
This is a repository copy of On automation in software engineering.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/164897/

Version: Accepted Version

Article:

Hierons, R.M. orcid.org/0000-0002-4771-1446 and Xie, T. (2020) On automation in 
software engineering. Software Testing, Verification and Reliability, 30 (6). e1753. ISSN 
0960-0833 

https://doi.org/10.1002/stvr.1753

This is the peer reviewed version of the following article: Hierons, R. M., and Xie, T. (2020)
On automation in software engineering, Softw. Test. Verif. Reliab., 30, e1753, which has 
been published in final form at https://doi.org/10.1002/stvr.1753. This article may be used 
for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of 
Self-Archived Versions.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



On	Automation	in	Software	Engineering	
 

This	issue	of	STVR	contains	two	papers	that	describe	automated	techniques.	Automation	has	

been	an	important	theme	in	the	software	engineering	research	community	for	many	years.	

In	 fact,	 there	 is	 an	 established	 annual	 conference	 (i.e.,	 ASE)	 devoted	 to	 this	 topic.	Many	

automated	techniques	have	been	developed	over	the	years,	and	are	likely	to	remain	a	major	

focus	of	work	in	software	testing,	verification	and	reliability.	It	is	clear	that	some	problems	

(e.g.,,	test	execution)	are	more	amenable	to	automation	than	others	(e.g.,	test	generation	and	

correctness-proof	construction).	However,	there	has	been	promising	progress	in	many	areas.	

	

The	increasing	importance	and	popularity	of	Artificial	Intelligence	(AI)	has	introduced	both	

challenges	and	opportunities	toward	automation	in	software	engineering.	Systems	that	use	

AI	often	do	not	have	specifications	and	so	it	can	be	difficult	to	determine	whether	a	behaviour	

is	 correct	 (we	have	no	 test	oracle)	or	 to	prove	 that	 a	piece	of	 software	 is	 correct	 (prove	

against	what?).	 In	addition,	we	require	a	model	or	specification	if	we	are	to	apply	model-

based	 testing	 techniques,	 and	 classical	 coverage	metrics	 used	 in	many	white-box	 testing	

techniques	appear	not	to	help.	It	therefore	appears	that	we	will	need	a	completely	new	set	

of	techniques	if	we	are	to	extend	automation	to	the	complete	set	of	AI	systems.	The	good	

news	is	that	it	may	be	possible	to	utilise	a	range	of	AI	techniques,	building	on	work	that	uses,	

for	 example,	metaheuristic	 search	 or	 neural	 networks	 to	 automate	 software	 testing	 and	

formal	verification	for	(non-AI)	software.	There	is	already	work	in	this	direction	and	we	look	

forward	to	seeing	how	this	area,	of	using	AI	to	test	or	verify	AI,	develops.	

	

In	the	first	paper,	Sundeuk	Kim,	Ilhyun	Suh,	and	Yon	Dohn	Chung	present	the	simulation-

based	 automatic	 monitoring	 (SAM)	 approach	 for	 pinpointing	 web	 application	 failures,	

including	 those	 that	 require	 browser	 APIs	 or	 client	 programs.	 The	 SAM	 approach	 can	

monitor	 all	 three	 types	 of	 web	 applications:	 basic,	 web	 browser	 API-added,	 and	 client	

program-based	types.	The	SAM	approach	includes	a	DOM-based	simulation	model	using	the	

installation	 information	 of	 browser	 API-added	 and	 client	 program-based	 applications.	

(Recommended	by	Sreedevi	Sampath).		

	

In	the	second	paper,	Thomas	Walsh,	Gregory	M.	Kapfhammer,	and	Phil	McMinn	address	a	

problem	in	the	area	of	web	page	layout.	The	underlying	issue	is	that	the	layout	of	a	web	pages,	

as	seen	by	a	user,	depends	upon	the	device	and	browser	used.	Typically,	it	is	not	practical	to	

test	with	all	possible	combinations	and,	 in	addition,	 the	actual	 layout	 is	usually	manually	

checked.	This	paper	focuses	on	regression	testing	and	introduces	an	automated	approach	

that	compares	the	layout	of	two	pages:	the	page	before	a	change	is	made	and	the	page	after	

a	change	is	made.	Differences	are	then	reported	to	the	developer.	(Recommended	by	Marcio	

Delamaro).		

	

ROBERT	M.	HIERONS		

Department	of	Computer	Science,	The	University	of	Sheffield,		

Regent	Court,	211	Portobello,	Sheffield	S1	4DP,	UK	

	



TAO	XIE		

Department	of	Computer	Science	and	Technology,	Peking	University,	

Beijing,	China	

 

 

 

 


