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Abstract 𝑍𝑛0.5𝐶𝑜0.25𝐶𝑢0.25𝐹𝑒2−𝑥𝐿𝑎𝑥𝑂4 (x = 0.0, 0.0125, 0.025, 0.0375, 0.05) ferrite powders with 

uniform distribution of ions and close-packed configuration were prepared via sol-gel auto-

combustion route. XRD spectra showed the formation of spinel-phase cubic crystalline structure. 

SEM results revealed that the irregularity in size and shape of particles increases, and particle 

distribution uniformity decreases with La3+ concentration. Moreover, each curve of the UV-vis 

spectra revealed two optical energy band gaps. More importantly, DC resistivity (ρ) and the 

activation energy (∆𝐸) have minimum values at x=0.0375. The dielectric loss was explained 

according to Maxwell-Wager space charge polarization. The P-E loop showed the ferroelectric 

nature of the synthesized samples. Moreover, VSM results revealed that the as-prepared samples 

possessed maximum saturation magnetization (MS = 56.77 ± 0.0283) and 8-12 GHz operating 

microwave frequency (ωm) range at x = 0.0375. All these results show the potential of 𝑍𝑛0.5𝐶𝑜0.25𝐶𝑢0.25𝐹𝑒1.9625𝐿𝑎0.0375𝑂4  ferrite powders for X-band microwave applications. 
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Highlights 

● Zn0.5Co0.25Cu0.25Fe2-xLaxO4 ferrite powders via simple sol-gel auto-combustion. 
● Crystallite size and lattice constant decrease with increasing La3+

 cations  
● Optical band gap energies and DC resistivity have minimum values at x=0.0375. 
● The ferroelectric nature of all the samples was confirmed using the P-E loop. 
● Maximum magnetization saturation was observed at x = 0.0375. 

 

Keywords: sol-gel auto-combustion; structural; electrical; optical; dielectric; magnetic.  

 

1   Introduction 

Spinel ferrites are unique magnetic materials showing semiconductor and ferromagnetic 

properties and can be regarded as a ceramic or magnetic semiconductor material. Nowadays, these 

types of magnetic materials are used in different applications, i.e., in high-frequency applications 

[1], as gas sensors for H2S [2], for LPG sensing [3], biomedical, and biotechnology [4], 

optoelectronics applications [5], and removing pollutants as an advanced adsorbent magnetic 

material from wastewater [6]. Spinel structure oxides have fundamental and practical significance 

for catalyzes, such as two-phase structure nanowires used as catalytic para-nitroaniline (PNA) to 

para-phenyl diamine (PPD) reduction reaction [7, 8], lithium-ion batteries [9], magnetic and high-

frequency applications [10-13].  

The literature indicates that there are numerous conventional and nonconventional routes 

of preparation, including the solid-state method [14], sol-gel self-igniting route [15, 16], a 

hydrothermal technique [17], the microemulsion route [18], and the co-precipitation technique 

[19], which have been successfully used to control the properties of spinel ferrites. The main 

drawbacks of traditional methods are low reproductivity, the use of high temperature, and 

contamination problems. In recent years, therefore, novel preparation techniques were developed 

to meet the current requirements, such as processing efficiency and nanostructure control.  

There are numerous studies on the results of Zn [20], Co [21], Cu [22], Zn-Co [23], Co-Cu 

[24], Cu-Zn [25] and Cu-Co-Zn [15] ferrites. These dopant ions impact on structural, optical, 

electrical, and magnetic properties of ferrites. According to the best of our survey, there are limited 

reports on Zn-Co-Cu nano-ferrites powder. Gharagozlou et al., [20] reported low-temperature 
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sintered ZnFe2O4 soft ferrite synthesized via the Pechini technique. The impact of the calcination 

temperature on the vibrational and microstructural properties was studied. At 1073 K, the ZnFe2O4
 

nano-ferrites saturation magnetization was MS = 4.53 emu/g and the coercivity was HC
 = 47 Oe. 

Co-Ferrites (CoFe2O4) [21] showed two optical band gaps at 4.1 eV, and 4.9 eV using UV-Vis 

spectroscopy. It was also observed that the resistivity reduced with an increase in temperature [21]. 

Raja et al., prepared CuFe2O4 by microwave and sol-gel routes. The comparative studies reported 

that the magnetic properties depended on the particle size. Cu2+ ferrite synthesized by the sol-gel 

route had a saturation magnetization of 42.23 emu/g. [22].  

Татарчук et al. developed pure and Zn2+ substituted cobalt ferrites with the general formula 

Co1-xZnxFe2O4 (0.0≤x≤0.5) through the co-precipitation process. Pure Co2+ has a saturation 

magnetization equal to 91 emu/g, and an optical band gap of 1.17 eV. In contrast, when the 

concentration of Zn2+ is x = 0.2, the saturation magnetization (114 emu/g) was at the maximum at 

300 K and the optical band gap (1.28 eV) was at the minimum [23]. Polycrystalline Cu1-xCoxFe2O4
 

nanoparticles were synthesized using the self-igniting route, and it was reported that the lattice 

constant increased with the addition of Co2+ cations. VSM analysis suggested that the magnetic 

parameters increased as the concentration of Co2+ cation increased. Co-Cu ferrite has a maximum 

value of saturation magnetization (66.1 emu/g) and coercivity (960 Oe) at x = 0.9 [24]. Zn1-

xCuxFe2O4 was synthesized using a microwave (MW) combustion process and confirmed that the 

lattice constant decreased with the addition of Cu2+ cation. The maximum saturation magnetization 

(58.58 emu/g) was at x = 0.5. The study of UV-vis analysis at room temperature (RT) confirmed 

that the minimum energy band gap was 1.95 eV at x = 0.5 [25]. Co2+ doped Cu-Zn nanoparticles 

(Cu0.7CoxZn0.3Fe2O4) were developed via the self-igniting process, and the impact of Co2+ on the 

structural, thermal, and magnetic behavior of Cu-Zn ferrites was observed. The minimum lattice 

constant was observed at x=0.1 and maximum saturation, MS
 = 79.63 emu/g was at x = 0.3 [15].  

Many researchers have studied the impact of the addition of La3+ into nano-ferrites. In the 

lanthanide series, lanthanum is the lightest and second most abundant element of rare earth (RE). 

At atmospheric pressure, La3+ is known as a superconducting RE element [26]. There had also 

been observed remarkable variations in the electrical, optical, dielectric, and magnetic properties 

by adding La3+ ions [6], [27-31]. Substitution of La into 𝑍𝑛𝐹𝑒2−𝑥𝐿𝑎𝑥𝑂4 (x = 0, 0.02, 0.04, 0.06) 

nanoparticles enhanced the saturation magnetization (16.4 emu/g) and remanent magnetization 

(10.57 emu/g) at x=0.02. Due to the hindered crystal growth caused by the rare earth La cations 
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into 𝑍𝑛𝐹𝑒2−𝑥𝐿𝑎𝑥𝑂4 , the crystallite size decreased from 37.6 to 27.4 nm, and the energy bandgap 

increased from 1.87 to 1.97 eV. At x=0.02, the observed crystalline size and band gaps were 36.9 

nm and 1.89 eV, respectively [27]. La3+ doped Co soft ferrites with chemical formula CoLaxFe2-

xO4
 were developed using the sol-gel route. The lattice constant decreased with the addition of La3+ 

cations, and at x=0.05, the minimum crystallite size (4.5 nm) was observed. The energy bandgap 

decreased from 1.34 eV to 1.1 eV with the addition of the dopant. VSM studies showed that the 

minimum saturation magnetization for x = 0.05 was 27 emu/g [6]. Deepapriya et al., reported 

saturation magnetization of La3+ doped Cu2+ ferrite was 0.7288 emu/g and with crystallite size 14 

nm [29]. 

Co-Zn nanoparticles doped with La3+ (Co0.5Zn0.5LaxFe2-xO4) were prepared via a sol-gel 

auto igniting process and studied for their structural, optical, and morphological behavior. The 

crystallite size was found to decrease with the addition of La3+ impurity, with a minimum value of 

18.70 nm at x = 0.125. Micrograph revealed that the particle size was nanoscale and uniformly 

distributed for x = 0.125 [30]. Cu0.7Zn0.3Fe2-xLaxO4 was developed via the self-propagating route, 

and the impact of La3+ on the microstructural and magnetic behavior of ferrites powder was 

examined. The crystallite size had a minimum value of 47.1 nm at x = 0.07, and lattice constant 

increased up to x = 0.03 and after x = 0.03 decreased. SEM analysis revealed that the mean particle 

size for x=0.01 was 132.80 nm.  M-H curve revealed that pure Cu-Zn nano ferrites had a maximum 

magnetization value of 64.80 emu/g, which increased with the La3+ content at room temperature 

[31]. Cu-Co nanoparticles powder was developed via a sol-gel method with the addition of 

impurity La3+ cations with the compositional formula Cu0.5Co0.5Fe2-xLaxO4 (0.0≤x≤0.05 with an 

increment of 0.01) calcined at 1173 K. XRD results revealed that the crystallite size decreased 

with the substitution of La3+ and at x = 0.03 the lattice constant had a minimum value. La3+ doped 

Cu-Co nano ferrites maximum saturation magnetization was MS = 54.95 emu/g and decreased with 

the addition of dopant [28].  

This combination of outstanding properties in Zn [20], Co [21], Cu [22], Zn-Co [23], Co-

Cu [24], Cu-Zn [25] and Cu-Co-Zn [15] ferrites and La3+ doped Zn [27], Co [6], Cu [29], Co-Zn 

[30], Cu-Zn [31], Cu-Co [28] ferrites, motivates for deeper analysis of nature and properties of  

Zn-Co-Cu ferrites in general and comprehensive analysis for the effect of La3+ cations doping on 

Zn-Co-Cu nano ferrites. To the best of our understanding and knowledge from the previous review 
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of the literature to date, there is no literature present proposing the impact of La3+ on the properties 

of 𝑍𝑛0.5𝐶𝑜0.25𝐶𝑢0.25𝐹𝑒2−𝑥𝐿𝑎𝑥𝑂4  (Zn-Co-Cu) ferrites powder.  

In this work, 𝑍𝑛0.5𝐶𝑜0.25𝐶𝑢0.25𝐹𝑒2−𝑥𝐿𝑎𝑥𝑂4 (0.0≤x≤0.05 with the step interval of 0.0125) 

nano ferrites powder was produced through the sol-gel auto combustion technique to the 

optimization of the structural, optical, electrical, dielectric, ferroelectric, and magnetic properties. 

The prepared samples were studied using different characterization techniques including XRD, 

SEM, UV-Vis, VSM, dielectric measurements, and two probes electrical resistivity measurements, 

to explore further the impact of La3+ doping on the properties of Zn-Co-Cu nano ferrites powder. 

2   Experimental method 

2.1 Materials used and synthesis method 

Highly pure analytical reagent (AR) grade chemicals were used as preliminary ingredients 

including Lanthanum (III) [La (NO3)3.6H2O] nitrate hexahydrate (99.99%), Zinc (II) [Zn 

(NO3)2.6H2O] nitrate hexahydrate (98.0%), Cobalt (II) [Co (NO3)2.6H2O] nitrate hexahydrate 

(98.5%), Copper (II) [Cu (NO3)2.3H2O] nitrate tri-hydrate (99.99%), Iron (III) [Fe (NO3)3.9H2O] 

nitrate nonahydrate (99.95%). Citric (C6H8O7) acid was chosen as the fuel agent to synthesize 

Lanthanum doped Zn-Co-Cu ferrite powder. With stoichiometric calculations, the molar ratio was 

kept at 1:1 for metal nitrates to citric acid. The solution was placed on a magnetic stirrer with 

uniform stirring speed 50 rev/min. Ammonia (NH3) solution was added to acquire a pH of 7 while 

maintaining a temperature of 353 K during the stirring procedure. The solution was first 

transformed into a gel and then burned in an auto combustion manner to transform into fluffy loose 

powder. The obtained powder was calcinated at 773 K for 2 h, and then sintered at 1073 K for 8 h 

and finally grounded to obtain a fine powder, graphic representation of the process is shown in 

Fig. 1.  

2.2 Characterization techniques used 

The structural changes of as-prepared lanthanum doped Zn-Co-Cu ferrites powder 

characterized via XRD (D8 Advanced, Bruker, Cu-Kα radiation, and λ = 1.5418 Å) to obtain Bragg 

angle (2𝜃) range 20o-60o. Phase identification and Rietveld refinement were performed with 

Match! Phase Identification from Powder Diffraction and FullProf software, respectively. Nova 

NanoSEM series 450 used for studied surface morphology, such as to investigate the particle size 

and shape. UV-Visible Double Beam Spectrophotometer (UV-DS) Model Lambda 25, Perkin 

Elmer, was taken to measure the UV-visible spectroscopy of as-prepared samples. KEITHLEY, 
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Model 2401 Sourcemeter, Current/Resistance/Voltage Measure Meter (I-V measurement meter) 

used with two probes method in the present research work to measure the electrical properties. 

Dielectric measurements were performed by employing the IM3533 series LCR Meter and 

Impedance Analyzer (I-A) at room temperature (RT). Precision Ferroelectric Analyzer Testing 

System of Radiant technology having model No. P-PMF used to investigate ferroelectric 

properties. 

3   Results and Discussion 

The prepared 𝑍𝑛0.5𝐶𝑜0.25𝐶𝑢0.25𝐹𝑒2−𝑥𝐿𝑎𝑥𝑂4 (0.0≤x≤0.05 with the step interval of 0.0125) 

nano ferrite powder was characterized using various characterization techniques. The detail of 

characterization techniques results is explained in the following subsections:  

3.1   X-ray Diffraction (XRD)      

The XRD spectra for 𝑍𝑛0.5𝐶𝑜0.25𝐶𝑢0.25𝐹𝑒2−𝑥𝐿𝑎𝑥𝑂4 (x = 0.0, 0.0125, 0.025, 0.0375, 0.05) 

ferrites powder are presented in Fig. 2. Six XRD peaks were observed at 2𝜃 = 29.94o, 

35.28o,37.90, 42.89o, 53.24o and 56.76o which corresponds to (220), (311), (222), (400), (422) and 

(511) planes respectively, which confirm the formation of spinel structure (space group; F d -3 m) 

nano ferrites [32]. A minor peak at 2𝜃 = 32.18o is also observed in the samples with x = 0.025, 

0.0375, 0.05, which belongs to the secondary phase orthorhombic structure LaFeO3 (space group; 

P b n m) [33, 34]. The XRD pattern represents the linear relation between the intensity of LaFeO3 

peak and La3+ concentration (x), i.e., with increasing La3+ ions concentration (x), the intensity of 

LaFeO3 peak increased that confirms the low solubility of La3+ cations into the spinel ferrite matrix. 

Different crystallographic parameters were calculated using the major peak corresponding to (311) 

plane and are given in Table 1 and Table 2. 

  It is observed in Table 1 that experimental lattice constant (𝑎𝑒𝑥𝑝) and d-spacing (d) [35] 

decreased with increase in La3+ concentration (x) except at x = 0.0375. The reduction in the lattice 

parameters with the addition of rare earth (RE) cations is because of partial replacement of RE 

cations in the lattice site. During the sintering, some RE cations reside in the grain boundaries and 

an isolated thin layer around the grains formed. The smaller amount of RE cations getting 

substituted in the sublattice and larger RE cations diffuse in the grain boundaries [36]. The 

crystallite size ‘D’ was calculated via the Scherrer’s equation [37, 38]. It is noted that crystallite 

size decreased with increasing La3+ concentration (x) except at x = 0.0375, which is in good 

agreement with the literature [31]. The changes in above said parameters are related due to the 
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replacement of Fe3+ cations with La3+ cations on the octahedral (B) sites. As the cationic radius of 

La3+ cations (1.05Å) is greater than that of Fe3+ cations (0.645Å), it is difficult to replace the Fe3+ 

ions, which therefore disturbed the symmetry of crystal structure. Moreover, some redundant La3+ 

ions remain, which resulted in the formation of LaFeO3 on the grain boundaries [39]. A 

considerable amount of energy is needed to substitute La3+ cations for Fe3+ cations due to greater 

bond length of La3+_O2- compared to Fe3+_O2-, this caused the formation of LaFeO3 on the grain 

boundaries [40].  

The dislocation line density (𝛿) [41] of ferrite samples was found to increase by raising the 

La3+ content and is reported in Table 1. The calculated values of X-ray density (𝑑𝑋) [42, 43] are 

reported in Table 2, which are in good agreement with the experimental parameters. It was 

observed that the range of X-ray density (𝑑𝑋) is 5.31±0.00266 – 5.44±0.00272 g/cm3 and note that 

the molecular weight of the as-prepared samples with La3+ concentration (x) increases, this 

behavior shows that as La3+ concentration (x) increases, the X-ray density (𝑑𝑋) increases. It can be 

seen that bulk density (dB) of the samples increased with increments in La3+ concentrations (x), 

with the range of bulk density (dB) being 4.09±0.00205 – 4.65±0.00233 g/cm3. The porosity (P) 

percentage [42, 44] decreased from 22.97 % to 14.52 %, with an increase in La3+ concentrations 

(x) because of the rise in the bulk density (dB). The A-site hopping length, ‘HA’ and B-site hopping 

length ‘HB’ are linked with the experimental lattice constant. So, the calculated value of hopping 

length (Table 2) show the same trend with variation in La3+ content as the experimental lattice 

constant, and similar behavior as reported by Ganure et al. [45]. 

For further analysis of X-ray diffractogram, the Rietveld refinement was performed with 

space group (F d -3 m) and the atomic position, site occupancy, and profile R-factors were 

determined. Rietveld refined diffractograms with the difference in intensities of both observed and 

calculated are shown in Fig.3. Various R-factors including the weighted R-profile (Rwp), R-

expected (Rexp), and goodness-of-fit (χ2 = Rwp / Rexp)  were used to check the structural reliability 

[46, 47]. The obtained parameters from Rietveld refinement are reported in Table 3. The smaller 

value of goodness-of-fit (χ2) indicated the development of the required crystalline phase. The 

refinements were performed until the value of “χ2” reached close to 2 [48]. 

Niyaifar et al. [49] proposed the occupancy of Zn2+ only into the tetrahedral (A-) sites. The 

occupancy of Fe3+
, Cu2+,

 and Co2+ cations into the A-site and B-site [24, 50]. But RE ions occupy 
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only the octahedral (B-) site. Hence, the occupancy of La3+ ions only on the octahedral (B-) sites 

[51].  

The cation distribution of as-prepared series was carried out using the intensity ratio of 

XRD peaks through Rietveld refinement. The atomic position (x = y = z) and site occupancy (g) 

are listed in Table 4. The estimated uniform cations distribution of the present series, as shown in 

Table 5. 

The investigated average value of cations radii 𝑟𝐴 and 𝑟𝐵 at the A-site and B-site are 

depicted in Table 6. The calculated values of 𝑟𝐴 remain the same but 𝑟𝐵 increased by increasing 

La3+ concentration (x), which confirmed that La3+ cations occupied the octahedral site. The value 

of the theoretical lattice constant [52, 53] are listed in Table 6 and revealed that by raising the of 

La3+ cations, the theoretical lattice constant increased. By comparing the values, it was found there 

is a difference between the experimental and theoretical lattice constants, this difference is because 

at high concentration, there is less solubility of La3+ ions, and the LaFeO3 compound formed. The 

oxygen position parameter (U) for spinel structure ferrites has an ideal value of 0.375. The 

estimated value of ‘U’ showed a small deviation from the ideal value, and decreased with dopant 

concentration, as indicated in Table 6, which confirmed the deformation present in the lattice 

structure. Ideally, the value of tolerance factor (T) has a value close to one (unity) for spinel 

structure ferrites. The calculated value of ‘T’ decreased with increasing the La3+ concentrations 

(x), listed in Table 6, but are close to one (unity), suggesting that there are no defects present in 

the as-synthesized samples [52]. 

At tetrahedral (A-) site the bond length (𝑅𝐴) and at octahedral (B-) site the smallest bond 

length (𝑅𝐵) were calculated [54]. The bond length 𝑅𝐴 and 𝑅𝐵 were depicted in Table 6. The 

magnetic interactions like (A-A) interactions, (B-B) interactions, and (A-B) interactions in spinel 

ferrites depend on the bond length between cation-cation and cation-anion bonds. The shared 

tetrahedral site edge length (R), shared octahedral site edge length (𝑅′) and unshared octahedral 

site edge length (𝑅′′) were determined [55]. The investigated values of R, 𝑅′ and 𝑅′′ were given 

in Table 6, which shows the variation in these parameters depends upon the La3+ concentration (x) 

and experimental lattice parameters, and change in these parameters is according to the changes 

that occurred in experimental lattice parameters. 

 

3.2 Surface Morphological analysis 
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The scanning electron microscope (SEM) images of 𝑍𝑛0.5𝐶𝑜0.25𝐶𝑢0.25𝐹𝑒2−𝑥𝐿𝑎𝑥𝑂4 (x = 

0.0, 0.0125, 0.025, 0.0375, 0.05) ferrites samples at a magnification of 100000 × (500 nm scale) 

are depicted in Fig. 4 (a-e). The microstructure images of the ferrite samples show an angular 

(irregular) particle size and shape. Moreover, the irregularity in size and shape of particles 

increases, and particle distribution uniformity and porosity decrease with La3+ concentration, and 

due to the self-igniting route, homogenous particle distribution of nano ferrite samples was 

achieved. 

The particle sizes are between 474.1 nm to 1022.1 nm and have a maximum value at 

x=0.0375, as denoted in Fig. 12. It was found that the high calcination temperature leads to the 

agglomeration of particles because of different emerging forces such as weak Van der Waals, 

electrostatic and capillary forces that produce magnetic interactions among the particles [56]. It 

was found that agglomeration increased with La3+ concentrations (x). The micrograph of the 

undoped as-prepared sample (Fig. 4 (a)) indicates the existence of the monophasic spinel 

microstructure. In contrast, the addition of La3+ ions (Fig. 4 (b-e)) shows a multiphasic spinel 

microstructure having a larger matrix of ferrites particles and at the grain boundaries a smaller 

LaFeO3 secondary phase [57, 58].  

 

3.3   Ultraviolet-Visible (UV-vis) Spectroscopy Analysis 

The optical band gap of materials generally depends upon grain size, the concentration of 

dopant element, lattice structure parameters, lattice strain, surficial impact, and presence of 

impurities [59]. UV-vis spectroscopy was employed to determine the optical band gaps for samples 

due to the first and second absorption band. Tauc plots of the as-prepared ferrites are depicted in 

Fig. 5. It observed from the data that the first optical band gap (Eg) of the ferrite samples due to 

the first absorption band lie in the range of 1.94±0.0097 to 2.49±0.0124 eV and have a minimum 

value at x = 0.0375, due to the electrons at low energy being inactive (Fig. 5). On the other hand, 

high energy electrons are active at the second optical band gap (𝐸𝑔′ ) due to the second absorption 

band having a maximum value at x = 0.0375. The optical bad gap lies in the range 5.54±0.00166 

to 5.62±0.00169 eV (Fig. 5). These energy gaps from the 1st and 2nd band may be due to the ferro 

and para nature of materials, respectively. 

 

3.4   I-V Measurement Analysis 
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Measurements of current-voltage (I-V) were carried out on pellets via two probes method 

to investigate the electrical properties of  𝑍𝑛0.5𝐶𝑜0.25𝐶𝑢0.25𝐹𝑒2−𝑥𝐿𝑎𝑥𝑂4 (x = 0.0, 0.0125, 0.025, 

0.0375, 0.05). The samples were placed one by one in the sample holder, then connected to the 

two electrodes of the furnace. The required temperatures were maintained using a temperature 

controller. The DC resistivity of the samples was determined at temperatures from 303 K to 673 

K with a step of 10K.  

It is noted from Fig. 6 that the transition temperature after which the DC resistivity of the 

material change is known as the Curie temperature. The region below Curie temperature is called 

the ferromagnetic region. The region above the Curie temperature is a paramagnetic region. The 

impact of temperature (T) on the log of DC resistivity (log 𝜌) of La3+ doped Zn-Co-Cu nano ferrite, 

is seen in Fig. 6. From Fig. 6, it is clear that DC resistivity decreased with an increasing La3+ 

concentration and has a minimum value at x = 0.0375 in both ferromagnetic and paramagnetic 

regions.  

Different conducting channels such as Fe3+–Me (Me is Zn2+, Co2+, Cu2+, and La3+) and 

Fe3+–Fe3+ are responsible for the charge hopping in the as-prepared nano ferrites. Partial 

replacement of Fe3+ via rare earth (RE) cations induced lattice distortion and strain in the spinel 

matrix modified the electrical properties [60]. La3+ cations have a strong octahedral (B-) site 

preference. Therefore, by adding the La3+ cations, Fe3+ cations replaced by La3+ cations at the 

octahedral (B-) site limits the conductivity.  

The Arrhenius plots (log ρ vs 1000/T) for La3+ doped Zn-Co-Cu nano ferrite are shown in 

Fig. 7. The activation energy (∆E) was determined by taking the slope of Arrhenius plots [61]. It 

is noted from Fig. 7 that the transition temperature after which DC resistivity (ρ) decreased referred 

to as the Curie temperature (𝑇𝐶). The Curie temperature (𝑇𝐶) creates magnetic disorder in the nano 

ferrites. It was clear from VSM analysis saturation magnetization present in all the samples at RT 

(Fig. 11). Therefore, the as-prepared samples are ferromagnetic. It was observed that with an 

increasing Curie temperature, the saturation magnetization decreased, and resistivity increased up 

to Curie temperature. So, after Curie temperature (TC), all the samples became ferromagnetic. 

According to the magnetic theory of semiconductors, the activation energy of the paramagnetic 

region must be greater than the ferromagnetic region. The magnetic order exists in a ferromagnetic 

state and magnetic disorder in the paramagnetic state, as reported by Raghasudha [61]. The electric 

charge carriers, therefore, require less energy in the ferrimagnetic state compared to the 
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paramagnetic state for the conducting process. It also shows that the conduction in nano ferrites is 

affected by the magnetic disorder, as proposed by Lakhani and Modi [62]. The determined values 

of the “ΔE” of the ferrite samples are shown in Fig. 8. It was found that “ΔE” lies between the 

range 1.2064±0.0036 to 1.3702±0.0041 eV and has a minimum value at x = 0.0375. It was found 

that DC resistivity (ρ) and the activation energy (ΔE) both have a minimum value at x = 0.0375, 

as seen in Fig. 8. The calculated value of the Curie temperature (𝑇𝐶) from “1000/T” vs. “log ρ” 

curves are reported in Fig. 7. It can be seen that the Curie temperature (𝑇𝐶) has a maximum of 370 

K at x = 0.0375. The drift mobility (µ𝑑) of the samples were determined [63] and the value at RT 

is 0.3682±0.0018×10-30 cm2/Vs, 0.4118±0.0021×10-30 cm2/Vs, 23.8342 ± 0.1192×10-30 cm2/Vs, 

29.9584±0.1498×10-30 cm2/Vs and 0.5100±0.0026×10-30 cm2/Vs respectively. It can be seen at 

RT, the drift mobility (µ𝑑) has a maximum value, and DC resistivity has a minimum value at 

x=0.0375. It was found that the as-prepared sample has a greater value of DC resistivity (ρ) with a 

smaller value of drift mobility (µ𝑑) and vice versa [64]. The UV-vis analysis of 

Zn0.5Co0.025Cu0.025Fe2-xLaxO4 (0.0≤x≤0.05 with the step interval of 0.0125) demonstrated that the 

first optical energy bandgap (Eg), DC electrical resistivity (𝜌) and activation energy have a 

minimum value at x = 0.0375 as reported in Fig. 8. 

3.4   Dielectric Analysis 

To measure the dielectric properties of La3+ doped Zn-Co-Cu ferrite samples, an LCR 

meter, was used. Lodhi et al. [65] proposed that the dielectric properties depended upon different 

parameters like the method of preparation, stoichiometric calculation, grain size, sintering 

temperature, Fe3+/Fe2+ ratio, cation distribution, and oxygen parameters. All of this is normal 

behavior of soft nano ferrites, due to a lagging at different lattice sites of hopping electrons existing 

between Fe3+ and Fe2+ ions. Moreover, as the frequency increases, Fe2+ ions are responsible for 

different types of polarization behind the electric field, which form at high temperatures during 

sintering, as proposed by Raghasudha et al. [66]. Koop′s theory described that all kinds of 

polarization exist at low frequency. Still, because of space charge growth at the grain-grain 

interface, interfacial polarization is more prominent, and accumulated charges act as a barrier for 

hopping electrons. Due to the barrier, the voltage drops at the grain interface, and a very thin layer 

of spatial charge carriers form at the grain interface. The grain boundary impact is more prominent 

at low frequency, as reported by Gul and Maqsood [67].  
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At low frequency, the grain boundaries show the large value of dielectric tangent loss 

because the thickness of the barrier layer and capacitance have inverse relation, i.e., 𝐶 ∝ 1𝑑. Debye 

relaxation appeared in all the samples except x = 0 and increased towards low frequency and high 

frequency with a concentration of La3+. It is dominant throughout the whole frequency range. At 

high frequency, interfacial polarization in the materials shows that dielectric constant and loss is 

zero. Still, Debye type relaxation exhibits nonzero dielectric constant and loss at high frequency. 

It was found that at high frequency, the dielectric tangent loss has a nonzero value, which confirms 

that Debye type relaxation exists and is consistent with the literature [68]. Dipolar materials have 

Debye relaxation due to orientational polarization, and this polarization occurs due to dipole's 

rotational displacement. The rotational displacement also increases with La3+ cations concentration 

(x) because the La3+ cations radii are greater than the Fe3+ cations radii, as reported in the XRD 

analysis. The frequency of the charge carrier transfer at high frequency cannot follow the external 

electric field, and this results in a decrease in the dielectric loss, as described by Roy and Bera 

[57]. An increase in the La3+ cation concentrations, means the polarizability of La3+ doped Zn-Co-

Cu nano ferrites decreased. Hence, Debye type orientational polarization increased individually.  

The dielectric tangent loss (𝑡𝑎𝑛𝛿) defined as the ratio between the dielectric loss to a 

dielectric constant, which measured the loss of electrical energy by an external electric field 

applied to as-prepared samples at different frequencies for all the concentration was determined 

[69]. Fig. 9 represents the variation between dielectric tangent loss (𝑡𝑎𝑛𝛿) and log of frequency 

(log f) for as-prepared nanoferrites for the frequency range 8 Hz to 8 MHz. The 𝑡𝑎𝑛𝛿 decreased 

with the frequency at RT and had a high value at low frequency because of the very thin barrier 

layers, which are more prominent than the conducting grains, which caused the higher value of the 

dielectric tangent loss. It can be seen from Fig. 9 dielectric loss has a minimum value at x=0.0375. 

3.5   Ferroelectric Analysis 

Spontaneous electric polarization exists in some crystalline materials that can be made 

switchable by an applied external field; such materials are known as ferroelectric and are the 

electric analog of ferromagnets. A Radiant technology precision ferroelectric analyzer testing 

system was used to investigate the polarization in the 𝑍𝑛0.5𝐶𝑜0.25𝐶𝑢0.25𝐹𝑒2−𝑥𝐿𝑎𝑥𝑂4 (0.0≤x≤0.05 

with the step interval of 0.0125) samples. The ferrite powder was pressed into disk shape pallets 

for the analysis. By applying an ac voltage, a corresponding electric field (E) was produced, 

causing electric polarization (P) in the samples and a hysteresis loop formed known as P-E 



13 

 

hysteresis loop, or simple P-E loop was recorded [70, 71]. Fig. 10 shows the P-E loop for nano 

ferrite samples. Routray et al. [72] proposed that orientations of domains, defects, composition, 

electric field, and homogeneity are factors upon which polarization properties depend. A banana 

shape P-E loop was found in all the samples [73].  

The P-E loop formation is symmetrical around the origin, demonstrating that the electric 

dipoles are distributed uniformly inside the materials. By increasing the applied field, a regular 

increase in the maximum polarization (𝑃𝑚) and remnant polarization (𝑃𝑟) were observed, which is 

a clear indication that the relevant series belongs to linear dielectrics, as described by Samad et al. 

[74]. A banana-shaped trend attributed to high eddy current or dielectric losses and oxygen 

vacancies were formed on the top surface grains, resulting in leakage current [75]. But as a whole 

behavior, the P-E loops showed the ferroelectric nature of the as-prepared samples were reduced 

with the addition of La3+
 cations, similar behavior was proposed by Naresh et al. [70]. 

3.6 VSM Analysis 

The M-H loops of the  𝑍𝑛0.5𝐶𝑜0.25𝐶𝑢0.25𝐹𝑒2−𝑥𝐿𝑎𝑥𝑂4  (0.0≤x≤0.05 with the step interval 

of 0.0125) ferrites powder at RT were recorded using a VSM (Fig. 11). From Fig. 11, it is clear 

that the M-H loops of the as-synthesized samples have a small area (narrow loop). Hence the as-

prepared samples exhibit soft nature magnetic material [76]. The magnetization saturation (𝑀𝑆), 

remanence (𝑀𝑟), coercivity field (𝐻𝐶), anisotropy constant (K) and experimental magnetic 

moment (𝑛𝐵𝑒 ) were determined from the M-H loop of each sample and given in Table 7. It can be 

seen that 𝑀𝑆, 𝑀𝑟, 𝐻𝐶 , 𝑛𝐵𝑒  and K decreased with dopant La3+ ions except at x = 0.0375, where these 

parameters have the highest value as compared to the other prepared samples due to the higher 

crystallinity and uniform morphologies. The substitution of paramagnetic La3+ cations results in 

the development of the non-magnetic spinel structure. The theoretical magnetic moment (𝑛𝐵𝑡 ) was 

calculated by the difference of the magnetic moment of trihedral (A-) and octahedral (B-) sites 

(𝑛𝐵𝑡 = 𝑀𝐵 − 𝑀𝐴) [77]. The magnetic moments for Zn2+(0μB), Co2+(3μB), Cu2+(1μB), Fe3+(5μB) [78] 

and La3+(0μB) [79]. For La3+ doped Zn-Co-Cu nano ferrites, La3+(0μB) replaced Fe3+(5μB) cations 

at B sublattice, which leads to a decrease in the octahedral sublattice magnetization (MB). 

Moreover, tetrahedral sublattice magnetization (MA) remain the same as cations distribution 

remain the same at A- site (as shown in Table 5), which leads to a decrease in the net magnetic 

moment (𝑛𝐵𝑡 ). The experimental and theoretical magnetic moment (𝑛𝐵𝑒  and 𝑛𝐵𝑡 ) is reported in Table 

7. It can be seen from Table 7 that the theoretical magnetic moment (𝑛𝐵𝑡 ) decreased with La3+ 
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concentration and the experimental magnetic moment (𝑛𝐵𝑒 ) also decreased except x = 0.0375. The 

decreasing behavior of magnetization and magnetic moment is owing to the nonzero Yafet-Kittel 

(Y-K) angle [77]. The nonzero spin canting (Y-K angles) angles suggest that the magnetic behavior 

cannot be described on the base of Neel two sublattice model because of the existence of the non-

collinear spin matrix on the octahedral (B-) sublattice. Therefore, the A-B interaction was 

decreased and the B-B interaction was increased. Furthermore, Y-K angles can be determined 

using 𝑛𝐵𝑒  = 𝑀𝐵 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼𝑦−𝑘 −  𝑀𝐴  (Table 7) [19]. The spin canting angles of the as-prepared 

series of samples increased with La3+ concentration suggest that the increased favor for triangular 

spin arrangement on octahedral (B-) sublattice and A-B interaction decreased. The substitution of 

dopant ions caused the change of the collinear ferromagnetic order into non-collinear 

disintegration and arrangement of ferromagnetic order that decreased the value of 𝑀𝑆 [80]. The 

“D” was a minimum for x = 0.0375 (Table 1) and the magnetization saturation (𝑀𝑆) had it’s the 

highest value for x = 0.0375. For x > 0.0375, the crystallite size (D) increased with decrease in 

magnetization saturation (𝑀𝑆) indicating a superparamagnetic behavior. Because 𝑍𝑛0.5𝐶𝑜0.25  𝐶𝑢0.25𝐹𝑒1.95𝐿𝑎0.05𝑂4 has the impurity LaFeO3 residing in the grain boundaries, this causes internal 

stress, which affects the saturation magnetization magnitude [81].  

It can be seen from Fig. 12 that the saturation magnetization (Ms) and the particle size of 

the as-prepared ferrite samples decreased up to x=0.025, with both having maximum values at 

x=0.0375. On the other hand, the magnetic moment also depends on particle size, and at x=0.0375, 

the particle size and number of aligned magnetic moments increased. Hence, saturation 

magnetization (MS) is increased. It can also be seen from Fig. 12 that the decrease in Curie 

temperature (TC) with an increase in La3+ concentration up to x = 0.0125 also confirmed that the 

disorder of magnetic moments exists.  

The performance of microwave absorbing devices is affected by electric or magnetic 

losses. Therefore, a microwave frequency (ωm) is considered as an operating frequency for the 

performance of the microwave absorbing devices prepared from nano ferrites. The microwave 

frequency (ωm) was calculated using ωm = 8π2γMS, where γ = 2.8 MHz/Oe is the gyromagnetic ratio 

[82].  Akhtar et al. prepared Co2+ doped Mg-Zn nano ferrites and reported microwave frequency 

(ωm) range for all the samples was 2.84 to 5.96 GHz [83]. The high resistivity and low losses 

ferrites are applicable to microwave devices [71].The calculated values of operating microwave 

frequency (ωm) for sample x = 0.0125 lies in the range of 6 to 7 GHz, as shown in Fig. 13 and best 
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for C-band microwave frequency applications. On the other hand, it is clear from Fig. 13 that 

sample x=0.0375 has an operating microwave frequency (ωm) range 8 to 12 GHz, which is 

applicable for X-band microwave frequency applications.    

4   Conclusion          

 In this study, lanthanum doped Zn-Co-Cu soft ferrite powder were synthesized via the self-

igniting route. It was observed that the experimental lattice constant decreased except at x = 0.0375 

because of the larger radii of La3+ cations. It also found that crystallite size decreased except at x 

= 0.0375 and range of X-ray density (𝑑𝑋) was 5.31 ± 0.00266 to 5.44 ± 0.00272 g/cm3. Besides, 

the micrograph investigation shows the non-uniform size and shape of ferrite samples. UV-vis 

results revealed that more than one optical energy band gaps exist in the as-prepared samples, 

which is consistent with DC electrical resistivity at RT. LCR studies gave information about the 

dielectric behavior of the samples, and the values of energy loss decreased with an increasing 

frequency. La-doped Zn-Co-Cu samples showed a ferroelectric nature confirmed by the P-E loops. 

M-H loops indicated that “MS” has a maximum value at x = 0.0375. The microwave frequency 

response for La-doped Zn-Co-Cu ferrite samples x=0.0125 and x=0.0375 in the microwave 

frequency range region determined using the magnetization (MS). The calculated values of 

operating microwave frequency (ωm) for x = 0.0375 lies in the range of 8 to 12 GHz, which would 

be applicable for X-band microwave frequency applications.       
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