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STATISTICAL LEARNING FOR PROBABILITY-CONSTRAINED STOCHASTIC

OPTIMAL CONTROL

ALESSANDRO BALATA∗, MICHAEL LUDKOVSKI† , ADITYA MAHESHWARI† , AND JAN PALCZEWSKI∗

Abstract. We investigate Monte Carlo based algorithms for solving stochastic control problems with local probabilistic

constraints. Our motivation comes from microgrid management, where the controller tries to optimally dispatch a diesel

generator while maintaining low probability of blackouts at each step. The key question we investigate are empirical

simulation procedures for learning the state-dependent admissible control set that is specified implicitly through a probability

constraint on the system state. We propose a variety of relevant statistical tools including logistic regression, Gaussian

process regression, quantile regression and support vector machines, which we then incorporate into an overall Regression

Monte Carlo (RMC) framework for approximate dynamic programming. Our results indicate that using logistic or Gaussian

process regression to estimate the admissibility probability outperforms the other options. Our algorithms offer an efficient

and reliable extension of RMC to probability-constrained control. We illustrate our findings with two case studies for the

microgrid problem.

Key words. Machine learning, stochastic optimal control, probabilistic constraints, regression Monte Carlo, microgrid

control

AMS subject classifications. 93E20, 93E35, 49L20

1. Introduction. Stochastic control with probabilistic constraints is a natural relaxation of deter-

ministic restrictions which tend to generate high costs forcing the avoidance of extreme events no matter

their likelihood of occurrence. In contrast, with probabilistic constraints, constraint violation is toler-

ated up to a certain level offering a better trade-off between admissibility and cost. We refer to [16]

for an overview of probability-constrained problems and list below some of our motivating settings and

references:

1. Microgrid management: An electric power microgrid is a collection of intermittent renewable

generator units, a conventional dispatchable diesel generator (or grid interconnection), and a

battery energy storage system. The microgrid supplies electricity to a community in islanded

mode, balancing fluctuating demand and supply. The operator achieves this by optimizing the

use of the battery storage and the back-up dispatchable generator. Since perfect balancing is

very expensive, it is common to allow for a small frequency of blackouts, i.e. occurrences where

demand outstrips supply. Mixed-integer linear programming approaches to this problem through

approximating with more conservative convex constraints appear in [23, 34].

2. Hydropower optimization: control of a hydropower dam with probabilistic constraints was dis-

cussed in [2]. Within this setup, the controller observes random inflows from precipitation, as

well as fluctuating electricity prices. His objective is to control the downstream outflow from the

dam to maximize profit from power sales, while ensuring a minimum dam capacity with high
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probability. Other related works are [3, 32, 37].

3. Motion planning: finding the minimum-cost path for a robot from one location to another while

avoiding colliding with objects that obstruct its path. Stochasticity in the environment implies

that the robot motion is only partially controlled. Robust optimization that guarantees obstacle

avoidance might be infeasible, making probabilistic constraints a viable alternative. Dynamic

programming methods for unmanned aerial vehicles were introduced in [33] and the probabilistic-

constrained motion of a robot was solved in [18].

Contribution. We consider state-dependent probabilistic constraints that are expressed through

an expectation constraint at each system state. Our setup involves a continuous-state, continuous-time

model with a discrete-step control, where the constraints are imposed step-by-step. Therefore, at each

step and at each state, the controller must estimate which controls are admissible and then optimize

over the latter. While this setting is simpler than global probabilistic constraints, it is much harder

than unconstrained control, because a secondary numerical procedure is needed as part of dynamic

programming to repeatedly compute the admissibility sets. The canonical setup involves finite-horizon

control of a stochastic process described through a stochastic differential equation of Itô type. The solution

paradigm involves the Bellman or Dynamic Programming equation (DPE), which works with discretized

time-steps, but with a smooth spatial variable. In this context, we develop algorithms to solve stochastic

optimal control problems with probabilistic constraints using regression Monte Carlo (RMC). To make this

highly nontrivial extension to RMC, we investigate tools from machine learning (including support vector

machines (SVM), Gaussian process (GP) regression, parametric density estimation, logistic regression and

quantile regression) to statistically estimate the admissible set as a function of the system state. Our

algorithm handles the two parts of the problem—the constraint estimation and the approximation of the

conditional expectation—in parallel and with significantly lower simulation budget compared to a naive

implementation.

After benchmarking the proposed approaches on two practical case-studies from energy battery man-

agement, our main finding is to recommend logistic regression and GP-smoothed probability estimation

as the best procedures. These methods are stable, relatively fast and allow for a variety of further

adjustments and speed-ups. In contrast, despite theoretical appeal, quantile regression and SVM are

not well-suited for this task. On a higher level, our main take-away is that DPE-based stochastic con-

trol with probabilistic constraints (SCPC) is well within reach of cutting-edge RMC methods. Thus, it

is now computationally feasible to tackle such problems, opening the door for new SCPC models and

applications.

Related Models for Probabilistic Constraints. There is an extensive literature on one-period

optimization with chance constraints and on global multi-period probabilistic constraints. For the one-

period formulations, the most popular approach is to transform the problem into linear or non-linear

programs over a set of scenarios [11, 12, 28, 31]. In particular, Monte Carlo scenarios as employed below

are very common, but the typical setup involves a single optimization problem, while we face an infinite

family of them indexed by the system state x and the time-step n. Global probabilistic constraints in

multi-period settings are tackled from multiple perspectives. The dynamic programming method [30]

incorporates the constraint into the objective function via a Lagrange multiplier. The solution is then

obtained by iteratively solving for the optimal control and the Lagrange multiplier. However, the solution

is sub-optimal due to the duality gap. Mixed-integer linear programming [1] works by linearizing the
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constraints and requires to discretize the state space. An alternative [6, 7] is to transform into a static

problem which is however computationally feasible only under strict assumptions on the system dynamics

and noise distribution. Yet another option is the stochastic viability approach [2, 15] that focuses on

maximizing the probability of being admissible, which is defined both in terms of profit targets and

satisfying constraints at every time step.

Compared to above, our model of a multi-period optimization with one-step probabilistic constraints

applied at each time step is new in the literature. To our knowledge, the closest setup is studied recently

in [19] to compute the hedging price of a portfolio whose risk is defined in terms of its future value

with respect to a set of stochastic benchmarks. Besides a local probabilistic constraint, the authors also

provide dynamic programming equations for multi-period constraints. However, their solution is driven

by very specific loss functions and state processes. In contrast, we develop general purpose numerical

schemes using statistical learning methods.

2. Problem formulation. We study numerical resolution of stochastic control problems on fi-

nite horizon [0, T ] with local implicit constraints, specifically we work with constraints defined through

probabilistic conditions on the controlled state. Let (X(t))t≥0 ∈ X ⊂ Rd be a continuous time con-

trolled Markov process adapted to a given filtration (Ft). The control is an (Ft)-adapted process

(u(t))t≥0, taking values in W ⊂ R. We further assume that control decisions are made at discrete

epochs {t0, t1, . . . , tN = T}; between time-steps the value of u(t) remains constant. Thus, the control

process is piecewise-wise constant and càdlàg (right-continuous with left limits), and will be alternatively

represented as u(t) =
∑N−1

n=0 un✶[tn,tn+1)(t).

Our setup is essentially discrete-time as far as control is concerned, but we introduce the continuous-

time system state because admissibility of actions depends on the trajectory of X(t) between control

points. In our motivating examples, the dynamics of the system is described by a stochastic differential

equation:

dX(t) = b(t,X(t), u(t))dt+ σ(t,X(t), u(t))dB(t),

where (B(t)) is am−dimensional Brownian motion generating the filtration (Ft) and b : R+×X×W → Rd

and σ : R+ × X ×W → Rd×m are measurable functions, such that a unique (weak) solution exists for

admissible controls defined below and takes values in X . For the convenience of notation, we will write

Xn for X(tn), n = 0, . . . , N , and will not indicate explicitly the dependence on the control (u(t)) if the

latter is clear from the context.

Admissibility is defined in feedback form via

(2.1) Un:N (Xn) =
{
(uk)

N
k=n : Pk(Xk, uk) ∈ Ak ∀k ∈ {n, . . . , N − 1}

}
,

for deterministic functions Pk : X ×W → R and given subsets Ak ⊂ R. For the rest of the article we

assume Pn(Xn, un) and An to be of the form

(2.2) Pn(Xn, un) ≡ pn(Xn, un) := P

(
Gn((X(s))s∈[tn,tn+1)) > 0

∣∣Xn, un

)
and An := [0, p),

where Gn is a functional defined on trajectories of (X(s)) over the time interval s ∈ [tn, tn+1). In other

words, we target the set of controls such that the conditional probability of the “failure” functional Gn(·)

of X being greater than zero is bounded by a threshold p, i.e.

(2.3) Un(Xn) :=
{
u ∈ W : pn(Xn, un) < p

}
.
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The threshold p in equation (2.3) is interpreted as relaxing the strong constraint Gn(·) ≤ 0 which may

not be appropriate in a stochastic environment. Typical values of p would generally be small (p ≈ 0.05).

We assume in the following that at least one admissible control exists at any state and at any time, hence

Un:N is determined by Uk(x) = Uk:k(x), k = n, . . . , N − 1, the non-empty sets of admissible controls

satisfying the constraints at decision epochs tk conditional on Xk = x.

The controller must optimize as well as evaluate the feasibility of proposed actions, with the perfor-

mance criterion of the form

(2.4) Vn(Xn) = inf
(us)Ns=n∈Un:N (Xn)

{
E

[N−1∑

k=n

∫ tk+1

tk

πs(X(s), uk)ds+W (X(tN ))
∣∣∣Xn

]}
,

where W (·) represents the terminal penalty and πt(·, ·) the running cost. We re-write (2.4) in terms of

the corresponding dynamic programming equation at step n:

Vn(Xn) = inf
u∈Un(Xn)

{
Cn(Xn, u)

}
,

where Cn(Xn, u) = E

[∫ tn+1

tn

πs(X(s), u)ds+ Vn+1(X(tn+1))
∣∣∣Xn, u

]
.

(2.5)

Above Cn(Xn, u) is the continuation value, i.e. reward-to-go plus expectation of future rewards, from

using the control u over [tn, tn+1). Moreover, given the state Xn, we say that u∗ ∈ Un(Xn) is an optimal

control if Vn(Xn) = Cn(Xn, u
∗). Since the admissible set Un(Xn) is both time and state dependent, we

need to estimate the continuation value Cn(·, ·) and the admissible control set Un(·) at every time step.

This is the major distinction from the standard scenario approach [28] in chance-constrained optimization

where there is only a single problem to optimize over a fixed U , but no further indexing by x and by n.

The latter require a combination interpolation and optimization as part of the solution.

Alternative Formulation of Admissibility. We denote by Gn(Xn, un) as the regular conditional

distribution [20] of the functional Gn(·) given (Xn, un):

(2.6) Gn(Xn, un) := L
(
Gn((X(s))s∈[tn,tn+1))

∣∣∣Xn, un

)
,

where L(·|Xn, un) stands for a conditional law. When writing P
(
Gn(Xn, un) > z

)
or E

[
g
(
Gn(Xn, un)

)]

we mean the probability or the expectation with respect to this conditional distribution.

We may rewrite equation (2.2) through the corresponding (1−p)th quantile q(Xn, un) of Gn(Xn, un):

(2.7) qn(Xn, un) : (Xn, un) 7→ arg inf
z

{
P

(
Gn(Xn, un) > z

)
≤ p
}
.

Then using

(2.8) Un(Xn) := {u : pn(Xn, u) < p} = {u : qn(Xn, u) ≤ 0} ,

we can set P ′
n := qn and Ã = (−∞, 0] in (2.1). We will exploit this equivalence to propose quantile-based

methods (Section 4) for the admissible set.

Remark 2.1. Assuming a one dimensional control un ∈ W ⊂ R, and the probability pn(Xn, un)

monotonically decreasing in un, estimating the admissible set Un(Xn) is equivalent to estimating the

minimum admissible control

umin
n (Xn) := inf

u∈W

{
u : pn(Xn, u) < p

}
.

The corresponding admissible set is Un(Xn) = {u ∈ W : u ≥ umin
n (Xn)}.
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Remark 2.2. A more general version are implicit constraints of the form
{
u ∈ W : E

[
g
(
Gn(Xn, u)

)]
≤ p
}
,

for a function g : R → R. Even more abstractly, we can think of a generic implicit map Pk(·, ·) in (2.1)

that defines Un:N (Xn), with the idea that inverting this map is numerically nontrivial (i.e. Pk is expensive

to evaluate) and hence a priori it is not clear which controls satisfy constraints and which do not.

Remark 2.3. Equation (2.8) describes admissible controls u for a given state x. The “dual” perspec-

tive is to consider the set of states X a
n (u) ⊂ X for which a given control u is admissible:

(2.9) X a
n (u) :=

{
x ∈ X : pn(x, u) < p

}
.

Often the cardinality of X is infinite, while the control space W is finite, so that enumerating (2.9) over

u ∈ W is considerably easier than enumerating the uncountable family of sets x 7→ Un(x) in equation (2.3).

Furthermore, if u 7→ pn(x, u) is decreasing for all x ∈ X , then we obtain an ordering X a
n (u1) ⊆ X

a
n (u2)

for u1 ≤ u2. The latter nesting feature corresponds to ranking the controls in terms of their “riskiness”

with respect to Gn, so that the safest control will have a very large X a
n (u) (possibly all of X ), while the

riskiest control will have a very small admissibility domain.

2.1. Regression Monte Carlo. In this article we focus on simulation-based techniques to solve

(2.4). The overall framework is based on solving equation (2.5) through backward induction on n = N −

1, N − 2, . . ., replacing the true Vn(x) with an estimate V̂n(x). Since neither the conditional expectation,

nor the admissibility constraint are generally available explicitly, those terms must also be replaced with

their estimated counterparts. As a result, we work with the approximate Dynamic Programming recursion

V̂n(Xn) = inf
un∈Ûn(Xn)

{
Ĉn(Xn, un)

}
,

where Ĉn(Xn, un) := Ê

[∫ tn+1

tn

πs(X(s), un)ds+ V̂n+1(X(tn+1))
∣∣∣Xn, un

]
.

(2.10)

Above, Ê is the approximate projection operator and the set of admissible controls Ûn is also approximated

via either p̂n(·, ·), i.e., Ûn(Xn) :=
{
u : p̂n(Xn, u) < p

}
, or q̂n(·, ·), i.e., Ûn(Xn) =

{
u : q̂n(Xn, u) ≤ 0

}
, see

(2.8). The estimated optimal control ûn ∈ Ûn(Xn) satisfies V̂n(Xn) = Ĉn(Xn, ûn).

The key idea underlying our algorithm and defining the Regression Monte Carlo paradigm is that

Ê and Û are implemented through empirical regressions based on Monte Carlo simulations. In other

words, we construct random, probabilistically defined approximations based on realized paths of X. This

philosophy allows to simultaneously handle the numerical integration (against the stochastic shocks in

X) and the numerical interpolation (defining V̂n(x) for arbitrary x) necessary to solve (2.10).

To understand RMC, recall that specifying Ê is equivalent to approximating the conditional expec-

tation map (x, u) 7→ E[ψ
(
(X(s))s∈[tn,tn+1]

)
|Xn = x, un = u] =: f(x, u) where we specifically substitute

ψ
(
(X(s))s∈[tn,tn+1]

)
=

∫ tn+1

tn

πs(X(s), un)ds+ V̂n+1(X(tn+1)).

To do so, we consider a dataset consisting of inputs (x1
n, u

1
n), . . . , (x

Mc
n , uMc

n ) and the corresponding

pathwise realizations y1, . . . , yMc with yj = ψ
(
(x(s))js∈[tn,tn+1]

)
, where (x(s))js∈[tn,tn+1]

is an indepen-

dent draw from the distribution of the process (X(s))s∈[tn,tn+1]|(x
j
n, u

j
n). Then we use the training set

{xj
n, u

j
n, y

j}Mc

j=1 to compute f̂ , an estimator of f , via regression.
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Similarly, estimating Un is equivalent to learning the conditional probability map pn(x, u) (or the con-

ditional quantile map qn(x, u) in (2.3)) and then comparing to the threshold value p (zero, respectively).

This statistical task, whose marriage with RMC is our central contribution, is discussed in Section 4.

The technique of using regressions for the approximation of the continuation value was developed in

the celebrated works by [24] and [36] in the context of American option pricing and further enhanced

in [10,25]. This was extended for storage problems and controlled state process in [4,8,9,13,26]. Among

the approaches for approximating f we mention [39] and [26] who exploit the structure of the problem

to reduce the dimensionality of the regressions, [4, 5] who harness the distribution of process to reduce

the variance of f̂ and [21, 26, 39] who use non-parametric regression methods for f̂ . Regression based

approach has also been discussed in the context of stochastic dual dynamic programming for solving high

dimensional storage problems in [38].

In contrast to the above well-developed literature, very little exists about estimating the set of

admissible controls Ûn(Xn), which requires approximating p(x, u) (or q(x, u)) in equation (2.3). There

are results about learning a single global admissibility set Û in a one-period setup, but those approaches

do not transfer to our context of state- and time-dependent admissibility constraints. A naive approach is

to estimate Ûn(Xn) for every state realized during the backward induction through nested Monte Carlo.

Namely for each pair (x, u) encountered, we may estimate the probability of violating the constraint

by simulating Mb samples from the conditional distribution Gn(x, u) as {gbn(x, u)}
Mb

b=1. We then set

u ∈ Ûn(x) if p̄n(x, u) < p, where

p̄n(x, u) :=

Mb∑

b=1

✶gb
n(x,u)>0

Mb
(2.11)

is the empirical probability. Although simple to implement, this Nested Monte Carlo (NMC) method is

computationally intractable for even the easiest problems. As an example, a typical RMC scheme employs

Mc ≈ 100, 000 and assuming Mb = 1000 for inner simulations, which is necessary for good estimates of

small probabilities p ≤ 0.1, would require 108 simulation budget at every time-step to implement NMC.

Note furthermore that NMC returns only the local estimates p̄(x, u); no functional estimate of Un(x) or

X a
n (u) is provided for an arbitrary x or u, respectively. As a result, any out-of-sample evaluation (i.e. on

a future sample path of X) requires further inner simulations, making this implementation even more

computationally prohibitive.

An important challenge in using Û is verifying admissibility. Since we are employing Monte Carlo

samples to decide whether u is admissible at x, this is a probabilistic statement and admissibility can

never be guaranteed 100%. We may use statistical theories to quantify the accuracy of estimators of U ,

for example, by applying Central Limit Theorem tools for the estimator p̄(x, u) of the true p(x, u). In

particular, we develop tools based on confidence intervals in order to make statements (with asymptotic

guarantee) such as “u ∈ U with 95% confidence” (equivalent to p(x, u) < p with 95% probability condi-

tional on the data collected). Achieving reasonable confidence levels calls for “conservative” estimators

of Û . As we show, not doing so can make learning U highly unreliable, frequently causing decisions that

are inadmissible with respect the imposed probability constraint. Thus, the related construction of Û (ρ)

with specified confidence level ρ is a running theme in Section 4.

2.2. Motivation: controlling blackout probability in a microgrid. To make our presentation

concrete, we illustrate the framework of (2.5) by formalizing the motivating application from microgrid
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management. A microgrid comprises renewable and traditional generation sources, along with a medium

of storage, designed and managed to provide electrical power to a community in a decentralized way. We

consider a system composed of a dispatchable diesel generator, a renewable energy source and an electric

battery storage. The microgrid topology is illustrated in the left panel of Figure 1 and is same as the

example discussed in [26].

Fig. 1: Left panel: Microgrid topology: the load, the diesel generator, the battery and the renewables. Right: Contour

plot for minimum admissible diesel output (L, I, C) 7→ umin
n (L, I, C) (see Remark 2.1). For L < 0, the constraint is not

binding and umin
n (L, I, C) = 0. As demand increases, the constraint becomes more stringent, i.e. umin

n (L, I, C) increases

in L. Red curve represents a path of the controlled demand-inventory pair (Lu∗

n , Iu
∗

n , Cu∗

n ) following a myopic strategy

choosing the minimum admissible control un(Ln, In, Cn) = umin
n (Ln, In, Cn). The regime C can be visualised by observing

when the red line crosses on the R.H.S. of the first contour line, indicating the the diesel generator should be turned on.

In this context, the state variables are X(t) = (L(t), I(t), C(t)), where L(t) is the net demand

(demand net of renewable generation), I(t) ∈ [0, Imax] is the state of charge of the battery, referred to

as “the inventory”, and C(t) ∈ {0, 1} is the state of the diesel generator. C(t) = 0 refers to diesel being

OFF and C(t) = 1 implies ON. The controller is in charge of the diesel through the control u(t), which

indicates the power output of the unit. We assume, for clarity of exposition, that the net demand L(t) is

an exogenous process, while I(t) is controlled. We reiterate that the control decisions are made at discrete

epochs {t0, t1, . . . , tN−1}, however these decisions affect the state of the system continuously. The choice

of u(tn) ≡ un at time tn is based on minimizing the cost of running the microgrid, as well as controlling

the probability of a blackout (i.e. failing to match the net demand) during [tn, tn+1). The blackout is

described through the imbalance process S(s) := L(s) − un − B(s), ∀s ∈ [tn, tn+1), representing the

difference between the demand and supply, while the diesel output is held constant over the time step.

The power output from the battery is a deterministic function of net demand, inventory and the control,

B(s) = ϕ(L(s), I(s), un) constrained by the physical limitations of the battery. B(s) > 0 implies supply

of power from the battery and B(s) < 0 implies battery charging. The set of admissible controls is thus:

(2.12) Un(Ln, In, Cn) :=

{
u : P

(
sup

s∈[tn,tn+1)

S(s) > 0
∣∣∣(Ln, In, Cn, u)

)
< p

}
.

Thus in the context of microgrid, the conditional distribution Gn of equation (2.6) and the corresponding

pn(Ln, In, Cn) are:

(2.13)
Gn(Ln, In, Cn, un) = L

(
sup

s∈[tn,tn+1)

S(s)
∣∣∣(Ln, In, Cn, un)

)
,

pn(Ln, In, Cn, un) = P(Gn(Ln, In, Cn, un) > 0).
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Because pn is not (in general) available analytically, the admissibility condition pn(Ln, In, Cn) < p is

implicit. Recall that we denote byW = 0∪ [u, ū] the unconstrained control set. We assume that u(t) = 0

means that the diesel is OFF, while u(t) > 0 means that it is ON, and at output level u(t). Thus, we

define C(s) = ✶{un>0} ∀s ∈ (tn, tn+1] with the time interval left-open in order to allow for identification

of switching on and off of the diesel generator at times tn. Notice also that the process C(t) does not

satisfy the controlled diffusive dynamics, but this slight extension of the framework does not impact on

the methods and results presented. We then look at the following formulation of the general problem:

(2.14)

Vn(Ln, In, Cn) = min
{uk}

N−1
k=n

{
E

[
N−1∑

k=n

(
✶{Ck=0,uk>0}K + ρ(uk)∆tk

)
+W (LN , IN , CN )

∣∣∣(Ln, In, Cn)

]}
,

subject to P

(
sup

s∈[tk,tk+1)

S(s) > 0
∣∣∣(Lk, Ik, Ck, uk)

)
< p, k = n, . . . , N − 1,

where ∆tk = tk+1 − tk, ρ(uk) is the instantaneous cost of running the diesel generator with power

output uk and K is the cost of switching it ON. We assume zero cost to turn the generator off. The

DPE corresponding to (2.14) is the same as in (2.5) with the integral running cost
∫ tn+1

tn
πs(X(s), un)ds

replaced by

✶{Cn=0,un>0}K + ρ(un)∆tn.

Remark 2.4. The admissible set U ⊆ W for this problem has the special structure: if u ∈ U(x), then

∀ W ∋ ũ > u, ũ ∈ U(x). Hence, we may represent U(x) = [umin
n (x), ū] ∩ W in terms of the minimal

admissible diesel output umin
n (x). Conversely, the admissibility domains for a fixed u ∈ W are nested: if

u1 ≤ u2 then X a
n (u1) ⊆ X

a
n (u2). This suggests to compute X a

n (u) sequentially as u is increased and then

invert to get U(x).

To visualize the minimum admissible control umin
n (x), the right panel of Figure 1 presents the

map x → umin
n (x) under a constraint of p = 0.01 probability of blackout. We also present a path

for (L(t), I(t), C(t))t≥0 using a myopic strategy where the controller employs the minimum admissible

control at each point, un := umin
n (Ln, In, Cn) ∀n. Notice how for the most part, umin

n (·) = 0 so that

Un(·) = W and the blackout constraint is not binding. This is not surprising, as blackouts are only

possible when L(t) ≫ 0 is strongly positive and the battery is close to empty, I(t) ≃ 0. Thus, except

for the lower-right corner, any control is admissible. As a result, only a small subset of the domain X

actually requires additional effort to estimate the admissible set U(x). In our experience this structure,

where the constraint is not necessarily binding and where we mostly perform unconstrained optimization,

is quite common.

3. Dynamic emulation algorithm. In this section we present our Dynamic emulation algorithm

which provides approximation for the admissible set Ûn(·) and the continuation value function Ĉn(·, ·).

The crux of the algorithm are the following two steps, implemented in parallel at every time-step:

Generate design→ Generate 1-step paths & admissibility statistic→ Estimate admissible set

Generate design→ Generate 1-step paths & pathwise profits→ Estimate continuation function
(3.1)
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To estimate Ĉn(·, ·)’s and Ûn(·)’s, we proceed iteratively backward in time starting with known terminal

condition W (X) and sequentially estimate Ûn and Ĉn for n = N − 1, . . . , 0. Assuming we have estimated

Ûn+1, . . . , ÛN−1 and Ĉn+1, . . . , ĈN−1, we first explain the estimation procedure for Ûn and Ĉn. This

corresponds to a fit task. In the subsequent backward recursion at step n− 1 we also need the predict

task to actually evaluate V̂n(Xn) which requires evaluating Ĉn(·) at new (“out-of-sample”) inputs Xn, un

which of course do not coincide with the training inputs (x1
n, u

1
n), . . . , (x

Mc
n , uMc

n ).

3.1. Estimating the set of admissible controls. To estimate the set of admissible controls

Ûn(·) at time-step n, we choose design Da
n := (xi

n, u
i
n, i = 1, . . . ,Ma) and simulate trajectories of the

state process (X(s))is∈[tn,tn+1)
starting from Xi(tn) = xi

n and driven by control uin. To evaluate the

functional G
(
(X(s))is∈[tn,tn+1)

)
, we discretize the time interval [tn, tn+1) into K finer sub-steps with

∆nk := tn(k+1)
− tnk

and define the discrete trajectory xi
n = xi

n0
,xi

n1
, . . . ,xi

n(K−1)
,xi

nK
. We then record

(3.2) wi
n := ✶

(
G((xi

nk
)k∈{0,...,K−1}) > 0

)
, i = 1, . . . ,Ma,

where, formally, we extend (xi
nk
)k∈{0,...,K−1} to a piecewise constant trajectory on [tn, tn+1).

Analogous to standard RMC, we now select an approximation space Ha
n to estimate the probability

p̂n or the quantile q̂n, using the loss function La
n and apply empirical projection:

(3.3) p̂n := arg min
fa
n∈Ha

n

Ma∑

i=1

La
n(f

a
n , w

i
n;x

i
n, u

i
n).

See Section 4 for concrete examples of Ha and La. Note that the approximations p̂n and q̂n must be

trained on joint state-control datasets {xi
n, u

i
n, w

i
n}

Ma

i=1 with wi
n dependent on the method of choice and

moreover yield random estimators (p̂n is a random variable).

Using the distribution of p̂n(x, u) we may obtain a more conservative estimator that provides better

guarantees on the ultimate admissibility of (x, u). As a motivation, recall the NMC estimator p̄n(x, u)

from (2.11); for reasonably large Mb ≫ 20, the distribution of p̄n(x, u) is approximately Gaussian with

mean pn(x, u) and variance pn(x,u)(1−pn(x,u))
Mb

. Defining

p̂(ρ)n (x, u) := p̄n(x, u) + ξ(ρ)n (x, u)(3.4)

:= p̄n(x, u) + zρ

√
p̄n(x, u)(1− p̄n(x, u))

Mb
,(3.5)

where zρ is the standard normal quantile at level ρ and ξ
(ρ)
n (x, u) represents a “safe” margin of error for

p̄n at confidence level ρ. The corresponding approximate admissible set with confidence ρ is

(3.6) Û (ρ)
n (x) := Ûξ(ρ)

n (x) =
{
u : p̂n(x, u) + ξ(ρ)n (x, u) < p

}
.

More generally, we set the admissible set for a site x ∈ X to

(3.7) Ûξ
n(x) = {u : p̂n(x, u) + ξn(x, u) < p} ,

where ξn(x, u) ensures “stronger” guarantee for the admissibility of u at x. The margin of estimation

error can also be fixed, ξn(x, u) = c ∀(x, u) ∈ X×W, which can be applied when the sampling distribution

of p̂n(x, u) is unknown. The corresponding admissible set

(3.8) Ûξ=c
n (x) = {u : p̂n(x, u) + c < p} .
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is equivalent to estimating Ûξ=0
n (x) with a shifted lower probability threshold p − c. To simplify nota-

tion, we use Ûn(x) to denote the unadjusted admissible set, Ûn(x) := Û
ξ=0
n (x) in the context of NMC.

Analogously, we can adjust equations (3.2)-(3.3) based on learning the quantile qn(x, u) to add a margin

of error, Ûξ
n(x) = {u : q̂n(x, u) + ξn(x, u) ≤ 0}.

Remark 3.1. In the context of one-step static optimization, conservative estimates for the admissible

set were explored in [12]. The idea is to consider u to be admissible iff p(x, u) = 0, i.e. there are no

failures observed in all of the simulated samples. The choice of the sample size Mb is then determined

using Chebyshev inequality that provides a theoretical guarantee on P(p(x, u) > 0 | p(x, u;Mb) = 0). This

approach is similar in our setup to a violation margin c = p in (3.8). However, the guarantee on p(x, u) is

only applicable locally at the design sites. We are not aware of any tools that would allow non-parametric

guarantee for any x ∈ X . The regression based approach offers a model-based guarantee for admissibility

of u at any x by setting the parameter ρ in (3.6) or c in (3.8).

3.2. Estimating the continuation value. To estimate the continuation value Cn(·, ·), we choose

a simulation design Dc
n := (xj

n, u
j
n, j = 1 . . . ,Mc) (which could be independent or equivalent to Da

n) and

generate one-step paths for the state process (X(s))js∈[tn,tn+1)
starting from Xj(tn) = xj

n and driven by

control ujn, comprising again finer sub-steps xj
n = xj

n0
,xj

n1
, . . . ,xj

n(K−1)
,xj

nK
(in principle the sub-steps

could differ from the time discretization for Ûn). Next, we compute the pathwise cost yjn:

(3.9) yjn =
K−1∑

k=0

πnk
(xj

nk
, ujn)∆nk + vjn+1, where vjn+1 = inf

u∈Ûn+1(x
j
nK

)
Ĉn+1(x

j
nK
, u), j = 1 . . .Mc,

and we replace the time integral in (2.5) with a discrete sum over tnk
’s. At the key step, we project

{yjn}
Mc

j=1 onto an approximation space Hc
n to evaluate the continuation value Cn(·, ·):

(3.10) Ĉn(·, ·) := arg min
fc
n∈Hc

n

Mc∑

n=1

|f cn(x
j
n, u

j
n)− y

j
n|

2.

The design sites {xj
n, u

j
n}

Mc

j=1 could be same or different from those used for learning the admissible sets

in the previous subsection. Two standard approximation spaces Hc
n used in this context are: global

polynomial approximation and piecewise continuous approximation.

Remark 3.2. In the microgrid example of Section 2.2 the running cost over [n, n+ 1) is known once

the control un is chosen. Thus it can be taken outside the conditional expectation and the data to be

regressed is simply yj = vjn+1.

Global polynomial approximation:. This is a classical regression framework with polynomial bases

φk(·, ·) and Ĉ
α
n (x, u) :=

∑
k αkφk(x, u). The coefficients α are fitted via

(3.11) α̂ := argmin
α

Mc∑

j=1

∣∣∣
∑

k

αkφk(x
j , uj)− yj

∣∣∣
2

.

As an illustration, for the microgrid example of Section 2.2 we construct a quadratic polynomial

approximation when diesel generator is ON, u > 0, using 10 bases {1, L, I, u, L2, I2, u2, LI, Iu, LI} and a

separate quadratic approximation with the 6 basis functions {1, L, I, L2, I2, LI, LI} when diesel generator

is OFF, u = 0. Polynomial approximation is easy to implement but typically requires many degrees of

freedom (lots of φ’s) to properly capture the shape of C and can be empirically unstable, especially if

there are sharp changes in the underlying function (see for example [21, 26]).
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Piecewise continuous approximation:. This is a state-of-art tool in low dimensions, d ≤ 3. The

main idea is to employ polynomial regression in a single dimension and extend to the other dimensions

via linear interpolation. As an example, for the microgrid with diesel generator ON, we have three

dimensions (L, I, u). We discretize inventory I as {I0, I1, . . . , IMI} and control u as {u1, u2, . . . , uMu} and

fit independent cubic polynomials in L for each pair (I l, ue) with l ∈ {0, 1, . . . ,MI} and e ∈ {1, . . . ,Mu},

i.e., f l,en (L) =
∑

k α
l,e
k φk(L). For any (I, u) ∈ [I l, I l+1] × [ue, ue+1] we then provide the interpolated

approximation Ĉn(L, I, u) as

Ĉn(L, I, u) =

[
I l+1 − I I − I l

] [ f l,en (L) f l,e+1
n (L)

f l+1,e
n (L) f l+1,e+1

n (L)

][
ue+1 − u

u− ue

]

(ue+1 − ue)(I l+1 − I l)
.(3.12)

Nonparametric approximation:. Further alternatives for Hc
n can be found in [26] who used Gaussian

process regression and [21,22] who used local polynomial regression. For semi-parametric approximation,

[10] developed piecewise multivariate linear regression.

There are several possibilities for choosing the designs Da
· and Dc

· , see [26] for a detailed discussion

of different regression designs Dc
· and their impact on the quality of the final solution.

3.3. Evaluation. We analyze the quality of the solution by computing three quantities on the

out-of-sample dataset:

• estimate of the value function V0(x0) at t = 0 and state x0;

• empirical frequency of inadmissible decisions on the controlled trajectories xû
· ;

• statistical test for the realized number of constraint violations (blackouts for the microgrid).

Good solutions should minimize costs and not apply inadmissible controls. However, since we employ

empirical estimators, U is never known with certainty and we must handle the possibility that constraints

are violated with probability more than p. In turn this leads to the trade-off between complying with (2.1)

and optimizing costs. Similar treatment of constraints in the context of sample average approximation of

probabilistic constrained optimization problems have been discussed in [27,29]. Moreover, our framework

implies that the whole algorithm is stochastic: multiple runs will lead to different results since both p̂n

and Ĉn are impacted by the random samples yjn and wi
n.

Estimate of the value function: We evaluate the value function V̂0(x0) at time t0 = 0 and state x0

using M ′ out-of-sample paths (xû,m′

0:N ),m′ = 1, . . . ,M ′. Each trajectory (xû,m′

0:N ) is generated by applying

the estimated optimal control û0:N−1 based on the continuation value and admissible sets (Ĉn, Ûn)
N−1
n=0

leading to the realized pathwise cost

v0(x
û,m′

0:N ) :=
N−1∑

n=0

K−1∑

k=0

πnk
(xû,m′

nk
, ûm

′

n )∆nk +W (xû,m′

N ).

The resulting empirical Monte Carlo estimate is

V̂0(x0) ≃
1

M ′

M ′∑

m′=1

v0(x
û,m′

0:N )(3.13)

and represents an unbiased estimation of the value of the control policy and an asymptotic upper bound

estimation of the value function, provided all controls used are admissible.
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Empirical frequency of inadmissible decisions on the controlled trajectories: For the M ′

out-of-sample paths, we compare the estimated optimal control {ûn(x
û,m′

n )}N−1,M ′

n=m=1 against the minimum

admissible control {umin
n (xû,m′

n )}N−1,M ′

n=m=1 assumed for a second to be known. Namely, for each path we

compute the number of inadmissible decisions w0(x
û,m′

0:N ) and the respective empirical frequency wfreq as:

(3.14) w0(x
û,m′

0:N ) :=
∑

n

✶
ûn(x

û,m′

n )<umin
n (xû,m′

n )
and wfreq :=

1

N ·M ′

M ′∑

m′=1

w0(x
û,m′

0:N ),

respectively. We employ these metrics in Section 5, where a “gold standard” {umin
n (xû,m′

n )}N−1,M ′

n=m=1 is

obtained by brute force, utilizing a simulation budget 105 larger than for the actual methods we are

comparing. Empirical gold standard is a common technique when analytical benchmark is unavailable,

see e.g. [14]. A good estimation method should yield wfreq ≃ 0. However, if wfreq > 0, a controller can

choose margin of error ξn (Equation (3.7)) to reduce wfreq at the expense of higher cost v0(x
û,m′

0:N ).

Remark 3.3. In Equation (3.14) we exploit the structure of the admissible set for the microgrid

control (cf. Remark 2.4). Generally, w0(x
û,m′

0:N ) :=
∑

n ✶ûn(x
û,m′

n )/∈Un(xn)
, where Un(xn) is either known

in closed form or computed via empirical gold standard. The general setting, without any assumptions

on the structure of Un(xn), is computationally very expensive and beyond the scope of this work.

Statistical test: Next we propose statistical tests using the controlled trajectories to validate dif-

ferent methods for admissible set estimation. Such a test is essential to affirm the use of a numerical

scheme for Un in the absence of a benchmark. As an example, in the context of microgrid we want to test

the null hypothesis H0 that the realized probability of blackouts is bounded to the required level against

the alternative H1 that their probability is too high. Let

(3.15) Bm′

n = ✶

(
G(xû,m′

s∈[tn,tn+1)
) > 0

)
, n = 0, . . . , N − 1 and m′ = 1, . . . ,M ′.

Ignoring the correlation due to the temporal dependence in xn, we assume that Bm′

n ∼ Bernoulli(p̃)

are i.i.d. and p̃ represents the true (unknown) probability of blackout. We want to test:

(3.16) H0 : p̃ ≤ p vs. H0 : p̃ > p.

A common approach to such composite null hypothesis is to replace H0 with a more conservative hy-

pothesis p̃ = p leading to the test statistic

(3.17) T :=

∑
m′,n(B

m′

n − p)√
M ′ ·N · p · (1− p)

∼ N (0, 1).

Hence, H0 is rejected at a confidence level α if T > zα with zα = Φ−1(α), e.g. zα = 1.65 for α = 95%.

Remark 3.4. The above test assumes independence and identical distribution of Bm′

n ’s. In the context

of the microgrid example, neither of the two assumptions are valid; Bm′

n has a different distribution

because the state of the system affects the probability of a blackout, thus p̃ varies with n,m′. Furthermore,

Bm′

n are not independent as they are derived from a single, sequentially controlled trajectory.

Remark 3.5. In the microgrid setup, the blackout constraint is frequently not binding (the net de-

mand is negative half of the time). Therefore, T as defined in equation (3.17) is most likely negative

leading to accept the H0 even when the method fails to choose the admissible control when the constraint
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is binding. We fix this by evaluating the sum only when the constraint is binding, i.e.

(3.18) T̃ :=

∑
m′,n(B

m′

n − p)✶ûmin
n (xû,m′

n )>0√
p · (1− p) ·M ′ ·N · wbind

where wbind =

∑
m′,n ✶umin

n (xû,m′

n )>0

M ′ ·N
,

where ûmin
n (xû,m′

n ) represents model estimate of the true minimum admissible control umin
n (xû,m′

n ).

To wrap up this section, Algorithm 3.1 (dubbed Dynamic Emulation due to similarities with a related

algorithm for unconstrained stochastic control from [26]) summarizes the overall sequence of steps. Lines

1-2 contain the parameters to the algorithm, Lines 3-8 (and 14-19) yield the stochastic simulator which

generates designs and corresponding one-step paths. Line 10 (and again Line 20) computes pathwise

one-step costs. Line 12 is the admissible set estimation. Line 13 is the estimation of the continuation

value.

Algorithm 3.1 carries several advantages. First and foremost it is very general, and does not make any

restrictions on the distribution Gn(Xn, u) defining Un or the form of the payoffs π(x, u). Hence it can be

generically applied across a wide spectrum of SCPC problems. Second, the same template (in particular

based on having two independent sub-modules) accommodates a slew of techniques for learning C and

U bringing plug-and-play functionality, such as straightforward switching from probability to quantile

estimation. Third, it allows for computational savings through parallelizing the estimation of U and C,

or by re-using the same design and simulations Da
n ≡ D

c
n for the computation of the two sub-modules.

Remark 3.6. The challenge of RMC methods is that the errors recursively propagate backward. As

a result, poor estimation at one step can affect the overall quality of the solution. In our algorithm, the

errors at every step occur due to:

• Approximation architecture Ha
n for Ûn ⇒ Projection error in admissible control set estimation;

• Approximation architecture Hc
n for Ĉn ⇒ Projection error in estimating continuation value;

• Designs Da
n and Dc

n ⇒ Finite-sample Monte Carlo errors (difference between empirical estimates

and theoretical projection-based ones)

• Discretization of the time interval [tn, tn+1) using ∆nk ⇒ Integration error in approximating the

integral
∫ tn+1

tn
πs(X(s), u)ds and the admissible set Un.

• Numerical approximation of the solution of the controlled dynamics of X(t).

• Optimization errors in maximizing for û over Û , especially when the control setW is continuous.

4. Admissible set estimation. In this section we propose two different approaches to estimate

the admissible set of controls Un in equation (2.3):

• Probability estimation: Given a state Xn = x and u ∈ W, we estimate, via simulation, the

probability of violating the constraint

p̂n(x, u) ≃ P

(
Gn(x, u) > 0

)
.

It follows that u ∈ Ûn(x) ⇔ p̂n(x, u) < p. Particularly, to compute p̂n(x, u) we consider

Gaussian process smoothing of empirical probabilities, logistic regression and parametric density

fitting.

• Quantile estimation: We approximate the quantile qn(x, u) of Gn(x, u) via empirical ranking,

support vector machines and quantile regression methods. The admissible sets Un(x) and X
a
n (u)
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Algorithm 3.1 Dynamic Emulation Algorithm

1: N (time steps), Mc (simulation budget for conditional expectation),

2: Ma (simulation budget for admissible set estimation)

3: Generate designs:

4: Da
N−1 := (x

Da
N−1

N−1 , u
Da

N−1

N−1 ) of size Ma for estimating Û .

5: Dc
N−1 := (x

Dc
N−1

N−1 , u
Dc

N−1

N−1 ) of size Mc for estimating Ĉ.

6: Generate one-step paths:

7: x
i,Da

N−1

N−1 7→ x
i,Da

N−1

N using u
Da

N−1

N−1 for i = 1, . . . ,Ma

8: x
j,Dc

N−1

N−1 7→ x
j,Dc

N−1

N using u
Dc

N−1

N−1 for j = 1, . . . ,Mc

9: Terminal condition:

10: yjN−1 ←
∑K−1

k=0 π(N−1)k(x
j,Dc

N−1

(N−1)k
, u

j,Dc
N−1

(N−1)k
)∆nk +W (x

j,Dc
N−1

N ) for j = 1, . . . ,Mc

11: for n = N − 1, . . . , 1 do

12: Estimate Ûn(·) using methods in Section 4 and paths x
i,Da

n
n 7→ x

i,Da
n

n+1

13: Ĉn(·, ·)← argmin
fn∈Hc

n

∑Mc

j=1 |fn(x
j,Dc

n
n , u

j,Dc
n

n )− yjn|
2

14: Generate designs:

15: Da
n−1 := (x

Da
n−1

n−1 , u
Da

n−1

n−1 ) of size Ma for estimating Û .

16: Dc
n−1 := (x

Dc
n−1

n−1 , u
Dc

n−1

n−1 ) of size Mc for estimating Ĉ.

17: Generate one-step paths:

18: x
i,Da

n−1

n−1 7→ x
i,Da

n−1
n using u

Da
n−1

n−1 for i = 1, . . . ,Ma

19: x
j,Dc

n−1

n−1 7→ x
j,Dc

n−1
n using u

Dc
n−1

n−1 for j = 1, . . . ,Mc

20: yjn−1 ←
∑K−1

k=0 π(n−1)k(x
j,Dc

n−1

(n−1)k
, u

j,Dc
n−1

(n−1)k
)∆nk + max

u∈Ûn(x
j,Dc

n−1
n )

{
Ĉ(n,x

j,Dc
n−1

n , u)
}
∀j

21: end for

22: return {Ĉn(·, ·), Ûn(·)}
N−1
n=1

are then defined as:

Ûn(x) :=
{
u : q̂n(x, u) ≤ 0

}
and X̂ a

n (u) :=
{
x : q̂n(x, u) ≤ 0

}
.

To implement all of the above techniques we use Monte Carlo simulation, specifying first the simula-

tion design and then sampling (independently across draws) the G’s or Y ’s to be used as training data.

We work in a flexible framework where samples of Gn(x, u) are generated in batches of Mb simulations

from each design site {xi, ui}Ma

i=1. The case of Mb = 1 corresponds to a classical regression approach,

while large Mb ≫ 1 can be interpreted as nested Monte Carlo averaging along Mb inner samples.

Remark 4.1. In section 3.2, we parameterized the elements of the approximation space Hc
n for esti-

mation of the continuation value function Ĉ(·, ·) via vectors α i.e. f cn(x, u) ≡ f cn(x, u;α), cf. (3.10) and

(3.11). To distinguish, in the following sections we use β to parameterize the approximators in Ha
n for

estimating the admissible set: fan(x, u) ≡ fan(x, u;β) in eq. (3.3). The meaning and dimension of β will

vary from method to method.

4.1. Probability estimation.

4.1.1. Interpolated nested Monte Carlo (INMC). Recall the NMC method from Section 2.1

where we select Ma design sites of state-action pairs and simulate multiple paths from each site to locally
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assess the probability of Gn(x, u) > 0 (in what follows, we suppress in the notation the dependence on

n). Specifically, for each design site (xi, ui), i = 1, . . . ,Ma, we simulate Mb batched samples from the

distribution G(xi, ui) as {gb(xi, ui)}Mb

b=1. The unbiased point estimator of p(xi, ui) is:

(4.1) p̄(xi, ui) :=

Mb∑

b=1

✶gb(xi,ui)>0

Mb
.

Since (4.1) only yields Mb local estimates p̄(xi, ui), for Algorithm 3.1 we have to extend them to an

arbitrary state-action (x, u) 7→ p̂INMC(x, u). This is achieved by interpolating p̄(xi, ui)’s, e.g. linearly.

The admissible set with confidence level ρ becomes:

Û
(ρ)
INMC(x) :=



u : p̂INMC(x, u) ≤ p− zρ

√
p̂INMC(x, u)(1− p̂INMC(x, u))

Mb



 .

However, especially for Mb small, interpolation performs poorly because the underlying point estimates

p̄(xi, ui) are noisy. Therefore, smoothing should be applied via a statistical regression model. Regression

borrows information cross-sectionally to mitigate the estimation noise, reducing the variance of p̄.

4.1.2. Gaussian process regression (GPR). GPR is a flexible non-parametric regression method

that views the map (x, u)→ p(x, u) as a realization of a Gaussian random field so that any finite collection

of {p(x, u)}, (x, u) ∈ X ×W is multivariate Gaussian. For any n design sites {(xi, ui)}ni=1, GPR posits

that

p(x1, u1), . . . , p(xn, un) ∼ N ( #»mn,Kn)

with mean vector #»mn := [m(x1, u1;β), . . . ,m(xn, un;β)] and n × n covariance matrix Kn comprised of

κ(xi, ui,xi′ , ui
′

;β), for 1 ≤ i, i′ ≤ n. The vector β represents all the hyperparameters for this model.

Given the training dataset {(xi, ui), p̄i}Ma

i=1 (where p̄i is a shorthand for p̄(xi, ui)), GPR infers the

posterior of p(·, ·) by assuming an observation model of the form p̄(x, u) = p(x, u) + ǫ with a Gaussian

noise term ǫ ∼ N (0, σ2
ǫ ). Conditioning equations for multivariate normal vectors imply that the poste-

rior predictive distribution p(x, u)|{(xi, ui), p̄i}Ma

i=1 at any arbitrary site (x, u) is also Gaussian with the

posterior mean p̂GPR(x, u) that is the proposed estimator of p(x, u):

p̂GPR(x, u) := m(x, u) +KT (K+ σ2I)−1( #»p − #»m) = E

[
p(x, u)

∣∣ #»x , #»u , #»p
]

(4.2)

where #»x = [x1, . . . ,xMa ]T , #»u = [u1, . . . , uMa ]T , #»p = [p̄1, . . . , p̄Ma ]T ,

KT = [κ(x, u,x1, u1;β), . . . , κ(x, u,xMa , uMa ;β)],

#»m = [m(x1, u1;β), . . . ,m(xMa , uMa ;β)],(4.3)

and K is Ma ×Ma covariance matrix described through the kernel function κ(·, ·;β).

The mean function is often assumed to be constant m(x, u;β) = β0 or described using a linear

model m(x, u;β) =
∑K

k=1 βkφ(x
i, ui) with φ(·, ·) representing a polynomial basis. A popular choice

for the kernel κ(·, ·, ·, ·) is squared exponential (see equation (4.4)) with {{βlen,k}
d
k=1, βlen,u} termed the

lengthscales and σ2
p the process variance of p(·, ·):

(4.4) κ(xi, ui,xi′ , ui
′

) = σ2
p exp

(
−

d∑

k=1

(xi,k − xi
′,k)2

βlen,k
−

(ui − ui
′

)2

βlen,u

)
.
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The hyperparameters β := ({βk}
K
k=1, {βlen,k}

d
k=1, βlen,u, σ

2
p, σ

2
ǫ ) represent different attributes of p̂GPR(·, ·).

The parameters {βk}
K
k=1 determine the trend of p̂(·, ·) over the input domain. The lengthscales {βlen,k}

d
k=1

and βlen,u determine spatial smoothness or how quickly the function changes. Small lengthscales make p̂

to be “bumpy”, while large lengthscales make p̂ close to linear. The process variance σ2
p determines the

amplitude of fluctuations in p̂GPR and σ2
ǫ represents the sampling noise variance. These hyperparameters

are estimated by maximizing the log-likelihood function based on the dataset {(xi, ui), p̄i}Ma

i=1. Besides

squared exponential kernel (Equation 4.4), other popular kernels include Matérn-3/2 and Matérn-5/2 [35].

A conservative estimate p̂
(ρ)
GPR(x, u) at confidence level ρ is obtained by explicitly incorporating the

(estimated) standard error of p̄(xi, ui) into the GPR smoothing. Namely, we adjust the training dataset

to {(xi, ui), p̄iρ}
Ma

i=1, where p̄
i
ρ := p̄(xi, ui) + zρ

√
p̄(xi,ui)(1−p̄(xi,ui))

Mb
. The resulting p̂

(ρ)
GPR(x, u) is the coun-

terpart of (4.2) using {(xi, ui), p̄iρ}
Ma

i=1.

In Figure 2b we present the dataset {Li, Ii, 0, p̄i}Ma

i=1 (background colormap) for the microgrid case

study. The thick red line indicates the contour {p̂GPR = 5%}, dividing the state space X for u = 0 into

admissible X a(0) (left of red line) and inadmissible region (X a(0))c (right of red line).

4.1.3. Logistic regression (LR). In the previous section, we created local batches to estimate

p(xi, ui) pointwise and then regressed these estimates to build a global approximator. A classical al-

ternative is to learn the probability of G(x, u) > 0 using a logistic regression model. This setup uses a

single sample g(xi, ui) from G(xi, ui) from each design site (xi, ui) and transforms it to a binary response

yi = ✶g(xi,ui)>0. The probability p̂(x, u) is then modeled as a generalized linear model with a logit link

function

P

(
Y = 1|x, u

)
=

1

1 + e−βTφ(x,u)
=: p̂LR(x, u;β).(4.5)

The basis functions φ(x, u) could be polynomials, e.g. quadratic or cubic in coordinates of (x, u). The

regression coefficients β are fitted using the dataset {xi, ui,yi}Ms

i=1, as the solution to

argmaxβ

Ms∑

i=1

{
yi log pLR(x

i, ui;β) + (1− yi) log(1− pLR(x
i, ui;β))

}
.(4.6)

We may again create a more conservative estimate Û
(ρ)
LR(x) of ÛLR(x) at confidence level ρ by utilizing

the standard error for p̂LR using the Delta method [40]:

Û
(ρ)
LR(x) :=

{
u : p̂LR(x, u,β) ≤ p− zρ

√
p̂LR(x, u)(1− p̂LR(x, u))φTVar(β)φ

}
.

In Figure 2a, we present the original realizations yi ∈ {0, 1} (in blue) for a design in the input

subspace (L, I, u = 0) of the microgrid case study. The figure indicates the resulting logistic regression fit

p̂LR(L, I, 0) at levels 1%, 5% and 10% (i.e. contour lines of p̂LR(β̂) ∈ {0.01, 0.05, 0.1}). The admissibility

set for u = 0, X a
n (0) is the region to the left of the thick red contour.

Remark 4.2. Similar to Section 4.1, we can simulate batched samples from each design site for the

logistic regression, leading to “binomial” observation likelihood instead of (4.6).

Remark 4.3. A non-parametric variant of equation (4.5) is kernel logistic regression, where the basis

functions are φj(x, u) = κ(x, u,xj , uj) for a kernel function κ centered at (xj , uj). One common choice is

radial basis functions (RBF) where κ(x, u,xj , uj) = exp (−γ1‖x− xj‖22 − γ2‖u− u
j‖22). RBF can be in-

terpreted as the squared-exponential kernel for a logistic Gaussian Process model, with a fixed bandwidth

parameter γi. In contrast, in GPR the bandwidths are estimated through MLE.
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4.1.4. Parametric density fitting (PF). This approach fits the distribution G(x, u), and then an-

alytically infers the probability P

(
G(x, u) > 0

)
from the corresponding cumulative distribution function.

This is done by proposing a parametric family {f(·; Θ)} of densities, fitting the underlying parame-

ters Θ based on an empirical sample from G and then evaluating the resulting analytical probability

p̄PF (x, u) :=
∫∞

0
fG(x,u)(z|Θ̂(x, u))dz. PF yields a “universal” solution across a range of constraint

levels p.

At a design site (x, u), the probability p(x, u) is estimated in a two-step procedure: first estimated

locally over a design Da = {xi, ui} and then regressed over the full input domain X ×W. For the first

step, we apply nested Monte Carlo to generate a collection of realized {gb(xi, ui)}Mb

b=1 that is used to

construct a parametric density via the maximum likelihood estimate:

(4.7) Θ̂i := argmax
Θ

Mb∑

b=1

log fG(g
b(xi, ui)|Θ).

In the second step, we evaluate p̃PF (x
i, ui) :=

∫∞

0
fG(z|Θ̂(xi, ui)) and extend it to the full domain X ×W

based on the computed {xi, ui, p̃PF (x
i, ui)}Ma

i=1 using L2 projection:

(4.8) p̂PF = argmin
p̂∈MT

‖p̂(xi, ui)− p̃PF (x
i, ui)‖2,

whereMT is an approximation space chosen for regression. The admissible set U(x) is estimated as:

ÛPF (x) := {u : p̂PF (x, u) ≤ p} .

A transformation of the distribution G(x, u) might be important for above distribution fitting. For

example, in the context of microgrid, in Section 2.2, G = L
(
sups∈[tn,tn+1) S(s)

)
has a point mass at 0

and thus, any continuous distribution will lead to poor statistical estimation. Using a transformation

that preserves the probability of the target event,

(4.9) P

(
sup

s∈[tn,tn+1)

S(s) > 0|Fn

)
= P

(
sup

s∈[tn,tn+1)

[L(s)− un −
I(s)

δs
∧Bmax] > 0

∣∣Fn

)
,

we work with G′(Ln, In, un) := L
(
sups∈[tn,tn+1)[L(s) − un −

I(s)
δs ∧ Bmax]

)
. In Figure 2c we present

the empirical and estimated probability z 7→ P(G′(Ln, In, un) > z) when Ln = 5.5, In = 1.48 and

un ∈ {0, 1} for the microgrid example. We model the distribution G′ using a truncated normal dis-

tribution, P(G′ ≤ g) = Φ( g−θ2
θ3

)✶g≥θ1 , with parameters Θ = (θ1, θ2, θ3) representing the location of

censoring, the mean and the standard deviation respectively. At Ln = 5.5, In = 1.48, un = 1.0 and inner

simulation budget Mb = 100, the estimated parameters (θ̂1, θ̂2, θ̂3) = (−1.5,−1.12, 0.53) result in prob-

ability p̃PF (5.5, 1.48, 1.0) = 0.016. The corresponding probability after L2 projection (equation (4.8))

is p̂PF (5.5, 1.48, 1.0) = 0.017. Thus at p = 0.05, the control u = 1.0 ∈ Ûn is admissible. However, at

un = 0, (θ̂1, θ̂2, θ̂3) = (−0.5,−0.12, 0.55), p̃PF (5.5, 1.48, 0.0) = 0.414 and p̂PF (5.5, 1.48, 0.0) = 0.429, thus

the control u = 0 /∈ Ûn is inadmissible.

4.2. Quantile estimation. In this section we consider methods for modeling and estimating q(xi, ui),

the (1− p)-th quantile of the distribution G(xi, ui). Admissibility corresponds to the quantile being neg-

ative.
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Fig. 2: Training data and fitted models for the methods of Section 4 at u = 0. Top row: probability estimation schemes,

bottom row: quantile estimation schemes. Top/left panel: Training set {Li, Ii, yi}Ma
i=1 for the LR model, color-coded

according to the value of yi ∈ {0, 1}, along with the estimated contours for p̂LR(L, I) at levels {1%, 5%, 10%}. Top/center:

Training set {Li, Ii, p̄i}Ma
i=1 color-coded according to p̄i for GPR along with the contour {p̂GPR(L, I) = 5%}. Top/right:

parametric density fitting at L0 = 5.5, I0 = 1.48 and u ∈ {0, 1}. We show the empirical and fitted inverse cdf P(G′ > g)

based on a truncated Gaussian distribution. Bottom/left: Training set {Li, Ii, yi}Ma
i=1 for SVM (color-coded according to

yi ∈ {−1, 1}) and the decision boundary in red. Bottom/center: Training set {Li, Ii, q̄i}Ma
i=1 color-coded according to q̄i for

EP and the contour {q̂ = 0}. Bottom/right: Training set {Li, Ii, gi}Ma
i=1 color-coded according to gi for QR along with the

contour {q̂QR(L, I) = 0}. All models share the same ground truth, so the red contours are identical up to model-specific

estimation errors.

4.2.1. Empirical percentiles (EP). As before, we start by choosing Ma design sites of state-

action pairs and generate batched samples {gb(xi, ui)}Mb

b=1 from each design site (xi, ui). The empirical

estimate of q(xi, ui) is simply the (1− p)th percentile of the realized {gb}Mb

b=1 (which requires Mb > p−1):

q̄(xi, ui) = percentile
(
{gb}Mb

b=1, 100(1− p)%
)
.

Similar to previous methods, we extend to arbitrary (x, u) 7→ q̂(x, u) using regression on the dataset

{xi, ui, q̄(xi, ui)}Ma

i=1 and an approximation spaceMq. The set of admissible controls for x is: ÛEP (x) :={
u : q̂(x, u) ≤ 0

}
. In Figure 2e we show the estimated q̂(·, ·, 0) indicated via the background colormap.

The thick red line indicates the zero-contour q̂ = 0, so that the admissibility set for u = 0, X a
n (0), is the

region to the left of the contour.

Remark 4.4. This approach is similar to the INMC approach discussed in Section 4.1, however,

here we model the quantile rather than the probability of exceeding zero. Furthermore, we can use the

regression standard error of q̂(·, ·) to construct a more conservative estimate of the admissible set UEP (x).
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A popular alternative to adjusting q̄’s via regression standard errors is to replace the empirical

percentile with the empirical conditional tail expectation (CTE):

CTE(xi, ui) :=

∑Mb

b=1 g
b
✶gb≥q̄(xi,ui)∑Mb

b=1 ✶gb≥q̄(xi,ui)

,

and then running a regression on the training set (xi, ui,CTE(xi, ui)) to obtain the fitted CTE surface

ĈTE(x, u) and finally ÛCTE(x) :=
{
u : ĈTE(x, u) ≤ 0

}
. This idea is similar to regularizing the Value-

at-Risk estimation with the Conditional VaR.

4.2.2. Support Vector Machines (SVM). For a fixed control u, finding the admissible set X a
n (u)

in (2.9) can be interpreted as classifying each input x as being in X a
n (u) or not. Therefore, we consider

the use of classification techniques, specifically support vector machines (SVM). This approach does not

estimate the (1− p)-quantile q(x, u), but rather its 0-level set with respect to (x, u). The starting point

is to use the nested Monte Carlo simulations to compute p̄(xi, ui) with much smaller batch size Mb

compared to Section 4.1. Next, we construct a binary classification objective with a training dataset

{xi, ui, yi}Ma

i=1 where the ±1-labels are

yi :=




1, if p̄(xi, ui) < p;

−1, otherwise.
(4.10)

The boundary separating the two classes is evaluated by solving the optimization problem:

(4.11) min
β∈RK

{ Ma∑

i=1

(
1− yi[βTφ(xi, ui) + β0]

)
+
+

C

2 ·Ma
||β||2

}
,

where φ(x, u) =
[
φ1(x, u), φ2(x, u), . . . , φK(x, u)

]T
are the K basis functions and C is the penalty pa-

rameter. We estimate the set of admissible controls corresponding to x as:

ÛSVM (x) :=
{
u : β̂Tφ(x, u) + β̂0 ≥ 0

}
.

Figure 2d displays the estimated X̂ a
n (u) and the corresponding dataset (Li, Ii, 0, yi) (u = 0 is fixed).

The region where u = 0 is admissible is to the left of the (thick red) decision boundary.

Remark 4.5. A conservative estimate Û
(ρ)
SVM is obtained by biasing the decision boundary to the left

by re-labeling the training points in (4.10) via:

yi =




1, if p̄(xi, ui) + zρ

√
p̄(xi,ui)(1−p̄(xi,ui))

Mb
< p

−1, otherwise.
(4.12)

4.2.3. Quantile Regression (QR). QR directly constructs a parametric model for q(x, u):

q̂(x, u;β) :=
∑

k

βkφk(x, u).

To estimate the coefficients β ∈ RK , we use the dataset {xi, ui, gi}Ma

i=1 (where gi is a sample from the

distribution G(xi, ui)) to maximize the negative log likelihood:

β̂ = arg min
β∈RK

{ Ma∑

i=1

L(p)
(
gi −

K∑

k=1

βkφk(x
i, ui)

)}
,
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where L(p)(y) = y(p − 1{y<0}) = py+ + (1 − p)y−. As for the parametric density fitting, a transfor-

mation of G(x, u) might be beneficial when applying quantile regression. Figure 2f presents the dataset

{Li, Ii, 0, gi}Ma

i=1 (background colormap) and the estimated admissible set X̂ a(0) which is the region to

the left of the contour {q̂QR(L, I) = 0} (thick red line).

Relying on the Delta method again to compute the variance of the estimated quantile q̂(x, u; β̂) as

φ(x, u)′V ar(β̂)φ(x, u), the admissible set at x at confidence level ρ is:

Û
(ρ)
QR(x) :=

{
u : q̂(x, u; β̂) + zρ

√
φ(x, u)TV ar(β̂)φ(x, u) ≤ 0

}
.

5. Case Studies. Recall the problem introduced in Section 2.2 where we control the operation

of a diesel generator in order to match demand at minimal cost while maintaining the probability of

blackout between each decision epoch below a given threshold p. In this section, we discuss two variants

of such microgrid control. In the first example, we assume a time-homogeneous net-demand process

which reduces the problem of estimating admissible set to a pre-processing step. In the second example,

we use time-dependent net demand process calibrated to data obtained from a microgrid in Huatacondo,

Chile. Time-inhomogeneity requires to estimate the admissible set at every step. The microgrid features a

perfectly efficient battery, so that the respective power output at tnk
(recall tnk

is a generic time instance

on the finely discretized time grid) is given by:

Bnk
= max

(
min

(
Lnk
− un,

Ink

∆nk

)
,−

Imax − Ink

∆nk

)
.

Table 1 lists other microgrid parameters, i.e. capacity of the battery Imax, maximum charging rate Bmin,

maximum discharging rate Bmax and diesel switching cost K.

Table 1: Parameters for the Microgrid example.

Imax = 10 (kWh), Bmin = −6, Bmax = 6 (kW), K = 5

T = 48 (hours), ∆t = 0.25 (hours)

5.1. Implementation details. Numerical Gold Standard: In the absence of analytic bench-

mark, we use a high-budget gold standard to compare the output from the models discussed in Section 4.

For each fixed time-step tn we discretize the domain X = (L, I) into 10, 000 design sites over a grid of

100 × 100. For each design site (Li, Ij), i, j ∈ {1, . . . , 100} and uk ∈ 0 ∪ {1 = u1, . . . , u101 = 10}, we

evaluate p̂(Li, Ij , uk) using (4.1) with batch size Mb = 10, 000. Thus, the total simulation budget is

100× 100× 102× 10000 ≈ 1010. We then evaluate the local minimal admissible control

umin
n (Li, Ij) = min

{
u : p̂(Li, Ij , u) < p

}
.

To evaluate umin
n (L, I) at new sites we employ linear interpolation on the dataset {Li, Ij , umin

n (Li, Ij)}100i,j=1.

To estimate the continuation function, we use the piecewise continuous approximation of Section 3.2

withMI = 15,Mu = 15 andML = 1500 sites in L. The design Dc is constructed as the Cartesian product

{L1, L2, . . . , LML}×{I0, I1, . . . , IMI}×{u0, u1, . . . , uMu}, where Li, i = 1, . . . ,ML are sampled uniformly

from the interval [Lmin, Lmax] = [−8, 8]. The inventory {I0, I1, . . . , IMI} and control {u1, . . . , uMu}

discretizations are equispaced in [0, Imax] and [u, u] respectively.



STATISTICAL LEARNING FOR PROBABILITY-CONSTRAINED STOCHASTIC OPTIMAL CONTROL 21

Low budget policies: We approximate the continuation value function C using a piecewise contin-

uous approximation with degree-3 in L combined with interpolation in other dimensions. The design Dc

is the same as for the numerical gold standard with discretization levels ML = 1000,MI = 10,Mu = 10.

We approximate the admissible set U using the methods described in Section 4 and compare the

performance of each method by using a fixed set of M ′ = 20, 000 out-of-sample simulations. To address

the discontinuity in W = 0 ∪ [u, u], we implement two separate statistical models to learn Un(·). As an

example, with logistic regression of Section 4.1.3 we estimate two sets of parameters in equation (4.5):

the first one uses one-step paths generated with u = 0 and a two-dimensional regression of yi,(1) against

(Li, Ii). The second one uses design sites in the three-dimensional space (L, I, u) where u ∈ [1, 10] and

a 3-D regression of yi,(2) against (Li, Ii, ui). For both regressions we choose a Sobol sequence space-

filling experimental design: Da = (Li, Ii) ∈ [−2, 8] × [0, 10] when u = 0, and Da = (Li, Ii, ui) ∈

[−2, 8]× [0, 10]× [1, 10] otherwise. The control space [1, 10] is discretized into 51 levels.

Additional parameters used for each method are specified in Table 2. We found that Matern-3/2

kernels work better than (4.4) for smoothing p̄(L, I, u) (GPR) and p̃(L, I, u) (PF) because the respec-

tive input-output maps feature steep transitions as a function of (L, i, u). It is known that “rougher”

kernels are better suited for such learning tasks compared to the C∞-smooth squared exponential kernel

(4.4) by allowing the fitted p̂ to have more “wiggle room”. On the other hand, in the context of EP

and CTE the input observations of q̂(L, I, u) and CTE(L, I, u) are quite smooth in (L, i, u) and both

GP kernel families perform equally well. The algorithms are implemented in python 2.7. We used

“GaussianProcessRegressor” and “SVM.SVC” functions from sklearn library for GPR and SVM re-

spectively. For LR and QR we used “Logit” and “quantile regression” functions from statsmodels

library.

Table 2: Parameters for the estimation of the admissible sets for each method. We use total simulation budget of 105 for

all models except the Gold Standard.

Method Budget (Ma ×Mb) Further parameters

Gaussian Process (GPR) 2000× 50 Matern-3/2 kernel

Logistic Regression (LR) 105 × 1 Degree-2 polynomials

Parametric Density Fitting (PF) 2000× 50 Truncated Gaussian, Matern-3/2 kernel

Empirical Percentile (EP) 1000× 100 Squared exponential kernel

Conditional Tail Expectation (CTE) 1000× 100 Squared exponential kernel

Quantile Regression (QR) 105 × 1 Degree-4 polynomials

Support Vector Machine (SVM) 2000× 50 C =1, RBF kernel

Gold Standard (GS) 106 × 104 budget = 1010

5.2. Example 1: Microgrid with Stationary Net Demand. In this subsection, we assume

time-homogeneous Ornstein-Uhlenbeck dynamics of the net demand process

(5.1) dL(t) = −λL(t)dt+ σdB(t) =⇒ L(t) = L(0)e−λt + σ

∫ t

0

e−λ(t−s)dB(s),

where (B(t)) is a standard Brownian motion. This scenario reduces the complexity of learning the

probability constraints since we need to estimate the admissible set U0(·) only once as a pre-processing
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step before starting the approximate dynamic programming scheme for the continuation values. The

simplified setting offers a good testbed to evaluate the performance of different admissible set estimation

methods of Section 4; we show that the relative performance remains similar as we extend to more

realistic dynamics in Section 5.3. For this example, we assume the mean reversion parameter λ = 0.5

and volatility σ = 2.

Figure 3a plots the resulting costs V̂0(0, 5) versus the frequency of inadmissible decisions wfreq for

different methods of Section 4. We show the results both for p = 0.05 (dark blue), and p = 0.01

(light grey) and benchmark both cases against the numerical gold standard. Since the probabilistic

constraints form the crux of the problem, we require schemes to maintain û ∈ Un as much as possible,

i.e., wfreq ≈ 0. At p = 5%, we observe 0.09% , 0.54% and 1.36% frequency of inadmissible decisions

with logistic regression (LR), Gaussian process regression (GPR) and parametric density fitting (PF),

respectively. Such accuracy might be deemed acceptable. However wfreq is much worse (as high as 8.4%

with EP) for the other methods. While all the methods are a priori consistent, admissible set estimation

via probability-based methods clearly seems to outperform quantile-based ones. Our experiments suggest

that at low simulation budget, estimators of p(x, u) have significantly lower bias compared to estimators

of q(x, u), thus partially explaining the difference. For a more stringent threshold p = 1%, we find

the cost of all the methods to increase, without significant difference in the frequency of inadmissible

decisions wfreq. Indeed, Figure 3 illustrates the trade-off between lower costs and lower wfreq (i.e. more

conservative estimate of the constraints).

Table 3 expands Figure 3 by also reporting the corresponding T̃ statistic, the average inadmissibility

margin wavm and realized frequency of violations (i.e. blackouts) wrlzd defined as:

wavm :=

∑
n,m′ |ûn(x

û,m′

n )− umin
n (xû,m′

n )|✶
ûn(x

û,m′

n )−umin
n (xû,m′

n )<0∑
n,m′ ✶ûn(x

û,m′

n )−umin
n (xû,m′

n )<0
;

(5.2)

wrlzd :=
1

N ·M ′

∑

n,m′

✶sups∈[tn,tn+1) S
m′ (s)>0.(5.3)

We find the realized frequency of violations wrlzd to be lowest for LR, GPR and PF. The average

inadmissibility margin wavm is also lowest for GPR and PF (the large value of wavm for LR is attained in

very small region as evident from wfreq ≈ 0). The T̃ statistic is negative for LR, GPR and PF and positive

for the rest, meaning that all other methods fail to statistically respect the probability constraints when

binding. Due to small frequency of inadmissible decisions wfreq, cost V̂0(0, 5) similar to the numerical

gold standard and negative test statistic T̃ , we recommend LR, GP and PF methods for the problem at

hand.

Next, we test the sensitivity of the cost in terms of the probability threshold p (employing logistic

regression ÛLR) in Figure 3b. Increasing p decreases V as the set of admissible controls U monotonically

increases in p. For example, any admissible control at p = 1% threshold is also feasible for p > 1%, thus

the respective cost at 1% will be at least as much as at, say, 10% threshold.

As previously discussed, the constraint is binding for only approximately 10% of time-steps. In

fact, that probability varies across the methods since the estimate of Û affects the choice of ûn and

ultimately the distribution of X̂n. Intuitively, the realized system states are driven by the estimates of

the probabilistic constraints. Typically, more conservative estimates of U will push X̂0:N away from the

“risky” regions. This is also confirmed in Figure 3 where as p→ 1, wrlzd → 20% = wbind while in Table 3

wbind ≃ 10%.
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The metrics wfreq (3.14), wbind (3.18), wrlzd (5.3) are closely linked. As the inadmissible decisions

can occur only when the constraint is binding, umin > 0, we expect wfreq ≤ wbind and wfreq ≈ wbind

for a method with a bias in overestimating the admissible set (e.g. X a,EP (u) ⊃ X a,GS(u) ∀u ∈ W). The

realized violations (blackouts) wrlzd can be represented as a sum of three:

wrlzd = p1wfreq + p2(wbind − wfreq) + p3(1− wbind), p1 + p2 + p3 = 1,

where the weights p1, p2, p3 depend on the distribution of the controlled trajectories. The first term

represents the instances when the constraint is binding but the controller chooses an inadmissible control

(i.e. mis-estimates Û). The second term represents instances when the constraint is binding and correctly

estimated, but due to random shocks violations take place (with a conditional frequency below the

specified p = 0.05). The last term represents instances when the constraint is not binding but some

violations still occur with the intrinsic conditional frequency strictly less than p. Note that due to

wbind ≪ 1, most of the violations are of the latter type, i.e. take place when u∗ = 0 and the conditional

violation probability is below p. We illustrate these scenarios in Figure 3c using the LR model. Thus, the

first term counts the instances when violations occur at the same time as controller makes an inadmissible

decision (circle encircling triangle), the second term counts the triangles when I ≈ 0, and the third term

the triangles in the grey region where the constraint is not binding (violations when umin = 0).

Although we observed poor performance of quantile based methods, asymptotically (with respect

to the simulation budget) we expect them to perform similar to the probability based methods. As an

example, in Appendix A Table 6, we present the performance of SVM for thresholds p = 5% and p = 1%

with increasing budget. For p = 5% and by increasing the simulation budget from 105 to 108, we find the

frequency of inadmissible decisions wfreq to drop from 5.93% to 1.5%, average inadmissibility amount

wavm from 0.78 kW to 0.27 kW, frequency of realized blackouts wrlzd from 2.80% to 0.30% and the test

statistic which rejected the method at 105 simulation budget (T ≫ 0) suggests to accept it (T ≪ 0)

at 108 simulation budget. We observe similar behavior at p = 1%. The main challenge with quantile-

based methods is the underlying bias in learning q(x, u). This bias is known to converge to zero slowly,

necessitating a relatively large Mb. A glimpse of this can be observed in Appendix A where SVM does

not perform adequately all the way up to total budget of 108. Increasing Mb with Ma fixed offers only

a limited improvement that tapers off quickly, as was observed previously in [26]. Keeping a constant

budget, a high Mb forces a low Ma which offsets these performance gains as the regression is not able to

properly explore the space.

There are many techniques to improve q̄, for example variance reduction tools. We have experimented

with variance reduction for the SVM method by using antithetic variables. Although the results were

marginally better, they were not meaningfully different from those reported in Appendix A. A completely

different way to improve EP and SVM could be to judiciously choose the simulation design Da. Paper [26]

explores various approaches to build simulation designs for estimating the continuation value function

and documents their strong impact on performance. We anticipate that a similar strategy for Da may

improve convergence.

Conservative estimators for U . Algorithms for SCPC are expected to respect the probabilistic

constraints, so that it is critical to minimize the occurrence of inadmissible decisions. As discussed in

Section 4, one way to raise the statistical guarantee for admissibility of Û is by adding a margin of error

ξ(x, u). This yields a more conservative (i.e. smaller) Û and hence lowers wfreq. In Table 4 we examine

three scenarios for ξ(x, u) sorted from least to most conservative (in all cases we maintain p = 5%):
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Fig. 3: Left panel : Trade-off between cost V̂0(0, 5) and frequency of inadmissible decisions wfreq for the stationary

model. Dark blue points correspond to p = 5% probability constraint threshold and light grey ones to p = 1%. Center:

Total cost V̂0(0, 5) (left axis, blue stars) and realized frequency of violations wrlzd (right axis, red circles) as functions

of p employing the LR model. Right: Locations (L, I) of realized violations sups∈[tn,tn+1)
Sm′

(s) > 0 (red triangles),

inadmissible decisions û(n,xû,m′

n )− umin
n (xû,m′

n ) < 0 (circles with color representing the inadmissibility margin) on 5000

out-of-sample simulations using LR model. The constraint is binding in the white region and is not binding in the grey

region.

Table 3: Cost of running the microgrid V̂0(0, 5), frequency of inadmissible decisions wfreq , average inadmissibility margin

wavm, realized frequency of violations (i.e. blackouts) wrlzd, test statistic T̃ and frequency of binding constraint wbind for

the example in Section 5.2.

Method V̂0(0, 5) (✩) wfreq (%) wavm (kW) wrlzd (%) T̃ wbind (%)

GS 26.79 0.00 0.00 0.37 - -

LR 26.83 0.09 0.82 0.03 -125 8.69

GPR 26.89 0.53 0.16 0.11 -98 8.10

PF 26.79 1.36 0.27 0.21 -69 8.51

SVM 26.68 5.26 0.55 1.83 388 9.67

QR 27.04 5.95 0.33 0.98 145 9.49

CTE 26.99 7.79 0.43 1.63 320 9.93

EP 26.36 8.39 0.49 1.98 403 10.45

• Scenario 1: unadjusted ξ = 0% (same as Table 3);

• Scenario 2: ξ(ρ)(x, u) at 95% confidence level, zρ = 1.96;

• Scenario 3: fixed ξ = 4%, which is equivalent to lowering the violation threshold to p− ξ = 1%.

Table 4 confirms the intuition that the frequency of inadmissible decisions wfreq should be decreasing

from scenario 1 to 3. This is illustrated in Figure 4 that shows how the minimum admissible control is

affected by ξ(x, u). Although adding a margin of error does lower wfreq, this mechanism does not really

alter the relative performance of the different methods. Thus, for all three scenarios, we find SVM, CTE

and EP to give unreliable estimates of U (since T̃ ≫ 0). An exception is QR which yields high wfreq

for ξ = 0 but does become acceptable (T̃ < 0) in scenario 3. In contrast, LR, GPR and PF perform
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well throughout. Table 7 in Appendix B provides additional results as we vary the confidence level to

ρ = 90%, 99% and 99.95%, with the same general conclusions. (Observe that a wfreq very close to zero

likely implies that Û ⊂ U is strictly smaller and the controller is so conservative as to rule out some

admissible actions.)

We generally expect the ultimate cost V̂0(0, 5) to increase as Û becomes more conservative, see the

estimated V̂ ’s across each row of Table 4. The increase in costs arises due to two factors: when the

diesel generator is started sooner (due to u = 0 becoming inadmissible as ξ is raised), and the higher

level of û once the diesel is ON. This can be seen in Figure 4 where in Scenarios 2 and 3 the controller

switches the generator at a lower net demand and once the diesel is running picks a higher power output

(ûmin(·, I; p = 5%, ξ) − ûmin(·, I; p = 5%, ξ = 0) > 0). We stress that the link between Û and V̂ is

complicated by the fact that as Û changes, so does the distribution of the controlled paths. So for

example in Table 4 the cost for QR falls in Scenario 2, although it remains within two Monte Carlo

standard errors.

Table 4: Impact of margin of error ξ on the estimated cost of running the microgrid V̂0(0, 5), frequency of inadmissible

decisions wfreq , and test statistic T̃ from (3.17). The probabilistic constraint is p = 5%.

ξ = 0% ξ(0.95)(x, u) ξ = 4%

Method V̂0(0, 5) wfreq T̃ V̂0(0, 5) wfreq T̃ V̂0(0, 5) wfreq T̃

GS 26.79 0.00 - - - - - - -

LR 26.83 0.09 -125 26.95 0.08 -124 27.86 0.04 -112

GPR 26.89 0.53 -98 28.00 0.01 -110 28.12 0.00 -107

PF 26.79 1.36 -69 - - - 27.91 0.44 -96

SVM 26.68 5.26 388 29.65 3.41 225 29.60 3.41 225

QR 27.04 5.95 145 26.89 5.17 72 28.61 0.00 -117

CTE 26.99 7.79 320 27.36 7.52 274 28.44 6.83 248

ER 26.36 8.39 403 26.97 7.78 225 28.13 7.08 283

Take-aways. Our experiments demonstrate the following: (i) To accurately estimate admissible sets

of the form (2.3) we recommend to use LR, GPR or PF which all model the underlying probability of

violations p(x, u). Although asymptotically equivalent, the approach of quantile estimation leads to poor

estimates Ûn for practical budgets. (ii) Frequency of inadmissible decisions can be partly controlled by

using conservative estimates Ûξ
n at the expense of higher costs. However, even a conservative Ûξ fails

to make quantile-based methods acceptable, except for QR. (iii) For a new application, our suggested

approach is to first evaluate the test statistic T̃ at ξ = 0% using one of the recommended methods.

Depending on how close is T̃ to zero, one can then adjust Û ’ via ξ to improve the statistical guarantees

on the frequency of inadmissible decisions wfreq.

5.3. Example 2: Microgrid with seasonal demand. Unlike the previous example, where we

assumed time-homogeneous net demand, in practice there is seasonality: during the day renewable gener-

ation is high and net demand is often negative; during morning/evening demand exceeds supply making

L(t) > 0. To incorporate this seasonality we use time-dependent Ornstein Uhlenbeck process (see [17]
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Fig. 4: Impact of the margin of error ξ(·, ·) on minimum admissible control ûmin. We plot the difference between

minimum admissible control for scenario 2 (ûmin(·, I; ξ(0.95)(L, I))) and scenario 3 (ûmin(·, I; ξ = 4%)) with respect

to scenario 1 (ûmin(·, I; ξ = 0%)) using LR (left panel) and QR (right panel) models.

for a similar microgrid control problem):

dL(t) =

[
∂µ

∂t
(t) + λ

(
µ(t)− L(t)

)]
dt+ σ(t)dB(t).(5.4)

Here, λ represents the speed of mean reversion towards the seasonal mean µ(t), while σ(t) represents the

time-varying volatility. Using Itô’s lemma and integration by parts one can prove that

L(t) = µ(t) + e−λt
(
L(0)− µ(0)

)
+

∫ t

0

e−λ(t−s)σ(s)dB(s).

Thus,

E[L(t)] = µ(t) + e−λt(L(0)− µ(0)).

We calibrate µ(t) and σ(t) in (5.4) using iterative methodology described in [17] and the data from

a solar-powered microgrid in Huatacondo, Chile1. Specifically, we compute the mean and variance of

the residual demand over 24 hours at 15-minute intervals using data from Spring 2014, i.e. compute

{µ1, µ2, . . . , µ96} and {σ1, σ2, . . . , σ96}. The estimated µ(t) can be seen in the left panel of Figure 5 that

plots the empirical average of L(t). As expected, during the day, i.e., t ∈ [12, 20] (noon-8:00 pm), the

expected net-demand is negative (µ(t) < 0) while it is positive (µ(t) > 0) in the morning and during the

night. The volatility σ(t) is higher during the day due to the intermittent and unpredictable nature of

solar irradiance. The mean reversion parameter was estimated to be λ = 0.3416.

To visualize the interplay of the net demand, inventory and optimal control, the left panel of Figure 5

presents the average trajectories of the three processes over 48 hours. During the morning hours when

the demand L(t) is high and the battery is empty, the controller uses the diesel generator. During

the day when the renewable output is high and L(t) is negative, the controller switches off the diesel

and the battery charges itself. However, the non-trivial region is when the average net-demand changes

1https://microgrid-symposiums.org/microgrid-examples-and-demonstrations/huatacondo-microgrid/
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sign, either from positive to negative around noon or negative to positive in the evening. During the

former time interval, the optimal control process is in {0, 1} (recall that minimum diesel output is 1).

Similarly, during the evening when the net demand becomes positive (as the renewable output declines),

the controller quickly ramps up the diesel to match L(t) ≫ 0. The right panel of Figure 5 repeats the

average control and inventory curves, also showing their 2-standard deviation bands (in terms of the

out-of-sample trajectories of L̂û
0:T ). As expected, the time periods around ramp-up or ramp-down of the

diesel generator is when ûn experiences the greatest path-dependency and dispersion and differs most

from the demand curve.
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Fig. 5: Model parameters, average trajectory of the state variables, control and their variance. Left panel: Average values

of net demand 1
M′

∑M′

m′=1 L
û,m′

n , inventory 1
M′

∑M′

m′=1 I
û,m′

n and optimal control (diesel) 1
M′

∑M′

m′=1 û
m′

n processes using

the gold standard strategy. Right panel: 95% confidence bands for net demand Lû
n and realized optimal diesel control ûn.

Net demand and diesel output is measured in kW and Inventory in kWh.

Comparing Table 5, which lists the estimated cost V̂0(µ(0), 5) along with related statistics, with

Figure 3 indicates that incorporating seasonal net-demand process does not change the relative order of

performance between the methods. The cost goes up as the diesel generator has to be used throughout

the mornings and the evenings to match demand.

As in the previous example, the performance of LR, GPR and PF almost matches the gold standard

despite significantly lower simulation budget. In this setting the constraint is binding approximately 45%

of the time (except for GPR and PF where it is 30% and 25% of the time). Frequency of inadmissible

decisions wfreq is 0.03% for LR, 1.17% for GPR, and 0.02% for PF. In contrast wfreq is 43% for QR,

22% for EP, 43% for SVM and 22% for CTE, implying that all these schemes are highly unreliable for

learning Û . The average inadmissibility margin wavm is also significantly lower for GPR (0.14 kW) and

PF (0.26 kW) compared to the rest of the methods. Here again we observe larger inadmissibility margin

and very low frequency of inadmissible decisions for logistic regression. Similar behavior is also evident

for the test statistic T̃ and realized frequency of violations wrlzd.

To illustrate the typical behavior over a trajectory, Figure 6 plots the average control Ave(ûn) :=
1

M ′

∑M ′

m=1 ûn(x
û,m′

n ) corresponding to different methods and the average minimum admissible control

Ave(umin
n ) := 1

M ′

∑M ′

m′=1 u
min
n (xû,m′

n ) computed using the gold standard. Notice that the latter is de-

pendent upon the controlled trajectories xû
n, resulting in different Ave(umin

n ) across methods. We expect

Ave(ûn) above Ave(u
min
n ) if a given method does not violate the constraint most of the time. This is true
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Table 5: Cost of running the microgrid V̂0(µ(0), 5), frequency of inadmissible decisions wfreq, average inadmis-

sibility margin wavm, realized frequency of violations wrlzd and frequency of the constraint being binding wbind

for the case study in Section 5.3.

Method V̂0(µ(0), 5) wfreq (%) wavm (kW) wrlzd (%) T̃ wbind (%)

GS 53.38 0 0 0.30 - -

LR 53.78 0.03 0.79 0.01 -301 45.2

GPR 54.04 1.17 0.14 0.19 -220 31.0

PF 54.55 0.02 0.26 0.01 -226 25.7

SVM 40.52 43.37 0.91 43.37 5,306 46.4

QR 52.56 42.87 0.28 38.41 4,772 46.3

CTE 53.02 21.62 0.21 10.43 1,079 46.0

EP 52.82 21.91 0.23 11.57 1,227 46.1
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Fig. 6: Average control Ave(ûn) for LR, GPR and SVM and the average minimum admissible control Ave(umin
n )

using Gold Standard across forward controlled trajectories.

for LR and GPR, but SVM quite obviously fails, as the dashed line in the leftmost panel of Figure 6 is

significantly higher than the solid line at numerous time steps. Furthermore, the conservative nature of

GPR is reflected in the large difference between the average minimum admissible control and the average

optimal control. This is also evident through wbind ≈ 30% for GPR compared to approximately 45% for

the rest of the methods.

6. Conclusion. We developed a statistical learning framework to solve stochastic optimal control

problems with local probabilistic constraints. The key objective of our algorithm is to efficiently estimate

the set of admissible controls U(·) and the continuation value function C(·, ·) covering a general formulation

of the state process dynamics and rewards. Since SCPC problems require estimating the admissible set

repeatedly during the backward induction, we use regression based functional representation of x 7→

U(x). This perspective also provides a natural way of uncertainty quantification for admissibility, in

particular offering conservative estimates that bring statistical guarantees regarding Û . At the same time,

our dynamic emulation algorithm allows parallel computation of U and C for additional computational

efficiency.

Thanks to the plug-and-play functionality of the dynamic emulation algorithm, it was straightforward
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to test a large variety of schemes for learning U . Our numerical results suggest that estimating probabilis-

tic constraints via logistic regression, Gaussian process smoothing and parametric density fitting is more

accurate than estimating the corresponding quantile (empirical ranking, SVM or quantile regression). A

future line of research would be to additionally parametrize (e.g. using another GP model) the optimal

control map x 7→ ûn(x) [14] which would speed-up the algorithm in the context of continuous action

spaces. Another direction would be to extend the one-dimensional control framework described in this

paper to a multi-dimensional setting. In reference to the microgrid example, multi-dimensional control

will allow us to control the diesel output and the demand response or to control output from multiple

dispatchable generators.

Appendix A. Effect of Simulation Budget (Mb ×Ma).

Table 6: Impact of simulation budget on performance of SVM for the case study in Section 5.2 and probability thresholds

p = 5% and p = 1%. The reported values are averages over 10 runs of each scheme. The total simulation budget is

divided into batch size Mb and number of design sites Ma. For total budget 105: (Mb,Ma) = (100, 1000); for 106:

(Mb,Ma) = (500, 2000); for 107: (Mb,Ma) = (2000, 5000); for 108: (Mb,Ma) = (10000, 10000).

p Budget V̂0(0, 5) (✩) wfreq (%) wavm (kW) wrlzd (%) T̃ wbind (%)

5%

105 26.38 5.93 0.78 2.80 665 9.73

106 26.55 5.28 0.55 1.84 386 9.77

107 26.68 4.96 0.53 1.64 330 9.75

108 26.79 1.50 0.27 0.30 -51 9.22

1%

105 28.32 6.63 0.93 2.43 1,460 9.87

106 28.26 5.17 0.66 1.09 631 9.56

107 28.52 0.55 0.24 0.03 -39 8.78

108 28.41 0.15 0.22 0.01 -51 8.82

Appendix B. Effect of Adaptive Margin of Error Level ρ.

Table 7: Impact of conservative U(ρ) estimators for the case study in Section 5.2. The probabilistic constraint is set at

p = 5%.

ρ = 90% ρ = 99% ρ = 99.95%

Method V̂0(0, 5) wfreq wrlzd V̂0(0, 5) wfreq wrlzd V̂0(0, 5) wfreq wrlzd

LR 26.74 0.090 0.034 26.87 0.085 0.032 27.04 0.085 0.026

GPR 27.34 0.012 0.055 28.06 0.007 0.037 28.06 0.005 0.029

SVM 27.35 4.975 1.732 29.20 3.481 1.117 29.72 3.395 1.088

QR 27.20 5.373 0.793 27.18 4.880 0.676 27.04 4.409 0.591

CTE 27.93 7.158 1.153 28.31 6.766 0.888 28.61 6.163 0.714

EP 26.78 7.990 1.497 27.17 7.629 1.183 27.96 7.102 0.956
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