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Summary

Sound is a vital cue in helping hearing people orient their gaze and attention towards events 

outside their central line of sight, especially in the far periphery, where vision is poor. Without 

sound cues, deaf individuals must rely on vision as an �early warning system� for peripheral 

events, and in fact numerous behavioural studies demonstrate that deaf adults have superior 

visual sensitivity [1,2], particularly to far peripheral stimuli [3-5].  We asked whether an 

increased demand on peripheral vision throughout development might be reflected in early visual 

brain structures. Using functional magnetic resonance imaging (fMRI), we mapped visual field 

representations in 16 early, profoundly deaf adults and 16 hearing age-matched controls. To 

target the far periphery, we used wide-field retinotopic mapping stimuli to map visual field 

eccentricity out to 72°, well beyond conventional mapping studies [6-10]. Deaf individuals 

exhibited a larger representation of the far peripheral visual field in both the primary visual 

cortex and the lateral geniculate nucleus of the thalamus. Importantly, this was not due to a total 

expansion of the visual map, as there was no difference between groups in overall size of either 

structure, but a smaller representation of the central visual field in the deaf group, suggesting a 

redistribution of neural resources. Here, we demonstrate for the first time that the demands 

placed on vision due to lifelong hearing loss can sculpt visual maps at the first level of inputs 

from the retina, increasing neural resources for processing stimuli in the far peripheral visual 

field.

Results

Our aim was to investigate possible neural mechanisms underpinning enhanced peripheral visual 

sensitivity in deaf adults within early visual processing regions in the brain. As visual processing 

advantages in deaf individuals are especially prominent in the far periphery [3-5], we compared 
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eccentricity representations between groups (hearing=16, deaf=16), modifying standard visual 

mapping methods to include previously unmapped regions in the far periphery. Wide-field 

retinotopic mapping stimuli were used to identify primary visual cortex (V1) and map visual 

field eccentricity out to 72° (Fig. 1a). V1 was divided into three equal-sized sub-regions of 

interest � central (0-15°); mid-peripheral (15-39°) and far-peripheral (39-72°) (Fig. 1a; see 

methods for more details). Left and right lateral geniculate nuclei (LGN), the main post-retinal 

visual relay structures in the thalamus, were identified anatomically in each participant using 

structural (proton density) images (Fig. 1b).

V1 Cortical Volume

First, we compared the total cortical volume of primary visual cortex. We found no difference 

between deaf and hearing groups (Fig. 2a) (t(28.19)= -0.154, p = .878), in agreement with a 

previous study that compared overall size of V1 between deaf and hearing adults within a 

smaller, more central visual field representation (+/-30°) [11]. Next, we compared the relative 

volume of the three visual field representations in V1 between deaf and hearing groups, using 

proportional volume to correct for individual differences in overall V1 size. A mixed factorial 

analysis of variance (ANOVA) revealed a significant interaction between sub-region and group 

(F(1,30)= 7.608, p = .002, η2= .923), indicating that volume is distributed differently across the 

three visual field representations between deaf and hearing groups (Fig. 2b). Between-group 

comparisons indicated a significantly larger central representation in hearing participants 

(t(23.22) = 2.98, p = .007), no significant difference in the mid-peripheral representation 

(t(26.83) = -0.452, p = .655), and a significantly larger far-peripheral representation in deaf 

participants (t(24.93) = -2.62, p = .015: Fig. 2b).

V1 Cortical Thickness
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As differences in cortical volume can be affected either by changes in cortical thickness or 

surface area (or both), we compared both measures separately between groups. We found no 

difference in overall mean cortical thickness (all of V1) between deaf and hearing groups 

(ANOVA; Group, F(1,30) = .037, p = .849, η2 = .054; see Fig. 2d). There was a significant 

difference in thickness between eccentricity representations across both groups (Region, 

F(1.589,47.674) = 14.145, p < .001, η2 = .992), reflecting well-known thickness differences in 

between the occipital pole (representing the central visual field and the calcarine sulcus 

(representing the periphery present in all human brains). Importantly, however, there was no 

significant interaction between region and group, suggesting cortical thickness does not account 

for the group differences in volume found above (Region*Group: F(1.589,47.674)= .923, p = 

.384, η2= .183). 

V1 Cortical Surface Area

Cortical surface area of each eccentricity representation was compared next, again using relative 

proportions to correct for individual differences in overall V1 surface area (Fig. 2c). An ANOVA 

revealed a significant interaction between sub-region and group (F(1,30)= 7.608, p = .002, η2= 

.923), as seen in the volume measure. Between-group comparisons indicated a significantly 

larger central representation in hearing participants (t(21.53) = 2.93, p = .008, d = .10), no 

significant difference in the mid-peripheral representation (t(27.42) = -0.244, p = .809, d = .08), 

and a significantly larger far-peripheral representation in deaf participants (t(25.97) = -2.50, p = 

.019, d= .91: Fig. 2c). This suggests that volumetric differences between groups reflected 

changes in surface area rather than cortical thickness.

Cortical Magnification in V1
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The distribution of neural resources allocated to processing different visual field locations is 

conventionally expressed as the areal cortical magnification function (cortical area per unit visual 

field area), which decreases exponentially with eccentricity in V1 [9]. To estimate cortical 

magnification functions in V1, we calculated the cortical area per unit visual field area 

represented by each eccentricity region in each participant. Logarithmic values were plotted as a 

function of eccentricity to linearize functions, and fit with a linear regression line to estimate 

gradients (see methods for details). Gradients were significantly shallower in deaf than hearing 

groups (t(23.56) = -2.96, p = .007, d = 2.67), illustrating a bias towards larger far peripheral 

representations at the expense of smaller central representations in primary visual cortex in deaf 

relative to hearing individuals (Fig. 2e).

Visual Field Representations in the Lateral Geniculate Nucleus

Next, we asked whether the redistribution of visual field resources in deaf participants was 

unique to visual cortex. Previous evidence that projections from peripheral retina are thicker in 

deaf than hearing adults suggests that cortical differences might be inherited from an earlier stage 

in the visual pathway [12]. If so, a peripheral bias in visual field representations might also be 

detectable in the lateral geniculate nucleus (LGN), the thalamic relay structure that receives 

inputs from the retina and is the main source of projections to V1. To examine this, LGN voxels 

from each participant were binned according to their preferred eccentricity (stimulus eccentricity 

producing the maximal functional response). Cumulative histograms were plotted as a function 

of eccentricity for each group (Fig. 2f). Distributions were significantly different between groups 

(two-sample Kolmogorov-Smirnov test, D = 0.094, p < 0.001). The median was significantly 

higher in the deaf group (18.25°) compared to the hearing group (16.23°). Both groups were 

positively skewed, with the hearing group exhibiting a more positive skew (1.62), indicating a 

greater preference towards lower (more central) eccentricities compared to the deaf group (skew 
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= 1.44). Overall, the LGN data indicate a response bias towards the peripheral visual field in the 

deaf group relative to the hearing group. This suggests that the redistribution of visual field 

representations found in primary visual cortex may be inherited in part from earlier structures, 

such as the LGN.

Discussion

Our results provide the first evidence of compensatory plasticity in the LGN and V1 as a 

consequence of lifelong auditory deprivation. We reveal a redistribution of neural resources in 

early deaf individuals, with a larger cortical surface representation of the periphery (>39°), at a 

cost of smaller representations of the central visual field (<15°). This central/peripheral trade-off 

in neural resources may explain behavioural differences reported between deaf and hearing 

individuals. Enhanced peripheral visual sensitivity is reported in deaf cats [3] and adult humans 

[1,2,13], particularly in the far peripheral visual field [4,5]. Although many studies show no 

perceptual differences within the central visual field between deaf and hearing adults [1,14], 

evidence of a central/peripheral trade-off has been reported in deaf adults for some tasks 

[15,16,17].

Previous studies (and unpublished data from our own group) have revealed differences in 

visually evoked cortical potentials between deaf and hearing groups, suggesting potential neural 

substrates for enhanced visual sensitivity [2,18-22]. Further studies using brain imaging and 

animal models have provided extensive evidence that deaf individuals recruit auditory regions of 

the brain in response to visual stimuli (crossmodal plasticity) [3,23-27]. Other studies revealed 

neural differences in deaf individuals in the visual system, but only in higher-order visual areas, 

such as V5/hMT+ and parietal cortex [28,29]. Within primary sensory cortex, expanded 

representations of intact inputs have been demonstrated in other populations with sensory loss, 
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e.g., amputees [30] and those with early partial sight loss [31,32]. In deaf adults, structural 

changes as early in the visual pathways as the retina have been correlated with enhanced far 

peripheral sensitivity, leading to the possibility that early visual structures downstream may also 

be affected [12]. However, previous studies evaluating early visual cortex have found either no 

difference between deaf and hearing groups [11] or have reported thinner visual cortex and larger 

population receptive field sizes [33].  Critically, however, these studies were confined to 

comparisons within a limited visual field (< 37.5°), rather than the far periphery where 

differences in visual sensitivity are most pronounced and potentially beneficial [4,5]. 

Most of our deaf participants were fluent in and frequent users of British Sign Language for 

communication, leading to the possibility that visual experience through signing might contribute 

to the neural changes observed. Although we observed the same pattern of central/peripheral 

differences between deaf and hearing groups in both hemispheres, they were most pronounced in 

the left hemisphere. A left hemisphere bias in deaf individuals has also been reported in visual 

motion brain regions [29], and may underpin the right visual field (left hemisphere) advantage 

reported in deaf and hearing signers [4,16,20], compared to hearing non-signers. However, sign 

language perception is primarily confined within the central/mid-peripheral visual field rather 

than the far periphery. Moreover, previous studies comparing deaf and hearing native sign 

language users suggest that plastic changes are primarily due to sensory deprivation, with only 

modest or no changes with sign language use [1,4,16,26].

Differences in neural resources within the LGN and V1 may partly reflect upstream differences 

in projections from the retina. Codina and colleagues reported that the retinal nerve fibre layer 

containing ganglion cell axons from peripheral retina was thicker in deaf participants, while the 

region containing central projections was thicker in hearing participants [12]. These differences 
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can lead to changes in downstream projection areas. Our measurements in the LGN suggest that 

the redistribution of cortical representations is at least in part mediated by feedforward 

connections. Animal studies in the somatosensory system indicate that thalamic projections can 

influence cortical plasticity further along the processing pathway [34]. Moreover, differences in 

the visual field distribution of electrophysiological responses from the retina and cortex in deaf 

and hearing groups suggest that additional modifications may occur at the level of the cortex 

(unpublished data). Given the crossmodal recruitment of auditory cortex in deaf individuals, 

another possibility is that changes in the peripheral representation in V1 might reflect increased 

input via direct connections from auditory and superior temporal regions to calcarine cortex 

[35,36].

Until now, remapping in primary visual cortex has only been found when the visual system itself 

is compromised by disease or dysfunction [31,32]. Our current finding indicates that the 

sculpting of early visual maps during development can be driven by the demands that are placed 

on vision due to lifelong hearing loss, even in the absence of any visual deficit. The 

developmental plasticity of the brain therefore allows it to be tuned by, and probably optimised 

to, visual behaviour.
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Figures

Figure 1. Definition of regions of interest in primary visual cortex (V1) and the lateral geniculate 

nucleus (LGN). (a) Retinotopic mapping in primary visual cortex (V1). Visual fMRI response maps to 

expanding ring stimulus (left), and rotating wedge stimulus (right) superimposed on the medial surface of 

an individual inflated right occipital lobe. Example stimuli shown above. Semicircular key indicates the 

stimulus position in the visual field maximally activating each part of visual cortex, in false colour. Three 

regions of interest in V1 marked schematically on left image representing the central (C, 0-15°); mid-

peripheral (MP, 15-39°), and far peripheral (FP, 39-72°) visual field. (b) Single axial slice of a proton 

density scan in one participant. Left and right lateral geniculate nuclei (LGN) are indicated in this slice in 

red.
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Figure 2. V1 and LGN measurements. V1 total cortical volume, mean cortical thickness, proportion of 

volume and surface area in V1, cortical magnification gradients and LGN voxel responsiveness to the 

expanding ring stimulus. (a) Mean total V1 cortical volume based on wide field retinotopic mapping. 

Mean cortical volume (b) and cortical surface (c) proportions in V1 sub-regions. (d)  Mean cortical 

thickness of V1 areas, grouped by representation of visual field eccentricity. (e) Mean cortical 

magnification gradients of V1. (e) Preferred eccentricity for voxels in the lateral geniculate nucleus 

(LGN). Sub-regions represent the central (C, 0-15°); mid-peripheral (MP, 15-39°), and far peripheral (FP, 

39-72°) visual field. Error bars represent the mean ± SEM ***p<0.001, **p<0.01, *p<0.05.
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STAR+METHODS KEY

RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB (version R2012a) MathWorks, Natick, MA https://www.mathworks.com

MrVista (version 3) Vistalab, Stanford https://github.com/vistalab/vistasoft

FSL (version 5.0.9) FMRIB [37] https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

Psykinematix (version 1.4) [38] http://psykinematix.kybervision.net/

FreeSurfer (version 5.3) [39] http://surfer.nmr.mgh.harvard.edu/

ITK-Snap (version 2.2.0) [40] http://www.itksnap.org/pmwiki/pmwiki.php

R [41] https://www.r-project.org/

SPSS (version 20) SPSS (IBM SPSS Statistics 20) https://www.ibm.com/analytics/spss-
statistics-software

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to the Lead Contact, Dr Heidi 

Baseler.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The study included 32 participants: 16 early deaf individuals (mean age=34.13, range=20-48 

years, 5 females) and 16 hearing individuals (mean age=29.61, range=20-48 years, 5 females). 

There was no significant difference in age between the groups (t(30)=1.291, p=.207). All 

participants had normal or corrected-to-normal vision and gave informed consent in accordance 

with the Declaration of Helsinki. A British Sign Language (BSL) interpreter was present 

throughout the sessions for BSL-speaking deaf participants to ensure they understood the 

instructions and purpose of the study and to answer any questions.  Each deaf participant also 

filled out a brief questionnaire regarding the known aetiology of deafness (Table 1). All deaf 

participants reported severe to profound hearing loss in both ears (>70db) since infancy (<3 

years). The study was approved by The York Neuroimaging Centre Research Governance 
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Committee.  

Table 1. Details of all deaf participants included in the current study.

Subject
Age (at 

testing)
Gender Handedness 1st Language BSL

Cause of hearing 

loss

Age of 

onset

1 43 M Right English Yes Hereditary Birth

2 48 M Left BSL Yes In utero measles Birth

3 47 M Right English Yes Hereditary Birth

4 46 M Right English Yes Rubella Birth

5 40 M Right English Yes Sensorineural loss Birth

6 20 F Right English No Unknown 2-4 years

7 20 F Left English Yes Unknown Unknown

8 48 F Right English Yes Unknown Unknown

9 23 F Right English Yes Sensorineural loss Birth

10 31 M Left BSL Yes Hereditary Birth

11 31 M Right English Yes Unknown Birth

12 33 F Left BSL Yes Unknown Unknown

13 39 M Right BSL Yes In utero measles Birth

14 20 M Right BSL Yes Hereditary Birth

15 37 M Right English No Birth defect Birth

16 20 M Left English No Unknown Birth

METHOD DETAILS

MRI Methods

MRI data were acquired using a 16-channel posterior brain array coil (Nova Medical) in a GE 3 

Tesla Signa Excite HD scanner at the York Neuroimaging Centre. High-resolution structural data 

of the entire brain were acquired with high resolution T1-weighted isotropic scans, (TR, 8 ms; 

TE, 3 ms; flip angle, 12°; matrix size, 256x256; FOV, 256mm; 176 slices; slice thickness, 1mm; 

voxel size, 1x1x1mm3). Structural proton density scans (TR, 2.7s; TE, 36ms; flip angle, 90°; 

matrix size, 512x512; FOV, 192mm; 39 slices; slice thickness, 2mm; voxel size, 0.37x0.37mm3) 

were also acquired prior to and in the same plane as each functional session in order to aid the 

co-registration of functional data with structural volumes, and identify the lateral geniculate 

nucleus . Functional data were acquired with a BOLD T2* EPI sequence (TR, 3s; TE, 30ms; flip 
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angle 90°; matrix size, 128x128; FOV, 192mm; 39 slices; slice thickness, 2mm; voxel size, 

1.5x1.5x2mm3). Each participant underwent one high resolution structural scan, and two sessions 

consisting of a structural proton density scan followed by functional runs mapping the visual 

field (one expanding ring, one rotating wedge), testing each hemifield separately. 

T1-weighted images were corrected for magnetic spatial inhomogeneities with FMRIB�s 

Automated Segmentation Tool (FAST; [37]). A T2* gradient echo scan was acquired in a subset 

of participants (3 hearing, 4 deaf), which was used to aid further in inhomogeneity correction. 

These data were then processed with the FreeSurfer 5.3 analysis suite to segment and reconstruct 

the grey matter surface [39]. The occipital lobe of the reconstructed image was then corrected by 

manually segmenting and topology checking in ITK-Snap [40]. These segmentations were used 

to create flattened cortical representations [42] on which the retinotopic data were displayed 

using the mrVista toolbox written in Matlab [10]. 

Retinotopic mapping 

Stimulus generation and delivery

Visual maps that included the far peripheral representation were extracted using phase-encoded 

retinotopic mapping [6-10]. Within this study, two variations of retinotopic stimuli were used. 

The first version was carried out during pilot scanning of five deaf and four hearing participants. 

The remaining deaf participants and hearing controls were scanned with a second version of 

retinotopic stimulus where the parameters of both versions were very closely matched. 

The retinotopic stimuli used first were generated with Matlab (version R2012a; The MathWorks, 

Natick, MA) and presented with MatVis (Neurometrics Institute), and the second version of 

stimuli were generated either with Psykinematix 1.4 [38] on a Mac Mini OS X and projected to 

participants through the scanner bore first with a Dukane 8942 ImagePro, then a PROPixx DLP 

LED projector. These included wedge and ring stimuli, both containing high contrast reversing 
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checker boards (100% luminance contrast, mean luminance, 98 cd/m2). The rotating wedge 

stimulus comprised 30° of a full circle, and extended horizontally to 72° visual angle in each 

hemifield, vertically ca. +/- 20° visual angle from fixation (Fig. 1a). The Matlab-generated 

wedge stimulus stepped in 11.25° polar angle increments, and reversed in contrast at 6 Hz, 

beginning at the upper vertical meridian within both hemifield conditions. The Psykinematix 

wedge stimulus stepped in 15° increments and contrast reversed at a rate of 4 Hz, beginning at 

the upper vertical meridian for the right hemifield, and at the lower vertical meridian in the left 

hemifield. The expanding annulus in both stimulus sets had a total annular width of 14°, and 

expanded in increments of 4.65° (one check width). As the rings approached the edge of the 

stimulated field, each ring was replaced by a new one originating from the centre of fixation. A 

fixation cross, a grey �+� sign, 0.87° in size or a red �+� sign, 0.6° in size, was present throughout 

the entire scan. 

Participants viewed the stimuli at a distance of 275 mm from a supine position through a wide 

mirror mounted on the head coil, allowing them to see the projection on a custom in-bore acrylic 

screen (3050mm x 2030mm) mounted behind the head coil. For the Dukane projector, the 

average luminance of the display was 97.87 cd/m2 measured with a Minolta Luminance Meter 

(LS -100/LS 110) and mean luminance of 98.6 cd/m2 (min-max luminance 2.42-199.7 cd/m2) for 

the ProPIXX projector, measured with a Spyder 3 Pro calibration device. The head of each 

subject was stabilised with foam pads placed inside the head coil and a forehead Velcro-strap to 

reduce motion artifacts. To increase the restricted field of view normally imposed by the MRI 

scanner, each hemifield was tested in separate functional scans allowing the stimulus to extend to 

72° along the horizontal meridian.  Participants viewed stimuli passively, continuously fixating a 

small cross placed either on the left or right side of the screen depending on which hemifield was 

being tested. Except in the first sessions (4 hearing, 5 deaf), the head was tilted slightly (ca. 3°) 
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towards the fixation cross to maximise participant comfort, field of view and fixation and head 

stability. Instructions were communicated in the MRI scanner between scans, verbally to hearing 

participants and visually via PowerPoint slides to deaf participants. The deaf participants were 

asked to push down a button when a message appeared on the screen, and release it when they 

had read the message and were happy to proceed, and hearing subjects responded verbally. Every 

participant was provided with an emergency buzzer, which could be pressed at any instance, if 

they wished to quit the scanning procedure.

MRI data pre-processing

Phase-encoded retinotopic scans were processed with the mrVista toolbox. In order to correct for 

motion, the T2* functional volumes were aligned to the first acquired volume of the session. 

Data was slice time corrected and high-pass filtered to remove baseline drifts. MrVista corrects 

for motion within and between functional volumes and uses a mutual information motion 

correction algorithm [43]. The corrected functional scans were co-registered to the coordinate 

space of the high-resolution structural image for each participant using FMRIBs Linear Image 

Registration Tool (FLIRT; [44]) and the Nestares alignment code [43], which is part of the 

mrVista toolbox. To aid data visualisation, the phase-encoded retinotopic data were displayed on 

a flattened representation of the occipital cortex in order to identify boundaries of primary visual 

cortex (V1) [42]. As the flattening process distorts the distance and area measurements within 

the 2D dimensions, all coordinates were transformed into the 3D cortical manifold and 

measurements extracted thereafter [9].

ROI definition

V1 and subdivisions

The delineation of the boundaries of primary visual cortex, V1, was based on previous literature, 

establishing the identifying features of visual areas [6-10].  In addition, three sub-ROIs were 
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selected corresponding to the representations of central (0-15°), mid-peripheral (15-39°) and far-

peripheral visual field (39-72°).  These ranges were defined so each sub-ROI would comprise 

roughly the same number of voxels, due to cortical magnification. Eccentricity data were 

displayed on flattened cortex, restricted to the response phase window corresponding to the 

eccentricity ranges for each sub-ROI. This guided the manual selection of all cortical voxels 

within each sub-region, not just those voxels which were active. Cortical volume (mm3), surface 

area (mm2) and grey matter thickness (mm) were extracted for each sub-ROI. The surface area 

measurements were made on the 3D cortical manifold, following the method used by Dougherty 

and colleagues [9]. In this method, the visual areas are outlined on a 2D flat map, then 

transformed into the 3D manifold. The surface area was calculated by taking the coordinates 

belonging to the selected ROI and finding the nearest node on the 3D manifold describing the 

boundary of grey and white matter.

Lateral Geniculate Nucleus

The left and right lateral geniculate nuclei were identified in each participant using high 

resolution proton density scans taken in the same slice orientation and location as functional 

scans (see MRI protocol section) for optimum visualisation of subcortical structures (Fig 1.b) 

[45-47]. Regions of interest were identified on anonymized scans (K.Y.) and checked by a 

second individual (H.A.B.) such that the identifier was unaware of whether scans belonged to 

deaf or hearing participants. Functional voxels falling within the region of interest were analysed 

from expanding ring scans as with cortical voxels (FFT analysis, phase yields preferred retinal 

eccentricity for each voxel). A coherence threshold of > 0.23 (uncorrected p<0.01) was applied 

to exclude noisy voxels. As the LGN is small, each participant only contributed a few voxels; 

therefore, voxels were accumulated across all participants within each group. Group histograms 

were plotted in 3° eccentricity bins based on the histcount function in Matlab, which picks 
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optimal bin size based on the number and distribution of values. As distributions were skewed 

towards lower eccentricities, data were log transformed to normalise distributions before 

statistical evaluation.

QUANTIFICATION AND STATISTICAL ANALYSIS 

All the measures described above were tested statistically with R [41] and SPSS (IBM SPSS 

Statistics 20). All t-tests described in the work were Welch two sample t-tests. Before conducting 

the general comparison of total V1 volume, a normal distribution confirmed by Shapiro-Wilk test 

(W= 0.9792, p = 0.776). 

Cortical magnification estimates

The areal cortical magnification was estimated in V1 by dividing the cortical surface area for 

each ROI (central, mid-peripheral and far peripheral) by the area of visual field represented 

(mm2/degrees2). As the areal cortical magnification function typically follows an inverse 

exponential [9], values were log transformed (log(mm2/degrees2)) and fit with a linear 

regression. For each participant, linear fit gradients were calculated for left and right V1, then 

averaged across hemispheres and then averaged across participants for each group. This provided 

a metric that is not influenced by individual differences in visual area size [48]. 

DATA AND SOFTWARE AVAILABILITY 

The data that support the findings of this study and the analysis code are available from the Lead 

Contact upon request.
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