirements

for Fairnet to be a vault-based social network. We started by de-

scribing the data schema of the vault, and then we defined the

requests that it can accept. In the following sections, we discuss the

different aspects ś data vault representation, network architecture,

encryption, and code generation ś of Vaultage, and how it addresses

these two requirements of the Fairnet application.

4.1 Data Vault Representation

The first task for developers when using Vaultage involves creating

a model to define a data vault application. This model contains

both the data schema and request operations accepted by the data

vault (see Section 2). Instead of devising a new modelling language,

Vaultage currently uses Ecore models to define data vaults. An

Ecore model contains all the relevant aspects to describe the data

schema of a vault (by defining different classes), as well as the set

of requests (via operations). As an example, Listing 1 shows the

model of Fairnet in the Emfatic notation2, which has been specified

based on the information of Sections 3.1 and 3.2.

In the model, the Fairnetvault, Friend and Post classes are defined

(lines 4-13, 15-18 and 20-24). When defining a data vault, one of

the classes of the model has to be defined as the vault class. To

do so, one class has to be marked with the @vault annotation,

indicating that the implementation of that class will be generated

as a vault class (e.g., the FairnetVault class in Listing 1). This

vault class is the one that identifies the data vault inside the code of

the application (e.g. Fairnet in the example). The attributes defined

in the vault class determine the contents stored in the data vault,

i.e., the data schema. Other classes in the model are used as data

containers and to provide domain types that might be used along

the application. In the example, a Fairnet’s data vault, according

2https://www.eclipse.org/emfatic/

Listing 1: Fairnet’s model.

1 @GenModel(basePackage ="org.vaultage.demo.

fairnet ")

2 package fairnet;

3

4 @vault

5 class FairnetVault {

6 attr String name;

7 val Friend [*] friends;

8 val Post [*] posts;

9

10 op Boolean addFriend(String friendName);

11 op Post getPost(String postId);

12 op String [*] getPosts ();

13 }

14

15 class Friend {

16 attr String name;

17 attr String publicKey;

18 }

19

20 class Post {

21 attr String title;

22 attr String content;

23 attr String timestamp;

24 attr boolean isPublic;

25 }

to the FairnetVault class, stores a name, a list of Friends, and a list

of Posts (lines 4, 5 and 6, respectively). This definition matches the

data schema requirements of Section 3.1 (RA1, RA2 and RA3).

In addition, the vault class also has to contain the requests that

can be accessed by other vaults. These requests are defined as op-

erations of the vault class. For example, to represent the available

requests in Fairnet, i.e., addFriend, getPosts, and getPost (require-

ments RB1, RB2, and RB3 of Section 3.2), three operations with the

same name are defined inside the FairnetVault class (lines 10, 11

and 12, respectively). The parameters of these operations represent

data included in the requests, and the return value indicates the

type of the response that should be provided for each request. For

instance, an addFriend operation requires a friendName string to

be provided as a way to identify the requester. The result of this

operation is indicated with a boolean value, which will be true if

the friend request is accepted and false if it is rejected.

4.2 Network Architecture

In its simplest form, a data vault application is composed of a set of

users, and each one is the owner of a data vault. The interactions of

a user within the application generate data requests and responses

to be interchanged with data vaults of other users. So, one of the

main requirements for the Vaultage framework is providing a secure

communication mechanism for these data vaults, which we present

in this section.

As data vaults are decentralised, we opted for using a relay

communication system provided by a message broker. Data vaults
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would subscribe to the broker using a public identifier. Then, it is

possible to send requests to a concrete data vault by using their

identifier when sending the request. There are several message

broker applications available, such as Apache ActiveMQ3 (the one

currently in use by Vaultage), Kafka4, or Mosquitto [8].

Figure 1 includes a diagram of the described network, using the

Fairnet example. Each user is subscribed to an ActiveMQ queue,

which is used by the message broker to deposit messages coming

from other users5. The figure also shows an example of themessages

that would be interchanged in Fairnet when a friend request is sent

from one user to another. In the example, Alice sends a friend invite

to Bob (step 1). This action in the Fairnet app is translated into an

addFriend request message, including the appropriate parameters

(step 2). In this case, the parameters are the destination of the

message (i.e. the łBobž queue / data vault), and the name of the user

that sends the friend request (łAlicež). This request is relayed by the

message broker into Bob’s queue, which is received and translated

into a Fairnet friend request in Bob’s app (step 3). Then, in step 4,

Bob accepts the friend invite from Alice. This acceptance is encoded

as an addFriend response message, with łAlicež as the recipient of

the response, and the true value to indicate that Bob has accepted

the friend invite. As before, the message arrives at Alice’s queue

through the broker, and it is translated into a notification of Bob’s

accepting the initial request.

4.3 Encryption

All request and response messages sent in the architecture pre-

sented in the previous section are secured with asymmetric en-

cryption [15]. The use of encryption is ingrained into the network

configuration: data vaults subscribe to the message broker with

their public key as their public identifier. For instance, in the ex-

ample of Figure 1, łAlicež and łBobž are the public identifiers used

for communication. In a real context, Alice and Bob’s public keys

would be used.

When a message is sent to another data vault, a double encryption

of the message is performed, in the following order:

(1) The message is encrypted using the private key of the sender.

This allows knowing that a message comes for a certain data

vault, which reduces the possibility of impersonating attacks.

(2) A new encryption is performed, using this time the receiver’s

public key. This is the standard encryption step that seeks

that the contents of the message are only accessible by the

receiver.

When a message is received, the inverse decryption is performed,

i.e., by using the private key of the receiver first, and then the public

key of the sender.

Currently, Vaultage uses Java’s built-in RSA (key size 2048 bits)

[11] as the algorithm for key-pair generation, and one of the RSA

implementations6 provided by Bouncy Castle7 for ciphering. By

3https://activemq.apache.org/
4https://kafka.apache.org/
5As a technical side note, we are also considering the use of ActiveMQ topics, which
would be beneficial when including support for multiple user devices. https://activemq.
apache.org/how-does-a-queue-compare-to-a-topic
6Precisely, the RSA/ECB/OAEPWith-SHA256AndMGF1Padding algorithm
7https://bouncycastle.org/

applying the double encryption presented in this section, we satisfy

the encrypted messaging challenge in Section 2 (challenge 4).

4.4 Code Generation

The Vaultage generator takes as input a data vault model in Ecore as

described in Section 4.1. This generator has been implemented using

the Epsilon Generation Language (EGL) [16], and the generation

templates provide code in the Java language.

The generator provides classes for different concerns. In the fol-

lowing, we explain these concerns over the class diagram of Figure 2,

which contains the generated classes for the Fairnet Example:

• Vault. The class that plays the role of the vault class con-

tains the attributes defined in the data schema. In the fig-

ure, the vault class is FairnetVault (top right), which has

a name, post and friends properties. The vault class also

has one method for each available data vault request. These

methods are called with the appropriate parameters when a

message containing the associated request is received (e.g.

an addFriend request would trigger a call to the addFriend

method of the FairnetVault class). So, to determine how a

request is handled, developers would only need to include

some code in the associated method. An extra token parame-

ter we have not discussed before appears in the signature of

some methods. This token is used to link responses to their

associated requests, as several requests might be received at

the same time. A FairnetVaultBase parent class is also gen-

erated. This class contains properties and methods required

for Vaultage to work (e.g. the vault’s public and private keys),

which must not be modified directly by the developers.

• Remote Vault. A class with the same name as the vault

and the Remote prefix (e.g. RemoteFairnetVault in the top

left of the figure) is created to provide developers with a

high-level interface to send the requests and responses to

other data vaults. This class requires the remotePublicKey

that will receive the message, and the local vault to prepare

the messages. For each request, a pair of methods is created:

one to send requests, and another one to respond them. As

an example, the getPosts method would be called to send

a request to a remote vault, while the respondToGetPosts

one would be executed by that remote vault to respond to

the request.

• Internal Entities. These are the classes used in the defini-

tion of the data schema of a data vault model. In the example,

the Friend and Post classes would be internal entity ones.

• Response Handlers. These interfaces (bottom left) must

be implemented to provide the code that would be called

when receiving a response to a previously sent request. There

is one interface for each possible data vault request. For in-

stance, the AddFriendResponseHandler runmethod would

be called in step 6 of Figure 1, that is, when Alice receives

Bob’s response regarding her previous friend request.

• Message Handlers. These are auto-generated classes that

manage the broker messages in the background. They are

responsible for calling the appropriate Vault class method

when a request is received, and of invoking the associated
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5. addFriend response
("Alice", true)

Figure 1: Network architecture provided by Vaultage

FairnetVault

name : String

addFriend(String requesterPubKey,
    String requestToken, String friendName)
getPosts(String requesterPubKey,
    String requestToken)
getPost(String requesterPubKey,
    String requestToken, String postId)

FairnetVaultBase

Friend

name : String
publicKey : String

Post

title : String
content : String
timestamp : String
isPublic : boolean

FairnetResponseMessageHandler

process(VaultageMessage message,
    String senderPublicKey, Object vault)

GetPostsResponseHandler

run(FairnetVault me, String otherPubKey,
    String responseToken, List<String> result)

RemoteFairnetVault

remotePublicKey : String

addFriend(String friendName)
respondToAddFriend(boolean result,
    String responseToken)
getPosts()
respondToGetPosts(List<String> result,
    String responseToken
getPost(String postId)
respondToGetPost(Post post,
    String responseToken)

FairnetBroker

BROKER_PORT : String

start()
stop()

AddFriendResponseHandler

run(FairnetVault me, String otherPubKey,
    String responseToken, boolean result)

GetPostResponseHandler

run(FairnetVault me, String otherPubKey,
    String responseToken, Post result)

FairnetRequestMessageHandler

process(VaultageMessage message,
    String senderPublicKey, Object vault)

friends *posts *

1

localVault

1

1

1

Figure 2: Class diagram of the classes that are automatically

generated by Vaultage for the Fairnet example.

response handler when a response message of a previous

request arrives.

• Broker Server Launcher. This class is responsible for launch-

ing the Apache ActiveMQ broker server. It allows certain

modifications, such as configuring the port in which the

broker server is started.

5 EVALUATION

We describe here our ongoing efforts for the evaluation of the

Vaultage framework. We start by presenting the different data vault

applications generated during the development of Vaultage. Then,

we include some initial results of the performance-related experi-

ments we are currently carrying out.

Table 1: Vaultage model length (in lines of code) against the

generated code.

Application Model Lines Generated Code Lines Ratio

Fairnet 23 371 1:16

Pollen 20 332 1:17

Synthesiser 7 202 1:29

5.1 Data Vault Applications Generation

We have created three minimal data vault applications ś Fairnet,

Pollen, and Synthesiser ś to evaluate the code generation capa-

bilities of Vaultage. All these applications can be found online in

Vaultage’s open source repository8. Each application has a specific

objective that makes them different to the others. We also measured

the degree of automation that Vaultage provides by calculating the

ratio between the number of lines in the input model (LM) and

the number of lines of generated code (LG) for each application.

Table 1 shows the obtained ratios, as well as the absolute line counts.

Comments and empty lines are excluded from these counts. We

expect these ratios to further improve as Vaultage matures and

extra functionality is covered by the automatic generators.

5.1.1 Fairnet. This application, which was the initial example used

to develop Vaultage, was already introduced in Section 3. Although

simple, Fairnet is versatile enough to offer different concerns for

the code generations to care about, such as friendship relationships

between vaults, a mixture of public and private data (e.g. post title

and contents, respectively), and requests that can be automatically

answered (getPost, getPosts) including also others that require user

input (addFriend). This versatility is also useful for presenting Vault-

age, which made us select Fairnet as the running example for this

paper.

5.1.2 Pollen. This application makes use of Multi-Party Computa-

tion techniques (MPC) [5] to perform polls securely. The application

of MPC aims to prevent any participant of the poll to know the

answer of any other participant. For instance, by applying MPC to

8https://github.com/York-and-Maastricht-Data-Science-Group/vaultage
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Figure 3: Time required to complete Synthesiser runs of in-

creasing work size, using unencrypted/encrypted messages.

perform polls, it is possible to ask a set of participants some ques-

tion (e.g. a 1-to-10 rating about a government decision, a workplace

policy, or a teacher’s performance), while ensuring that any person

participating in the poll cannot know the response of any other

participant, and that the originator of the poll is also only able to

see the final aggregated responses of all participants. Therefore,

the main benefit provided by Pollen is a non-trivial communication

problem that has been very useful for polishing Vautage’s auto-

generated message handling architecture, so that it becomes easy

to use for data vault application developers.

5.1.3 Synthesiser. This is an internal performance testing tool that

allows evaluating the architecture generated by Vaultage. In this ap-

plication, vaults store no data, and can only respond to an increment

request. This request provides a number as a parameter, and it is

always responded with the following number (i.e. it adds one). Each

node in Synthesiser is denoted as a worker. When created, a worker

receives a number of tasks to perform, each of these consisting in

sending an increment request to another worker of the network.

A worker finishes its work when all tasks have been completed,

i.e., when it has sent and received back the provided number of

tasks to complete. Given a network configuration that includes

the traffic pattern for workers to distribute tasks among them, this

application can be used to measure how much time is required

to complete a certain number of tasks per worker. In addition, by

using the same Synthesiser network configuration we can compare

the performance of other system aspects, e.g., different encryption

mechanisms, ways of handling request or response messages, or

how data is retrieved and stored in a vault.

5.2 Vaultage Performance

We are in the process of stress-testing the auto-generated network

architecture, as well as profiling the time spent in the different as-

pects of the communication process, such as encryption or message

handling.

Related to profiling Vaultage communication, Figure 3 shows

some preliminary results on the weight that encrypting transmitted

messages has in the total time required for a Synthesiser run to

complete. We ran these tests in isolation using a desktop computer

with an Intel i5-6400 4-core/4-thread CPU, with 24GiB RAM run-

ning at 3200MHz, and a SATA SSD drive. In the measurements, we

used three Synthesiser workers, leaving an extra core for running

the associated ActiveMQ broker. We performed several Synthesiser

runs of increasing work size, ranging from 25 tasks (i.e. requests

sent) per worker to up to 200. To ensure our measurements were

trustable, each Synthesiser run was run several times per work size,

and then 95% confidence intervals for the times of each work size

were calculated and depicted in the bar chart of Figure 3. Based on

the values of these intervals, the measurements were stable across

all work sizes. The results show that, on average, encryption/de-

cryption of messages imposes a 37% penalty over the time required

to complete a Synthesiser run without message encryption. This

kind of tests could also be useful to compare different encryption ap-

proaches, e.g., measuring the cost of using greater RSA encryption

key lengths.

Although we consider performing the previous tests locally is a

good way to measure the encryption penalty on the transmission

without being affected by the reliability of a network, we are also

interested in running them in a more realistic scenario, i.e., using

distributed nodes in a controlled network, or in a cloud service such

as AWS or Google Cloud. Such network configurations would also

be more adequate to test other issues, such as increasing the number

of on-the-fly messages to stress-test the central broker, as well as

the data vault nodes. We would also like to compare the effect of

relaying many long messages (e.g. transmitting media content such

as images or video) through the broker with establishing point-to-

point communications between nodes that want to share heavy

amounts of data.

6 RELATED WORK

One of the first approaches for online service providers to lend

control of users data is to store it encrypted, in such a way that

these providers cannot decrypt the data themselves. The number of

applications following this approach is increasing, including instant

messaging platforms such as Signal9 or email service providers like

Tutanota10. Moreover, some advanced cryptographic techniques

allow doing some privacy-preserving work over encrypted data,

without requiring or knowing how to decrypt it. For instance, Ho-

momorphic Encryption [14] can be used to perform some data

analysis processes over user-encrypted data without the need to

know the encryption key, which might help maintain user data

privacy. Solutions based in this encryption technique have been

applied, among others, to recommender systems [3] and medical

data [19]. Still, and despite the encryption, some users might be re-

luctant to lend service providers the control of their data, in which

case any approach allowing users to store data in self-managed

systems would be a better option.

Providing users with full control of which personal data they

want to share with a third party is a service currently offered by

several applications. A good example of these is Solid11, which

is based on the storage of users data in personally-managed pods

(somewhat equivalent to Vaultage’s vaults). Any third-party appli-

cation made interoperable with Solid can request access to pods,

and the only ones who can grant this access are the pods owners (i.e.

the users). Solid does not impose any restrictions for the location

9https://www.signal.org/
10https://tutanota.com/
11https://inrupt.com/solid
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where pods are stored, so it allows avoiding centralised backends

and opens the possibility for users to store their data locally.We plan

to study potential benefits of supporting some Solid components

in Vaultage, such as its user authentication infrastructure. Applica-

tions following similar approaches are Digi.me12, CozyCloud13, or

CloudLocker14, among others.

Related to communication aspects, there are several model-driven

approaches that aim to ease the definition of network configura-

tions. These approaches focus mostly on information flow and

access control [1, 4, 13], which are general concerns of any kind of

network infrastructure. However, less efforts have been put into

the automatic generation of secure network communication capa-

bilities provided by Vaultage. We have only found one application

aiming to generate this kind of communication-related code, in

the context of Internet of Things systems. These systems are com-

posed of (generally) low-power sensor and actuator devices that

interchange data in a distributed network to provide some function-

alities, such as controlling the air-conditioning system of a smart

home installation. The CyprIoT framework [2] allows to define the

communication of these systems by means of two domain-specific

languages for the specification of the network configuration and

the network policies that must be enforced, respectively. From

these specifications, a model-to-text transformation step can be per-

formed to generate the network code to deploy in the IoT devices

of the system, freeing engineers from dealing with some low-level

details. While Vaultage does not offer a way to specify fine-grained

network constraints, it is a general-purpose framework that also

supports solid encryption mechanisms for the communication be-

tween more complex nodes than the usual IoT devices. We will

analyse if enabling some network policy configurations in Vaultage

could be useful for some objectives, such as preventing malicious

behaviours (e.g. denegation of service attacks).

7 CONCLUSIONS AND FUTUREWORK

In this paper, we have presented Vaultage, a framework that is in-

tended to support developers when creating data vault applications.

Vaultage offers automatic code generation of decentralised data

vault networks, including brokered messaging between vaults, and

securing messages through double encryption mechanisms. Vault-

age has been used to generate three different data vault applications:

Fairnet (a social network), Pollen (a polling/survey application), and

Synthesiser (for network performance testing).

For our future work, we plan to add more features such as direct

messaging and synchronisation between user devices. Direct mes-

saging will improve the efficiency of data exchange when two vaults

reside in the same network, or when we want to avoid overwhelm-

ing the message broker relay capacity with heavy communications

(e.g. media interchange). Synchronisation between devices will en-

able users to maintain copies of their vaults over multiple devices

for improved availability and fault-tolerance.

12https://digi.me/
13https://cozy.io/en/
14https://www.cloudlocker.eu/en/index.html
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