UNIVERSITY OF LEEDS

| university consortium
/‘ Universities of Leeds, Sheffield & York

% & $ () * +*,-& &' $ . & /)10 1
"2 $2 34 $5 ( (( (5% 6333
6 ( 7 4& /0 8,*8 6779
1, *+)1)
5 () L.
:,) 16333 ; 4 $&1 1 $ 1 < 6333
4 ; 4 4 $;4 463334 1
1 $ & 4% & $ ( (1
4 $= ( 4 & = &
$ 1 = & $ 4
$$ $ 1 > * o=
64% $ $1 (& ( =$
$ $ 41% $$% $ = $& 4 $1
( 1 ( $ 4 $ $ *
@ = $ $1 4
4
6 $ 1 1 & 1
4 (7 $ ( $3 $ <
\ White Rose ]



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. X, 2015 1

Robust Vehicle Detection and Distance Estimation
Under Challenging Lighting Conditions

Mahdi Rezaéi, Member IEEE Mutsuhiro Teraucki Member IEEE and Reinhard Kletfe
! Department of Computer Science, The University of Auckland, New Zealand
2 Department of Psychology, Hiroshima International University, Japan
3 School of Engineering, EEE Department, Auckland University of Technology, New Zealand

Abstract—Avoiding high computational costs and calibration Monocular vision-based solutions are a strategy-of-choice
issues involved in stereo-vision based algorithms, this article if stereo vision, Lidar, or a radar fusion is not possib|e or not

proposes real-time monocular-vision based techniques for simul- ¢t effective, for example in consumer-level mobile devices
taneous vehicle detection and inter-vehicle distance estimation,
such as smart phones [11].

in which the performance and robustness of the system remain ! M )
competitive, even for highly challenging benchmark datasets. Regarding vision-based methodologies [12], current re-
The paper develops a collision warning system by detecting search addresses subjects such as vehicle detection based on
vehicles ahead, and by identifying safety distances to assist aanalysing shadow underneath a vehicle [13], [14], stereo vision
distracted driver, prior to occurrence of an imminent crash. We 14 estimate distances between t#go-vehicle(i.e. the car the
introduce adaptive global Haar-like features for vehicle detection, . .o .
tail-light segmentation, virtual symmetry detection, inter-vehicle system is operating in) and obs_,tacles_[15], [16], optl_cal ow-
distance estimation, as well as an ef cient single-sensor multi- Pased methods to detect moving objects and vehicles [17],
feature fusion technique to enhance the accuracy and robustnessapplication of local binary patterns (LBP) [18], [19], or of
of our algorithm. The proposed algorithm is able to detect Haar-like features [20], [21], [22]. Haar-like features are

vehicles ahead both at day or night, and also for short- and hamed after the wavelets of the Haar transform [23], and
long-range distances. Experimental results under various weather h ft Il theri feat in thi ’

and lighting conditions (includir_lg sunny, rainy, foggy, or snowy) ereaher we ca . ermaar e_a uresin . IS p"?‘p_er-

show that the proposed algorithm outperforms state-of-the-art In the next section, we brie y describe vision-based tech-

algorithms. nigues when reviewing related work. Although we use only a
monocular vision sensor for the research reported in this paper,
we introduce an accurate, real-time, and effective vehicle-

. INTRODUCTION detection algorithm to prevent imminent accidents under vari-
EAR-END crashes mainly occur due to driver distracsus conditions (described in [24] aguations e.g. day, night,
tion, drowsiness, or fatigue when a driver fails to keep fain, and so forth), also dealing successfully with image noise.
safe distance from the lead vehicle(s). According to statisticsOur algorithm is designed by following two fundamental
published in 2012 about traf c safety in the USA, a signi canhypothesizes(A) the idea that despite of vehicles' make,
percentage of all traf ¢ accidents involves rear-end crashes [bhodel, or colour, all vehicles at a far distance (Fig. 1, left) have

The cited study considers 19 categories of crashes suchstmilar features and appearances in common, including occlu-

rear-end, head-on, guard-rail, crash with animal, crash wiion edges between vehicle and road background, different

pedestrians, or rollover, plus their rate of contribution in termight re ectance patterns on the rear wind-shield compared to
of total number of accidents, fatalities, injuries, and propertie body of a vehicle, a tendency towards a rectangular shape
loss. Although rear-end collisions show a moderate rate of the vehicle, and a visible shadow-bar under the vehicle's

5.6% fatalities compared to the other 18 types of crashesyéar bumper(B) for short distances, the situation is different

represents the highest rate of injuries (30.9%), and also tffég. 1, right); here, a vehicle shows more details and higher

highest percentage of property loss (32.9%) among all typeesolution which can be a signi cantly different appearance to
of road accidents in the USA at the reported time. other vehicles, different design and body style, different shape
By maintaining early vehicle detection and warning, iof bumpers, or different tail-light shapes.

is possible to provide more time for a distracted driver to To the best of our knowledge, there is not yet any research

take an appropriate action to resolve driving con icts, anteported on monocular vision for the detection of vehicles

consequently to decrease the possibility of rear-end crashdsging very close in critical traf ¢ scenes; for example, where

Various active safety systems and algorithms have beanvehicle suddenly joins in at an intersection, or due to a
developed by using computer-vision techniques [2], [3], iprevious occlusion. For such close-distance cases, despite the
particular stereo-vision based techniques [4] which still havéde variety of vehicle appearances, all those vehicles still
some remaining accuracy issues [5], Lidar [6], [7] which caadhere to some common features:

provide accurate range information (however, cost and sparsd) a high likelihood of a tail-light pairing;

data collection still appears as a critical issue), or a fusion2) a constrained geometrical relationship between the size

of multiple sensors such as radar and vision [8], [9], [10] to and the distance of light pairs;

combine the strength of individual sensors. 3) red-colour spectrum range for brake- and tail-lights.
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Fig. 1. Left: Far vehicles appearing as plain rectangles, with a shadow underneath the VRhjble A close vehicle with multiple edges, shadows, and
complicated features and details.

The paper proposes a novel hierarchical algorithm that is cafjgr complicated road scenes, or from very expensive com-
ble of detecting vehicles both at far and close distances, wijthtational cost. This makes many of the introduced driver
a substantial improvement in terms of true-positive detecti@ssistance system to be non-realistic and impractical.

rate, and a lower false-positive alarm rate. The paper ispd Related Work

signi cant extension of the conference publication [25]. . . . .
Figure 2 outlines the main idea of our approach. An Santos and Correia [26] use a vehicle detection technique

“adaptive global” boosted classi er, using a novel type of Ha a}ftgr( ?gﬁﬁ%rzg?nd SaUts)tt;?iitlngrvbeailﬁaer?cgnc:;r:e?Ztlr‘lr'ﬁitsec; ('r:g:‘é)h
features, provides initial regions of interest which are furth ACKY 9 ' bp

analysed by “feature detection” and “data fusion” techniqu & effective in cases such as a parking lot with already

for eliminating false-positives as well as retrieval of false@nalysed parking background; it is not suitable for unknown

negatives environments or real-world roads.

The paper is organized as follows: Section Il reviews '[heQMaIIey et al. [27] use §|mple thresholding for red.and
state-of-the-art and related works done so far. A recen ite c_olour_s to detect taillights. They assume that ta|l_and
proposed variant of Haar features is adapted for vehi ake lights in darkness tend to appear as white spots in the

}deo output, surrounded by a red halo region. We consider

detection in Section lll. Section IV discusses line and corn at this assumption is not necessarily true. as current cameras
feature analysis for improvement of the detection accuracy. P y ' :
ave auto-exposure control, so they do not capture a white

In Section V, a virtual symmetry detection method is intro- . ) .
duced for tail-light pairing. In Section VI, a comprehensiv entral spot in case of a red light. A second weakness is that
’ is approach only works for night conditions, and a third

multi-data fusion solution model is provided for nal vehicle . .

detection based on the Dempster-Shafer theory. The pa & knes; 1S that_the method only works for the-detec'uo-n of

continues with using detection results for distance estimati %"q vehicles which are levelled to the ego-vehicle; a ftilted
Meh|cle (e.g. due to a road ramp, road surface at a curve, or

in Section VII. Section VIII provides experimental results an . )
Section IX concludes. \;vgsrré;g;mng at a round-about) cannot be detected by this

Il. RELATED WORK AND CONTRIBUTIONS Choi [17] proposes an optical ow-based vehicle-detection

Computer vision-based methods for detecting and localizing ethod; however, there are many missing detections if the

vehicles on the road often suffer either from lack of robustnerB lative speed between ego-vehicle and the Qbserved vehicle
ecomes close to zero, or the road has a plain texture.

$GDSWLYH JOREDO FODVVL:HU Very recent work by Garcia et al. _[9] proposes a .fusmn
technique using radar and optical ow information. While the
)DOVH SRVLWILYH radar sensor can have multiple detections for the same vehicle,

YDOVH QHJDWLYH

the optical ow technique can only detect overtaking vehicles
with considerable velocity differences compared to the ego-
(Gf:D?NQXGI,ES vehicle, thus there is the same weakness as in the proposed
method in [17].
Haselhoff et al. [10] use a radar sensor to minimize the

region of interes{ROI) for a detection based on standard Haar
features. This can lead to less false-positives; however, there

appear to be many weaknesses such as time synchronization
» '"HPSVWHU 6KRTHU IXVL i el i H
9LUWXDO i FPHU : issues for radar and vision sensor, or the increasing cost for
LQIRUPDWLRQ the system.
Another work by Haselhoff et al. [28] introduces a technique
9HKLFOH GH using Haar and triangular features. Reported results indicate

'LVWDQFH H

improvements compared to a standard detector using Haar
Fig. 2. Brief outline of the proposed detection algorithm, which combinefseatures only. Nqnetheless, r!o Va“da“?_” tests and experiments
a detection of candidate regions using new types of Haar features withiave been considered for night conditions or for other chal-

subsequent analysis of those regions. lenging lighting situations.
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Huang and Barth [29], and Premebida et al. [6] fuse Lidar
data with vision sensor data. The Lidar sensor provides high-
resolution but sparse range information with limited perfor-
mance for object recognition; regarding the vision sensor,
vehicle detection is based on Haar features within a prede ned
ROI calculated in the Lidar data. Such a fusion approach can
increase the certainty of the detection compared to a single
vision sensor. However, a classi er based on standard Haar
features may easily fail in dark, noisy, or other non-ideal
lighting situations. Therefore, for such cases, Lidar data could
also not help for proper detection in the reported work.

Ali and Afghani [13], and Han et al.[14] provide shadowFig. 4. Unavoidable inaccuracy for objects’ boundary calculation based on
based vehicle detection. However, shadows alone are R method (32
credible indicators for the existence of a vehicle. A vehicle's
shadow varies in size and position; low sun may cause a o
shadow, often much longer than the vehicle's actual width, afh
it falls to the side of the vehicle. This de nes challenges fof
the use of shadows underneath a vehicle. Figure 3 iIIustraPﬁ
an example of inaccurate vehicle detection biased by a sha

which is falling to the left. On uneven roads (e.g. up-hill) th . ) .
shadow underneath a vehicle is often not visible at all. robust approach is a basic essential for any ADAS.

Nguyen et al. [4] use stereo vision and a genetic algorithm; The histogram of oriented gradientHoG) is a common

Toulminet et al. [15] use stereo vision and 3-dimension¥{@y to derive a descriptor for a bounding box of an object

(3D) features. Both methods take the advantage of demndidate [33], and has also been tested for rear-view vehicle

information and apply inverse perspective mapping. Howev&?t?Ction_ by Arospide et al_. [34]. The authors have claimed
the reported feature detection does not support accurate - inefciency of symmetric-based approaches for vehicle

tinguishing of vehicles from other objects (i.e. false-positivedEtection, which is in consistence with our research (that is
at night or in complicated road scenes. why we propose theirtual symmetrytechnique in Section V-E

Vargas et al. [30] provide a vehicle detection system usif§ &" alternative for symmetric-based approaches). The authors

sigma-delta-based background subtraction to separate moViRy€ lso reported a detection rate of up to 90% for an HoG-
vehicles (foreground) from the road (background). The recorg@Sed algorithm under daylight condition. This is far below
ing camera is xed (not on a mobile platform). The metho an what we propose in this paper m_terms of both detection
is simple and computationally cost effective. It appears to @€ and the complexity of our experimental database under
well-suited for traf ¢ density monitoring. However, the methodnulti-weather and various lighting conditions.
is not able to identify individual vehicles. One of the other important points that has been neglected in
The state-of-the-art general purpose object detection algdost all related works is that the appearance of a vehicle can
rithm based on deformable part models (DPM) [31], [32}ighly vary depending on the distance between the observer
suffers from inaccurate bounding-box calculation (suppos@fd the detected vehicle (Fig. 1). This challenge cannot be
to indicate the object's actual boundary), and from very higplved by rotation-invariant or scale-invariant methods, as
computational costs (typically about 2 seconds per image Bl appearance of a vehicle at close distance (i.e. a few
a current powerful PC-platform). Both weaknesses can not Beters) look completely different to a vehicle’s appearance at
ignored in an ADAS application. Figure 4 shows examples g distance of e.g. 1061. Thus, relying on a generic solution
inaccurate bounding box detection based on the DPM.  for vehicle detection for both short- and long-distances appears
to be hard to achieve and non-realistic.
B. Contributions As discussed, there are many publications on general object
In Section IV we discuss the importance of accuraf@®tection or tracking approaches that are baseldaal binary

bounding-box calculations as an essential requirement Rftterns(LBP) or Haar wavelet classi cation; however, not
many of them can be suitable for highly dynamic and real-

time applications such as vehicle surveillance or monitoring.
We actually need to incorporate domain speci c information
from road conditions or vehicles' characteristics to prevent
false alarms or missing true detections.

In order to detect vehicles ahead, we use a monocular
forward-facing camera that is deployed on the back of the
rear-view mirror. The objective is to detect multiple vehicles
in a road scene using multiple data clues captured by a single

camera. We also propose a solution for distance estimation
Fig. 3. Inaccurate vehicle detection based on underneath shadow. Source:[3g&lng a monocular camera.

per inter-vehicle distance estimation. Also, the high dy-
mic nature of driving, and permanent risks of a crash,
ith possible injuries or fatalities, require processing times
only few milliseconds per frame. Although ofine or

yed processing is acceptable in many computer vision
ased applications, implementation of a real-time, feasible, and
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Challenges that need to be carefully considered are variation
in illumination, transition from a sunny scene into shade or a
tunnel, light re ections, vehicle occlusions, various lights at B —
night, and the diversity of vehicle types, makes, and models.|
This creates a high level of complexity which makes feature
extraction and vehicle detection as an extremely dif cult and &
unstable task; if the developed methodologies are designed fo :
ideal indoor conditions [35].

Different to other work that puts more efforts into a single
solution for vehicle detection, we propose a data fusion
approach using edge and corner features in conjunction with
0_ur n_OVEI boosted class! er calleadaptive global Haar glas— Fig. 5. Left A sliding window with three local Haar featureRight At
si cation (AGHaar) that is able to detect far-away vehicles at given window position, a local Haar feature (de ned by white and black
low resolution, and also high-detail vehicles, altogether in regionsA andB) extends_into two global Haar feat_ures by comparing with
range of about 15 to 100 (like Fig.1, left). the sum of image values in the whole reference window.

We also fuse temporal and dynamic intensity information
and a complementary technique calleidtual symmetry de- nearly uniform intensities on a road surface (e.g. when there
tection (VSD), that covers vehicle detection at very shof nO other object shown in the reference window), or a nearly
distances (as close amJ_ to the ego_vehic'e’ even when thé:onstant intensity of a vehicle (eg if a vehicle OVerIapS the
recorded vehicle occupies the major area of the input sequef@igrence window).

(like Fig.1, right).

After the vehicle-detection phase, we perform monocul@. Dynamic Global Haar Features
distance estimation based on a hybrid method combining op
tions inherent to dird's eye viewwith pose-based trigonom-
etry, to be discussed in Section VII.

%

60LGLQJ ZLQGRZ

‘Based on the method proposed in the previous section, the
current local feature is now accompanied by two global feature
values, to be used in a weak classi er of the cascade for a
given sliding window. In thedynamic versiorof global Haar

I11. ADAPTIVE GLOBAL HAAR CLASSIFIER features, we updatg by
In this section we introduce two techniques to improve the js¢=n
performance of traditional cascaded classi ers. By extending Fg= F + w b) 1)

our previous work, originally developed for face and eye

classi cation [37], [38], we propose a vehicle classi er which h is the total b f local H like feat ;
is adaptivewith respect to fast intensity changes and extrerrs(éH eren 1s the fotal number ot local Haar-iike features in

i=1

lighting conditions to ensure successful vehicle detectiont £ given weak classier, andl is the current index of the
day or night, also under challenging lighting. Furthermord'°° ;
we develop a new training phase to create a boosted casc%](?empUt windows progress through the cascade, the value of

of weak classi ers based on recently proposgldbal Haar IS updated toFq usi_n g the global features. We call those
feature$36], as an efcient complement for standard HaaPy”aT“'C global Haar-hke‘gatures. .
Using a boosting algorithm, we can train a cascaded clas-

features. Both contributions together lead tfasterandmore . =~ hich h K classi 0 b ed
accurateclassi er, outperforming the standard classi ers. Sterin which each weax classi er can aiso be accompanie
by corresponding global Haar features.

Considering a 50% rejection rate for each stage (each weak

A. Global Haar Features classi gg), 98.4% of non-objects are rejected within the rst six

Inspired by ideas in [39], Haar features are widely used fstageg ﬁzl 0:5" = 0:984). This means, having a minimized
solving various object-detection problems (e.g., [40], [22]humber of features in the rst six stages plays a crucial rule
The value of such a local feature is de ned by a weighte.e. the smaller the number of features in the rst six stages,
difference of image values imhite or black rectangular the faster the classi er).
windows ef ciently calculated by using an integral image [41]. Figure 6-bottom illustrates the case where we trained our

We introduce the new concept gfobal Haar featuresto classi er with both standard and global Haar features. The
be used in conjunction with local features. For any given locagure shows a 33.5% decrease in the total number of features
Haar featurd , we de ne two global Haar features as followsused in comparison to a standard trained classi er (i.e. this
Letw; andh be integral values in white and black regions oélso means a 33.5% speed bene t). Similarly, we experienced
a given Haar classi er, respectively; thus,= w; b is the a 32.2% faster performance within the rst six stages.

obal feature being assessed. Based on the Equation 1, as

Haar-feature's value. Positive effects are not limited on saving computation time.

We de ne global Haar features iy, = F w; andF, =  Surprisingly (at a rst glance), we also experienced more
F b, whereF is the integral value of the whole slidingaccurate vehicle detection and non-vehicle rejection results.
window in the search image (Fig. 5). Analysing the situation, this actually makes sense: The new

With the global features we extract global intensity informasained classi er is now more con dent by using both local
tion for the sliding window, which can represent, for examplend global intensity analysis within the sliding window.
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> - Algorithm 1 Learning weak classiers by using local and
2 _\ dynamic global Haar features.
z \ =6WDQGDUG ORFDO }DDU OLN Mkl Input: N, positive samplesN, negative samples.
. e TR s Initialisation : Let F, = Fp = F, whereF is the sum of
- ) oo . -
o | [ intensities in the whole window. Lé¢ = 1.
z -\‘ Output G ) R G G W))

- il Ay ind thek® local weak classi er K with thresholdT) =

o "] f’] -] M (w;  h); wheremy is the total number of local

) features in the&k'" classi er.

4ODVVLLHU VWDIHV 2: Find the next(k + 1™") weak classier [;

> 3: Find thek™ pair of global weak classiers  and X,
2 L [F0bPLF SoREbO tHOWxUHY corresponding to the black and irtne parts of the local
2 _[l=/RFDO IHDWXUHV Haar fgature respectively; s&f = % (F, b), and
: B Tk = 1 (Fw  wi);
= i AN A7 bty 4: Dkeclzlde to choose best classi er(s) amang), ( ¥), and
@ . +
- ‘L 5: if a global classi er is selectethen

- '”FDW ﬁ‘vi i I 6: update the values d¥,, andFy, as:F, = Fy + Wi, Fp =

4 r‘i ‘i ’ | 1 Fb b
&ODVVLLHU VWDJIHV 7: Setk = k+ 1, nd the next local weak classi er,";

8: Go to Step 3;

Fig. 6. Total number of features used in a standard Haar-like classi er versus
a trained classi er based on both standard and global Haar-like features. 9: €lse

10: k = k+1; add K to the cascade and search for next local
weak classier [+ ;

. . . . . 11: Go to Step 3;
In this section we provide the details of the training algos,. end if

rithm. It is a common practice that every stage of a cascaded
classi er should reject 50% of the negative samples which
passed the previous stage of the cascade, while the trgarameters are: initial sliding window size (SWS), scale factor
detection rate remains close to optimal. For the used log&F) which species the rate by which SWS increases in
Haar features we decide on a case-by-case basis whethereweh new iteration of the search, and the minimum number
also include the corresponding global Haar features. of neighbours (MNN) which is required to con rm multiple
One approach is preservation of the current global featuigighbour detections as a single object.
and a search for the next local feature, without considering theln a recent study for eye and face detection under chal-
effect of the current global feature. If a candidate global featuignging conditions [38], it is mentioned that even for the
shows a better rejection rate then it is ef cient to choose theime trained classi er there are no constant and optimal
candidate feature as the desired global feature, then searchpfgiameters; the parameters can be highly different depending
the next local feature. Also, if rejection rates become equal h the mean intensity of a scene and the nature of the query
near to equal, global features are preferred. object. We apply a similar approach for dynamically analyzing
For pseudocode for learning a cascade, see Algorithmthe intensity of the road and the sky to pursue ef cient vehicle
Applying the learning process, the following weak classi ergletection both in day or night; see Fig. 7 for an illustration.
are obtained, where the paifst; &) denote global features: |nstead of assigning xed values for SWS, SF and MNN,
_____ n. we decide for having those parameters to be time variant and
SHE TV GG ) 2) adaptive depending on the overall intensity of the current input

We observed that when not using dynamic global featurdsame and temporal information. For example, for low light
the number of global features selected during a cascade de&igRditions the MNN should have a smaller value than for ideal
is insigni cant, so their effect is not noticeable. By using théighting conditions, because a classi er has a reduced chance
dynamic global features, the number of global features selecf@fdmultiple object detections under dark conditions than for
was noticeable and signi cantly improved the performancéay (ideal) light conditions. The question to be answered
of our detector in terms of detection rate, average numbéggnains that what should be our reference for measuring the
of features in a window, and early false-alarm rejectio®verall light intensity in an input frame?

Consequently, this improvement also results in a speed-up. Considering a dynamic and complex road scene with dif-
ferent intensities due to sun, street lights, vehicles' lights,

. ) driving below trees, traf ¢ lights, as well as shadows from
D. Classier's Parameter Adaptation moving vehicles, trees, or traf ¢ signs, we need to determine
In addition to parameters that affect the training phase oftlae condition we are driving e.g., on a sunny day, in a tunnel,
classi er, there are also parameters which need to be de nadnight, or in the shade.
during the execution (running step) of a classi er. The main To assess the road intensity, we cannot simply use the mean

C. Boosted Cascade
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Fig. 7. Intensity measurements for road and sky regions under day or night conditions.

intensity of the input sequences. Figure 7 illustrates how vidue segmentation (bottom, right) shows regions around the
deal with intensity analysis by segmenting a road scene irdtreet lights, instead of being light-blue as the sky in general.
two parts- “sky” and “road”. On the other hand, the measuremenBinsupports accurate
After analysing mean intensity and standard deviation segmentation of the sky shown as the light-blue segment.
1680 road and sky segments from 280 diverse samples of roadhe mode pixel valudi.e. the pixel value with the highest
scenes, taken under different weather and lighting conditiofiiequency of repetition ir§; [ S;) determines which of the
we noticed that the top 5% of the sky region, and the bottoresulting segments (i.e. light-blue or dark-blue) is a better
5% of the road region normally provide acceptable intensitgpresentative of the sky intensity. By assigninga value
information about the whole scene, which also falls within thef 0.66, we consider aouble importance factorfor the
given intensity standard deviation. detected mode intensity compared to a standard mean; this
Therefore, for any unknown scene, we apply 4-point ireonsequently reduces the negative impact of any inappropriate
tensity sampling at the expected sky and road regions, as pegmentation. In other words, for the night scene shown at the
sampling region§; andS;, andR, andR; shown is Figure 7. bottom of Fig. 7, the nal value ofs( ) is automatically much
We use20 h=20andw=20 20 patches wherer andh denote closer to the intensity of light-blue segments rather than to that
the width and height of the input sequence, respectively. Theri,the dark-blue segments. A similar approach is applied for
depending on the identi ed lighting situation (e.g. day, nightyoad background intensity evaluation,( ), which is shown
we can adaptively adjust the classi er parameters for moby dark- and light-green segments.
ef cient vehicle detection. As a nal stage for de ning the adaptive Haar-feature based
Since a strong re ection spot, street lights, or a very damdtetector, we experimentally adjusted 10 sets of optimized
shadow may fall in one or a few of those four patches, walues for classi er parameters SWS, SF, and MNN based on
applied a hybrid intensity averaging including standaréan 10 intensity values ofs( ) andl( ) for the upper (sky) and
and mode(Mo) to make sure we are measuring a balance ffwer (road) part of the test video sequentd@sis parameter
actual intensity in the whole scene as per below: adaptation is then extended for the whole intensity range of
) ! 256 values based on a cubic interpolation [42].

1 1 xno
) = 5 mes)r )T g
0 =113 IV. LINE AND CORNERFEATURES

@ @a ) A5 Using the same training dataset, we created three vehicle

+ MdS; ) + n_ St () classiers using LBP, Standard Haar, and AGHaar features.

=1 The training dataset contained 4,637 rear-view annotated ve-

wherels( ) is the hybrid intensity value of theky region, hicles from 1932 frames extracted from Caltech dataset [43],
andm andn are the total numbers of pixels & andS,. ~ MIT CBCL database [44], EPFL dataset [45], and KITTI

Figure 7, on the right, shows the obtained segments of tataset [46]. Samples of vehicle detections are shown in
sky and road. Dark-blue and light-blue segments are detecfdgure 8. The proposed AGHaar classier provides more
based on mean intensity measurement$0and S;, with a accurate vehicle detection, clearly outperforming LBP and
variation of 10. Similarly, the green segments show the roagfandard Haar classi ers. However, we still consider those
surface based oR, andR; . initial detections by AGHaar as beingehicle candidate®r

In the shown example of a night scene (Figure 7 bottoffC!S only. In order to have even more accurate results (i.e.

left), despite an expectation of dark pixels, some bright pixels
) P P P gnt p Linstead of 10, it could be a larger number of sets. The more sets the better

fall into the § _region; this in uenced our mean'intenSitythe interpolation results. The number 10 proved to be suf cient for obtaining
measurement via the left patch of the sky; consequently, a darkmooth and acceptable interpolation.
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|6WDQGDUG +DDU

T=ANE 4 ! - —ﬁ- -80 -60 10 20 0 20 0 60 80

Fig. 9. Edge pixels of a sample road scene mapped into thepace. The
accumulator values are shown using a colour key where dark-blue is for zero,
red is for high values, and light-blue for low positive values.

the number of horizontal lines is considerably higher than the
number of lines into other directions. For detecting horizontal
linesy const we de ne tworanges of interesfor

1 90 90

2: 90 < 90 +

| $*+DDU $*+DDU

Note that because is considered in PPHT for positive and
Fig. 8. Samples of vehicle detection based on LBP, Standard Haar, zmegative values, is only in the range between90 to +90 .
AGHaar classi cation. Mapping back from Hough space to Cartesian space, Fig-
ure 10-right shows detected horizontal lines for the road scene
less false-positives) we continue our evaluation by analysiggeady used for Fig. 9. As illustrated, we can expect one or
line and corner features before con rming a ROl is a vehiclgnore horizontal lines for every visible vehicle in a road scene.

A. Horizontal Edges B. Feature-Point Detection

Instead of (e.g.) shadow analysis as illustrated in Fig. 3, WeFigure 10, right, also illustrates that there might be a few
take parallel horizontal edgesto account as a more credibleore horizontal lines which do not belong to vehicles, for
feature for pointing to a possible existence of a vehicle iékample due to shadows (of vehicles or trees), clouds, or
a ROI. We hypothesise that horizontal edge features can R@iangular traf ¢ signs (e.g. large boards). However, shaded
perceived due to depth differences between bumper and bogdyions or traf ¢ signs usually have a plain or simple tex-
of a vehicle, edges around a vehicle's registration plate, ffve in order to prevent false detections, we also considered
horizontal borders of wind-shields. analysing corner feature-points in the scene.

We apply theprogressive pro_bablllstlc H_ough tranfsform Our experimental studies indicate that vehicle regions have
(PPHT) [47] for fast and real-time detection of horizontayically a much higher density of corner-points comparing to
lines only. The PPHT was designed following te@andard e road, sky, or other background regions (Fig. 11). The visual
Hough transform(SHT) as introduced by Duda and Harlomplexity of a car's rear-view is de ned by combinations
[48]. Detected edge pixels iry-space are transformed intosf 5 registration plate, tail-lights, a bumper, and the vehicle
curves in theHough spacein its discrete version known aSpody. This complexity de nes typically signi cant corners for
accumulator space _ _ _ a vehicle, especially at regions below the back wind-shield.

In case of the PPHT, a voting scheme is applied to tackIeAmong developed feature point detectors such as
the high computational cost of the SHT. While in the SHEAgT [51], ORB [52], or FREAK [53], we obtained
all edge pixels are mapped into the accumulator space, fig pest performance with thshi-Tomasimethod [54] for

PPHT only votes based on a fraction of randomly select%tectmg “appropriate” corner points in our road scene
pixels. There is one voting bin for each line candidate, a”da%plication context.

minimum number of pixels (i.e. of votes) is considered as a
threshold for detecting a line. For shorter lines a higher spatial
density of supporting pixels is required, while for longer lines
less spatial density of supporting pixels is suf cient. Overall |
the PPHT ensures much faster line detection while results a
almost equal in accuracy with those obtained by SHT [49]. S
Figure 9 shows a real sample of an accumulator space for,
road scene. The gure illustrates that high accumulator value
(red regions) are close to the leftmost or rightmost border a
around 90 or +90 . This conrms for a road scene thatFig. 10. Horizontal line detection by our customized PPHT.




IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. X, 2015 8

classi ers tries to learn a limited number of (e.g. gray-level
Haar) features among a training database in order to detect the
given object (e.g. a vehicle).

That is why the classi ers can be more ef cient for medium-
and far-distances because all vehicles at such distances look
like similar as a rectangular patch with a few “limited” and
“common” features, like windscreen rectangle part at top,
rectangular lights on the vehicle leftmost and rightmost sides,
or a bumper in the lower body part.

If we look at vehicles at relatively far distances, due to

- missing resolution all vehicles look like a plain rectangle
Fig. 11. Detected corner points are considerably more dense in vehicle's "§3th few common features. For such cases, our adaptive
regions. global Haar-feature based classier (Section Ill) is “highly
successful” in general, especially when combined with the
described lter using line and corner features.

However, for vehicles at close distance we have a different
situation. Figure 12 shows a close-up scene of two vehicles
as well as missing detections and false detections by Haar
and LBP classiers. Due to the high diversity in vehicle
makes and models, a close vehicle provides much more detail,
which can be completely different from one vehicle to another
vehicle. Such a huge diversity in details and resolution, and
inconsistency in vehicles' shape cannot be learned ef ciently
or handled by a classier; there would be numerous false
positives and false negatives.

Despite of the diversity in appearances of close vehicles,
we hypothesize that there are some common “geometrical
features” that all vehicles adhere to. Such geometrical features
) _ _ B _ ~ can not t as few binary features, template, or pattern, so are
o féafgg‘;‘e’ ddgte‘iggggﬁéi’ggi'f_%gf’sggg%e;teecctg:fsfor close-up vehiclgy applicable for training in e.g. a Haar-feature or LBP based

classi cation; however, we use them for the next step of our

Figure 11 shows the detected feature points. This methd prqachmrtual symmetry detecno(\/SD).
: : . ... Visible features for vehicles at close distance are
provides the expected results of higher feature point densmes1 Tail-light col Il vehicl to-red col
in lower parts of a vehicles' rear view, especially around the ) Tailight colours (all vehicles use a orange-to-red colour

registration plate, the bumper, tail-lights, or tires. ﬁ_peicltrl;]rp for tail; an:j _llarlgkhei-light); hicl ‘
So far we discussed three possible clues needed to con me) Tail-light symmetry (tail-lights in a vehicle are symmet-

an ROI as a vehicle: An initial AGHaar detection, horizontal ric with the same size and shape), . .
e3) Geometric relations (there are some inherent relation-

edges, and corner features in lower body part of a vehicle. W hios bet the si f hicle. the si fits light
use all these clues, In Section VI, to prevent false positives, ships between the size ot a venhicle, Ihe size o its Ights,
and the distance between the light-pairs).

hence more accurate detections. - : .
There are few publications about the analysis of tail-lights
V. DETECTION BASED ON TAIL -LIGHTS for vehicle detection. For example, O'Malley et al. [55]
In contrast to the previous section that mainly focused (g)nropose a methoq to detect vehlclgs based on the symme’Fry of
rear red lights using cross correlation for symmetry detection.

methods for preventing false-positives, this section proposeé{&,\/e\/er their method is speci cally developed to detect

method to retrieve missing true detections when applying t &hicles under night conditions, and symmetry detection using

AGHaar method. Any classi cation technique not only r'eedgross correlation only works if the recording camera in the

to be robust for detecting vehicles being at a medium to fg%)-vehicle is exactly behind the target vehicle to ensure

B

distance to the ego-vehicle, it also needs to deal with CaskSiple symmetry of the lights

where a vehicle suddenly appears very close to the front Orhis should not be neglected that vehicles in other lanes
the ego-vehicle (e.g. at a road intersection, or afteratempor%%ear at different poses and angles to the recording cam-
occlusion). TaiI—_Iight features provide very robus_t support foéra; therefore the rear lights of the same vehicle cannot be
very close to mid-range distance vehicle detections. necessarily seen symmetric. Similarly, for many vehicle poses
. ) (e.g., Figure 12, bottom), the width of the left tail-light is not

A. Discussion visually equal to the width of the right light.

Generally a trained classi er can detect the vehicles which In consequence, methods that rely on “actual symmetry
have similar appearance-features to the training database datection” often fail in real-world scenarios. In order to cope
ages. A strong classi er which is made up of cascade of wealkth this issue, we apply our VSD approach.
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Fig. 13. Extracted colour pixels from the vehicle taillight databasét HSV conical scatter plotRight Top view on this 3D plot.

B. Colour Spectrum Analysis Fig. 14.F illustrate tail-light pairing and the approximation of

Pursuing the idea of virtual Symmetry detection’ we Créhe vehicle r.egion, two procedures to be discussed in the next
ated a database of 482 images from tail-lights, brake-lighf/0 subsections.
indicator-lights, all either in the status of being on or off,
under day or night conditions. We converted images frof. Taillight Pairing by Template Matching
RGB to HSV colour space for a better representation of rear-Before describing tail-light pairing based on the VSD
light pixel colour characteristics. Figure 13 illustrates that th@ethod, we rst discuss potential weaknesses of other methods
vehicles' rear-light pixel values are scattered in a wide ranggych as symmetry detection based on template matching (as
from light orange to dark red. This indicates a need for carefyked in a recent work by Gu and Lee [58]), for a better
considerations, in order to prevent mis-segmentation. highlight of the strength of our VSD method.

Due to noise in the database images, some pink, black, andlet T be a detected tail-light contour in an  n window,
yellowish pixels can be seen in the scatter plot (Fig. 13, tQRilled thetemplate We search in théd N imagel for a
view) which are actually do not belong to tail-light pixelscontour which is similar in shape to the horizontally ipped
Considering a Gaussian function for the colour pixel distrimage of T. As usual in template matching, for each location
bution in the scatter plot, and excluding the tailed-distributiofk; y) of T (i.e. the location of the topmost, leftmost point
pixels smaller than 2 or greater thart2 we remove noisy in T in |) we calculate aross-correlation scorede ning a
pixels that have very low density in the scatter plot. Figure 1@atrix R of size(M m+1) (N n+1). Location(x;y)
right, shows an optimized diagram that excludes noisy pixql$ R which containg.the cross-correlation score

with )
L (TH; (XY
1) a hue valueH 52 (i.e. light yellow pixels), R(XY) = gp—10I ( 0( J).r. i) @)
2) ahue valuH 342 (i.e. pink pixels), or i TG g 1AXisY)?
3) an intensity value/  0:16 (i.e. nearly black pixels). h . . _ : _ .
The rest of the pixel distribution in the scatter plot is con- erel oML xE X XI’ i=yrl
sidered to be valid for the tail-light segmentation procedure. T%j) = T(j) 1 T(h: k)
m n
h;k
C. Tail-light Segmentation o 1
Figure 14 shows the steps applied for segmentation and pair- Fxisy) = 1) n I (Xn; k)
h;k

ing of tail-lights. After conversion from RGB to HSV space
(Fig. 14, A), we apply pixel matching for all three channelgith1 h m,1 k n,x, = x+h,andy, = y+ k. We
based on information obtained from Figure 13 followed bglecided to use this particular cross-correlation method due to
binary thresholding (Fig. 14, B). its accuracy of matching and time performance in the given

Figure 14.C depicts detected isolated contours. We use chaimtext [59].
coding [56] for keeping the original accuracy of contours We slide the templat& over imagd by one pixel at a time,
compared to techniques using encoded contours [57]. Deft to right and top to bottom. For every one-pixel sliding, the
tections are simply based on 8-connected components in thatrix R returns a similarity metric by comparing tiséiding
thresholded image. patch(i.e., the templat& over the current sub-image).

Figure 14.D illustrates the applied procedure for lling Figure 15, upper right, illustrates the matfxas a correla-
the holes in the binary (thresholded) image, thus creatitign map for each position of query templ&teover| . Position
connected regions. This aims at detecting the actual regipny) in the upper-left corner of the patch corresponds to a
of tail-lights if there are missing pixels due to noise omatching value in the correlation map. The brighter a pixel is
illumination artefacts. at position(x; y), the higher is the level of similarity df to T

The shown bounding box illustrates the overall width andt that position. NormalizeR returns values between 0 and 1,
height of the detected group of contours. Figure 14.E aahd any values greater than 0.95 are considered to indicate a
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Fig. 14. (A) HSV conversion. (B) Binary thresholded image. (C) Individual contour detection and noise removal. (D) After hole lling. (E) Pairing and
vehicle approximation. (F) Final detection.

potential match for tail-light contour pairing. However, Fig. 15forming apair) if the following conditions are met:
bottom right, illustrates that the result of pairing is not accurate , )
because, due to the camera viewing angle, a pair of lights &+ JA(CI)  A(C)]
cannot always be seen as fully symmetric and equal in width o3 A+ AG)
and height. 2
2; 15 (Ck) 15; fork=1i;j
3 09 (W(C)+ W(G))
i X(C)  X(G))j

In this section we discuss on details of the VSD method. 5:3 (W(Ci)+ W(C)))
For thea = 6 detected sample contours in Fig. 14, D, there . ) . ; - )
are 22 = 64 different ways for pairing. However, only two of 4 mvi)zg)(c )WH((CC-:J))) 1:35 min(H (Co):H(G;))
those are correct pairs of tail-lightsb; @ andff;d g. 5: ! !

Furthermore, Fig. 14 illustrates that conto@isandC; of a H(C)  H(G)
pair of tail-lights can be asymmetric, of different width, or oivhere A(C) is the number of pixels in contou€ (i.e. area
different height. We cannot rely on a strict symmetry; insteadf C in pixels), W(C) andH (C) are width and height o€
we can de ne some geometrical rules based on statisti¢alpixels, X (C) is thex-coordinate of the centroid of, and
analysis on a rich dataset of tail-light images to manifest gC) is the angle of the main axis &.
virtual symmetryamong already detected contours. The rst condition is only true for contours which have more

Assessing 400 selected vehicle images from KITTI [60] arttian 70% similarity in terms of their area. Condition 2 allows
EPFL [45] dataset, and the measuring baseline size of tal-maximum of 15 degrees tilt for each of the two contours
lights, the ratio of tail-light's width and height, their mean(e.g. due to road angle; Figs. 15 and 16). With Condition 3,
sizes, variances and standard deviations, we identied wse make sure that the pair of contours has a baseline distance
optimized rules for virtual symmetry detection.

We considerC; and C; as beingvirtually symmetric(i.e.

E. Tail-light Pairing by Virtual Symmetry Detection

0:2

Fig. 16. Virtual symmetry detection (VSD) and tail-light pairing. An example
E L E of tilt an variation in size of the same light-pairs, depending on the camera
Fig. 15. Query template, correlation map, and template matching over tiwegle and road curvature.
input image.
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within the measured standard deviation range. By applying VI. DATA FUSION AND TEMPORAL INFORMATION
Condition 4 we check the height difference between the left __ , , i )

and right contour which should be less than 35% (as per thel i Section describes how to combine results obtained by
measured mean in the dataset). Finally, Condition 5 compaf%%Haar classi cation, horizontal lines, corner features, and

ratio of width to height of the contour-pair candidates thé&irtual symmetry detection. Figure 18 provides an illustration
could not be more than 0.2. (to be discussed further below). The ultimate goal is accurate

Figure 17 shows experimental results based on t(,i"_”g}z.?hicle detection. Since the obtained data are derived from a

pairing where Haar and LBP classi ers failed to detect thosi"dl€ sensor, obviously time-synchronized, and at the same
close distance cars. We consider a car region approximatRSe for the different processes, we take bene t of that for the
based on the distance between pairs of lights, taking Ieﬂ-m&vlt"data fus_lon Process. T_here_: is no need for time-alignment,
and right-most pixels of detected lights for de ning width. data registration, sensor validation, or other challenges that are

If multiple and parallel tail-lights are detected, such as igenerally involved in multi-sensor fusion techniques.

Fig. 14, E, a normalization is applied as below: We already showed that the novel AGHaar method alone
is robust enough in a majority of road scenarios. In order to

Xi =min fXjo;Xi1; 5 XK g Wi ensure an even more reliable detection, we apply data fusion

Xr =max fX o) XXk g+ W, for all the available evidences to detect a vehicle, same as

what a driver is doing while driving; for example if the full
. body of a vehicle is not visible in foggy weather, an expert
Yy = __bi=o Ybi driver may consider looking for a registration plate, tail-lights,
k ] ] ~__or other features of a vehicle to estimate its location and size.
where the valueg;; belong to the left \_/ertlcgl sides of initially Our fusion approach leads to more accurate results while
detected rectangles;i belong to the right sidey; belong t0 jncreasing computation cost only insigni cantly. This is not
the top-horizontal sidesys; belong to the bottom-horizontal hingering the real-time performance of the whole process.
sides, and = 0:2 considers a distance of0:2 W as the \ye considered two possible approaches for data fusion,
average left and right margin of the car sides from the taile)y the Bayesian and tHeempster-Shafef61] theory.
light pairs, based on the information obtained from the tWphe Bayesian method interprets weights of input entities as
datasets discussed above. __probabilities. The Dempster-Shafer theory (also caffezbry
. Any detection _that falls within a_nothgr .dete_cted_ regiogs pelief or D-S theoryfor short) assigns “masses” based
is ignored as being a false detection, if its size is Mucl,, b man expertise which only approximate the concept of
smaller than the larger region (e.g., Fig. 17.D). As per the,papijities. Since the Bayesian approach is based on “pure”
results shown in Fig. 17, our VSD method outperforms much_iictical analysis, you also need to be “pure” (i.e. very

more accurately and faster than the template matching methd. 4y on providing all statistical data for each source of

discussed in Section V.D. information. This, consequently, comes with the requirement

of a comprehensive initial database analysis among a wide
range of recorded videos from different roads scenes. If not

doing so, resulting inaccurate weight assignments can cause
completely wrong outcomes of data fusion [62].

In contrast to the Bayesian method, the D-S theory is well-
known for its effectiveness in expressing uncertain judgements
of experts by serving as an alternative method of modelling ev-
idence and uncertainty compared to the Bayesian probabilistic
approach. The D-S theory is based on two idéasDe ning
a degree of belief to identify “subjective probabilities” for a
related question, an(?) Dempster's rule to combine degrees
of belief from independent items of evidence.

By using the D-S theory as a data fusion solution for vehicle
detection, we not only consider two categories of “vehicle”
and “no-vehicle” but we also assign a degree of belief for
an “unknown” status. Considering a mass for the “unknown”
status we are adding a safety margin to prevent potentially
wrong detections. This automatically takes us to more rational
decisions based on a combination of information consensus
and human expertise; whereas in the Bayesian technique,
we only have two probability values (for “existing” or “not
existing”), but not a combination of both.

‘ ‘ In the considered context we experienced that a D-S theory-
— et I based fusion approach leads to more acceptable results, espe-
Fig. 17. Experimental results for tail-light segmentation and pairing. cially if we have incompleteness of information and a situation
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Fig. 18. A single-sensor multi-information fusion framework, showing examples of successful vehicle detection.

where the accuracy of each information source cannot e also have a 15% belief for false detections, and have
assured individually. no opinion in 10% of the cases (unknown assignment) due
Let = fT;NTg be the set representing the state db lack of knowledge or incompleteness of analysis. Table |
vehicle detection from each of the four available informatiosummarizes the masses identi ed based on the accuracy of the
sources described in Sections Il to V (i.e. AGHaar, virtusAGHaar-VSD classi cation in our ground-truth test dataset.
symmetry, corner features, and horizontal lines) wh&e Depending on size and distance of rectangular regions
represents that a target (vehicle) is detected, Miid stands selected by AGHaar as vehicle candidates, we expect a number
for non-target (non-vehicles). Each element in the power s#tcorners and horizontal lines that fall into the lower part of
2 =1f?;fTg fNTg; fT;NTg gis considered to be athe ROI if the candidate is actually a true positive (a vehicle).
proposition of the actual state of the vehicle detection systemThe closer value to the chosen threshold(as de ned
Based on the theory of evidence, a massis assigned for above), the higher the possibility of being conrmed as a
each elementi@ ,wherel i 3 stands for the three mainvehicle. In other words, if the numbers of detected corners and
information sources as follows= 1 is for AGHaar, combined horizontal lines is lower than the de ned threshold then the
with virtual symmetry (combination details are provided lateD-S framework decreases the level of belief by appropriately
in this section),i = 2 for corner features, and = 3 for decreasing the default massesnof (T) and ms(T), and, on
horizontal lines. Those three functions are also calledbasic the other hand, it increases, (NT) andms (NT) to reject
belief assignment®r information sources, 2, or 3, satisfying false candidates in the fusion process. However, manség)
andmz (U) remain always unchanged.

.o | - . .
mi:2 0] ®) Also, in order to prevent incorrect updatesrag and ms
with two properties: due to motion blur r_lois_e, we apply weighted averaging on
the masses by considering the masses allocated for the past
X mi(?) = n frames (e.g.n = 30 in the past second) to use temporal
mj (A) =1
A22

TABLE |
The massm; (A) represents the ratio of all relative and MASS ASSIGNMENTS FOR THREE SOURCES OF INFORMATION
available evidences that support the validity of stAtérom

Status  Source Inf;) Source 2 1fny) Source 31fn3)

thei™ information source. AGHaar/Sym.  Corner features  Horizontal lines
For example, considering AGHaar and a VSD combina- —7 75% 5506 65%
tion (AGHaar-VSD) as our main source of vehicle detection NT 15% 25% 20%
(Fig. 18, left), we considem; (T) = 0:75 m;(NT) =0:15, u 10% 20% 15%
and m; (U) = 0:1 which means that we have a belief into Total 100% 100% 100%

the true detection rate by AGHaar-VSD in 75% of all cases, Maximum mass value if features match with threshold
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information as well:
n

m= -pg L ®)
t=1 Mi

Values forn and ; may vary depending on the ego-vehicle's
speed.n varies between 5 and 30. In low speed scenarios
we apply a bps-based weighted averaging and in high speed
cases we apply a 8fs averaging to ensure we have accurate
averaging as the speed increasesis in the range of0; 1].
In high speed cases due to motion blur effect, we decrgase
and in low speed casesg increases towards 1.

Considering a processing of 30 frames per second, the
masses in the past few frames should remain almost close
to the actual updated values as per the previous step, or may
have only a 'smooth' change. Therefore, if a sudden change
happens in the current frame due to considerable noise (e.g.
intense light) then the weighted averaging contributes to the
masses from temporal information to maintain a moderated 3
mass for the current frame, as well. ‘

Considering the masses; as being the con dence value Fig. 19. Distance estimation based on bird's eye view.
in each element o2 , we measure the combined con dence
value my;».3(Z) by fusing information from Sources 1 to 3scene. However, after remapping the camera image into a 2D
based on Dempster's rule of combination: transformed domain we can have a distance estimate based
on homogeneously distributed pixel distances in the new 2D
transformed imaged. Figures 19 and 20 illustrate our distance

m1;2;3(Z) = (mlx my m3)(Z)

m1(A) my(B) m3(C) measurement techniques.
A\B\C=2Z %) Assuming an almost planar roqd surface, knowing the
1 A m1(A) mz(B) ms(C) camera optic parameters,_camera high, and camera angle, the
AVB\ C=- inverse perspective mappirftPM) can map the recorded im-

ages into aird's-eye view[63], approximating an orthogonal
where denotes the Orthogonal sum which is de ned byOp_down view of the scene. Figure 19 shows a mappn’]g
summing the mass product over all elements in the nuM@#- 3 recorded image into a bird's-eye view using 4-point
ator part whose intersections afe\ B\ C = Z, and the calibration [64] and our subsequent distance estimation.

denominator applies normalization in the range[@fl]; it  Measuring the pixel-distance from the target vehicle to the
shows the amount of conict when there is no intersectiogyo-vehicle in the bird's-eye view, and comparing it with
(no agreement) by those individual sources. a ground truth metric for the same camera parameters and

Figure 18 shows two examples of fusion results under raigymera installation, a distance estimation can be performed as
or sunny conditions based on Dempster's rule of combinatiof)ystrated in Fig. 19, b and c.
) ) . Recent work by Tuohy et al. [65] also considers a similar
Detections by AGHaar and VSD are technically independeghproach for distance estimation; however an important weak-
of each other; however, as discussed earlier, we combine thggs js neglected. We highlight this weakness as per Figure 19,
as information Source 1 in our D-S fusion platform. Thg considering the bottom side of a green bonding-box as
combination is represented by the logical symbol of "ORgyr distance reference, the bird's-eye view cannot precisely
in Fig. 18 and the same mass, in Table I. In case of an || ywhere the vehicle is located on the road; especially for
AGHaar failure (missing detections), VSD directly acts alongjsiances of more than 30 m such as the velWSdFig. 19,
with corner features and horizontal lines. In case of detectiops, tarther vehicle).
by both AGHaar and VSD for the same vehicle, we apply the gure shows that every single pixel in the recorded
the mean to de ne only one ROI per vehicle candidate, befofgyspective image needs to be mapped into multiple points in
going for data fusion with corner and horizontal edge features irq's eye view. This transformation involves interpolation.
_Overall, the de ned multi-clue data fusion approach prog evajuations show that the interpolation errors, as well as
vides more con dent detection as well as a reduced rate Qfors involved in 4-point calibration stage, cause a distance

false-negatives that may occur due to AGHaar failures.  ogtimation error up t8 = 8% This technique can be suit-
able for basic driver-assistance systems to prevent imminent
VII. INTER-VEHICLE DISTANCE ESTIMATION crashes; however, as the distance increases, the estimation

After having vehicles detected, the next step is to labelror can increase exponentially. We aimed at improving this
the identi ed ROIs by an estimate for their distance to th&echnique such that we have more accurate distance estimates
ego-vehicle. Using monocular vision only it is not possiblthan just using the bird's-eye view.
to directly obtain depth and distance information from a road As illustrated in Fig. 20, we have a forward looking camera
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Fig. 20. Real-world inter vehicle distance estimation based on pixel distance information in 2D image plane.

(close to the rear-view mirror), we know the camera eld-ofthe actualD value. This is the only known to us weakness
view de ned by angle , the heightH of the camera above of this approach. Weighted averaging on the bird's-eye view
road level, and the camera anglein X .Y.Z. coordinates. and the camera-pose-based trigopnometric solution is applied to
Assume a detected vehicle in the road scene at an (unknownyure a more reliable distance estimation. We provide further
position(Xw; Yw; Zw). Let  be the angle of a projection raydetails in the experimental Section VIII.A.
(for the camera) pointing to the intersection of the planar rear-
part appro>.<imation of the detected vehicle with the planar road VIIl. E XPERIMENTAL RESULTS
surface (Fig. 20, top). The actual distanbe between ego-
vehicle and preceding vehicle is equald® d; and can be  In this section we evaluate the performance of the proposed
computed as follows: vehicle detection and distance estimation techniques, for
various traf ¢ scenarios, weather conditions, as well as dif-
H La”( v) H tan() i cult lighting conditions.
H tan( o+ ) tan( ¢ =) (8) Unfortunately, there are only a few basic, publicly available
2 datasets useful for comparative performance evaluation, and
Knowing the . and values, only is needed to calculate the data are mainly recorded in daylight only (e.g. KITTI

D

D. On the other hand, we have that data), or from some elevated positions (such as from traf ¢
h; surveillance cameras) which is not applicable in this research.
tan( ) = ) do ©) We used the iROADS dataset, Set 10, Part 1 [66], which

f is recorded with an 0.7-megapixel camera (128@0), a

were h; is the height of the recorded image plane (in pixel
unit), d, is the distance from the bottom side of the detected
vehicle to the bottom of the image plane (also in pixel unit),

andf is the camera's focal length. Also we have that 4 [ Ground truth
® Trigonometry
h- 3 o Bird's-eeview”"”"”"'”””””””””””Eé 7777777777
f= 1 (10) i =
2 tan(=
(5) )
Finally, including andf in Equ. (8), the distanc® is E
completed as: ;
2 0 0 11 3
o ’ 1
> 4 : R
D = HRtanB . +tan —— tan( . E) 3 USROS T - ]
2 tan(E) ” ? 10 s 20 Dismisce(m) 30 3 20

If the ego-vehicle's shock absorbers vibrate on an uneveRg. 21. Distance estimation errors for the bird's-eye view technique or the
road thenH and may slightly change and negatively affectamera-pose-based trigonometric technique.
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Fig. 22. Samples of vehicle detection at close distance with four different approaches.

60 eld of view, and 30 fps recording rate, mounted onto 27m). The error level increases signi cantly (up to 9%) for
the back of a rear-view mirror in a car, with a camera tilthe bird's-eye view technique for far distances.
angle of . = 82 , and at a height of abou = 153 cm We identi ed two common sources of error for both ap-
above the road surface. Those parameters have been usegrfoaches, and a third source of error for the bird's-eye view
comparing ground truth information and distance estimatioapproach(1) The error of vehicle localization from the vehicle
We also considered sequences recorded in second pariclegsi er (detector);(2) changes in camera height due to
iROADS dataset [66], with different cameras in different traf cactivities of the vehicle shock absorber; a8l the error for
scenarios for vehicle detection. the bird's-eye view technique due to interpolation and 4-point
calibration errors as discussed in Section VII.

) ) o Dashed circles in Fig. 21 show errors which are consid-
A. Evaluations of Distance Estimation erably different to neighbours. Those cases occurred when

We compare distance estimation either based on bird's-gjx@ ego-vehicle performed sudden braking, or because of high
views, or by the proposed camera-pose-based trigonomeativities of the shock absorbers (i.e. changes in camera tilt
technique. angle and in heighH).

Japan has one of the highest standards for roads in termyleasuring the standard deviation of errors for both tech-
of consistency in road signs and lane markings. We usBiflues, we considered a weighted averaging with coef cient
traf ¢ data recorded in Japan (iROADS dataset, Set 1) [66}7 for the camera-pose-based trigonometric method, and
to evaluate the accuracy of the distance estimation methé@ef cient 0.3 for the bird's-eye view technique.
discussed in Section VII. Knowing that the length of any white ) . )
marking segment in Japan is &0 and the length of a gap B. Evaluations of the Proposed Vehicle Detection
between two white segments is 1&0pwe extracted ground- Figures 22, 23, 24, 25, and 27 illustrate our evalua-
truth distance data for about K of the given road. tions performed on the combined dataset EISATS, Set 10

Using the proposed fusion classi er for vehicle detectio{]ROADS) [66]. As per the de nition oEituationsin paper[24]
and knowing the camera assembly and relevant pose pard@f- variability of trafc or road conditions, arobust tech-
eters, the two distance estimation methods, as discussedifiie has to perform with reasonable accuracy for different
Section VII, have been evaluated. situations. In our experiments we used data for six different

Figure 21 shows thdistance to vehiclesrrors (to vehicles situations:
in front of the ego-vehicle), de ned by comparing with ground 1) close distanceup to Im to the ego-vehicle;
truth represented by the red line. Vehicles are at distances of @) day. Daylight situation;
to 50m to the ego-vehicle. We considered a con dence interval 3) night Evening and night situation;
of 60cm for ground truth measurements. Distance estimation4) rainy day Rainy weather under daylight condition;
by the camera-pose-based trigonometric method shows mor&) rainy night Rainy weather under night condition;
accurate results compared to the bird's-eye view approach6) snow Snowy situation.

For the camera-pose-based trigonometric method, the eNde applied a full analysis on true detection and false-positive
is mainly within the con dence margin of our ground-truthrates by comparing LBP classi cation, standard Haar-like
reference. Interestingly, both approaches show a very simitdassi cation, AGHaar classi cation, and our proposed D-S

error behaviour for medium distances (in a range of about #ata fusion approach.
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Fig. 23. Vehicle detection, distance estimation, and performance evaluatigng 24. vehicle detection, distance estimation, and performance evaluations

for day. From left to right, top to bottom: The rst three images showsgr sjationnight Order of images and descriptions as per Fig. 23,
detection results for the discussed LBP, HAAR, and AGHaar approaches, the

forth image provides bird's-eye view distance estimation for the AGHaar-

based image. The fth image provides corners features, the sixth image

illustrates the outcome of horizontal edge detection, and the seventh shows

the nal results of vehicle detection and distance estimation after the proposedin a database of 500 images, ranging from older to modern

data fusion technique. The estimated distances(jrare given in the yellow models of vehicles, we gained 91.6% true detection, and 1.2%

rectangles on the top left side of the red bounding boxes. The bottom imaf%ﬁ . ! ' ! )

represents the ROC curve and performance evaluatioddr se alarm. Figure 22_ shows sa_mples comparing our VSD

method to other techniques. As discussed earlier, a weakness

The accuracy and robustness of our detection methofiother approaches is that many false alarms and misses of

has been evaluated on image sequences in the six differene-positives can be expected. Since the VSD method is only

situations listed above. First we evaluated close-by vehidepart of our overall D-S fusion method, we continue with a

detection based on the VSD approach. more detailed discussion of the other ve situations.
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Fig. 25. Vehicle detection, distance estimation, and performance evaluatioranprday andrainy night Order of images and descriptions as per Fig. 23.

Figure 23 shows detection results arateiver operating less likely that the classi ers can capture the relevant features
characteristic(ROC) curves for the situatioday. LBP based at low-light or night conditions. However, due to VSD and our
classi cation shows the lowest detection rate and the highd3tS fusion techniques, the fusion-based ROC curve shows a
rate of false positives. AGHaar alone and the D-S fusionery good detection rate (close to 0.99) with a very small rate
based method show relatively similar behavior, better thar false alarms in both situationslay and night
LBP, while the D-S fusion-based method outperforms the best
results with a smaller rate of false alarms. The estimated disFigures 25 and 26 provide samples of results for rainy day
tances, shown in the bottom image for the proposed approa@id rainy night conditions. Those situations are challenging.
are slightly different to those obtained by the bird's-eyEOr €xample, Fig. 25 shows that there are many false alarms

view technique, as expected, because of weighted averagifiglBP and standard Haar methods, as well as some missing
discussed in Section VIII-A. detections for AGHaar. However, the bottom image shows

perfect detections after incorporating VSD and D-S fusion

Figure 24 illustrates experimental results for situatght techniques. The green rectangle shows a detection after tail-
The gure shows that LBP and thstandard Viola-Jones . o
gght pairing and VSD.

method(standard Haar) perform weak under night conditions:
Also, the horizontal sub-curves in standard Haar and AGHaar|y contrast to results for the situatiatay, for the situation

curves (dashed ellipses) in ROC plot show that those alggjny nightthe AGHaar method did not perform visibly better
rithms have no success for some parts of the test dataset. Thag@ standard Haar. This is mainly due to re ections of street
parts of the curves represent cases where only false alarm%}qts on rain droplets (see Fig. 25, top) constituting strong
no true detections occur. noise than can consequently lead to false alarms. However,

The LBP detector shows a detection rate as low as 528@ain the D-S fusion method shows still a high true-detection
with a considerable number of false detections. Overall, thate, almost as good as for situaticsesy or night, with only
night-condition graph shows lower performance result for LBB, minor increase in false alarms (raised from 10 to 19) which
standard Haar, and AGHaar compared to their correspondiaga very small portion considering the total number of true
ROC plots for day-light condition. This makes sense as it detections in our test dataset.
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Figure 27 shows detection results for situatiemow and
provides the ROC curves for our sixth dataset containing
1,200 frames from snowy road scenes. Under these conditions,
LBP shows a signi cant increase in its false alarm rate while
keeping the detection rate just below 70%, which is an average
performance. Standard Haar shows purer performance than for
rain situations night, or day. On the other hand, interestingly,
AGHaar performs considerably better, showing effectiveness
of our adaptive global Haar-like classier for challenging
lighting conditions and dynamic environments.

With the D-S fusion approach we had a detection rate
of close to 1.0 in the previous four situations. For situation
snow the detection rate stops at 0.88 (almost the same as
for AGHaar) but it also shows a reduction in the number of
false alarms. This can be due to a signi cant variation in illu-

Snowy condition

mination for the dark grey appearance of the road surface, in I,
contrast to the bright white surrounding covered by snow. This 2 s ]
may cause strong sunlight or street light re ections, camera © 07 //
blooming, thus dif culties for a better detection performance. 3 06 Ff e

Table Il summarises the precision rate and recall rate for T zj )
the proposed method on the four discussed individual datasets E s / ___DSFusin
plus a comprehensive mixed dataset including all-weather 02 _Eg;dzidHaar
conditions, challenging lighting conditions, and close-distance 0.1 ‘l i i i
vehicles. Although the standard classiers can gain up to O T 0 a0 e s 100 120 140
around 90% recall rate for ideal daylight conditions, their Falsc alarm

detection rate dramatically decreases to under 60% on a ré@d- 27. Vehicle detection and distance estimation in situasioow Order
world challenging and comprehensive dataset. of images and descriptions follow Fig. 23.
Except for close distance datasets, AGHaar shows a visiblfe .
parameters and challenges to obtain a robust result. If the

improvement compared to other standard classi ers. The dfa ) :
fusion method is the best performer with a detection rate {ﬁsearch supposed to approach for a general vehicle detections,

96.8% for the multi-weather and lighting dataset, with averﬁ}mh as multi-direction vehicle detections, the results could
hidh precision rate of 95.1% ' ave not yet been acceptable. For example, the latest achieve-

In the case where the vehicle's rear view is occluded e’“? and state-of-the-art work listed on the KITTI benchmark
i bsite results show very low detection rates ranging from

4% to 74.9% for multi-view vehicle detection, even under

{igeeal) day-light conditions [46]. These results are still far
satisfying from needs of real-world applications or industry
expectations. We also discussed bounding box inaccuracy
and extremely high-computational cost of DPM, the state-of-
IX. CONCLUDING REMARKS the-art object detection method proposed by Felzenszwalb et

The research proved that even for a specic rear-vieal. [31], [32].

vehicle detection, we need to deal with a high dimensionsin our research we focused on a speci ¢ detection scenario,

other vehicles or obstacles, it is possible to detect the veh
as long as the tail-light pairing satis egrtual symmetryeven
when two preceding vehicles are near each other and at
same distance to the ego-vehicle.
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TABLE I
PERFORMANCE EVALUATION OF THE PROPOSED METHODS ON FIVE INDI\DUAL DATASETS AND ONE MIXED COMPREHENSIVE DATASET

LBP Standard Haar AGHaar VSD & D-S Fusion
Precision  Recall| Precision Recall| Precision Recall| Precision  Recall (%)

Day dataset 62.8 81.0 73.4 88.2 89.0 97.5 95.2 99.6
Night dataset 63.2 52.6 73.9 69.5 81.5 79.2 95.7 99.2
Rainy dataset 70.6 57.7 75.6 69.8 78.7 73.8 91.6 99.3
Snowy dataset 48.2 67.0 69.4 71.4 84.1 84.8 97.2 87.5
Short distance dataset 0 0 1.9 3.0 2.1 6.1 96.1 98.8
All-weather mixed dataset 54.4 57. 65.2 66.8 74.3 75.1 95.1 96.8

Obtained based on VSD only

namely rear-view vehicle detection, in order to prevent regs] C. Premebida, G. Monteiro, U. Nunes, and P. Peixoto: A LIDAR and

end collisions. However, we aimed at Covering a diversity of Vision-based approach for pedestrian and vehicle detection and tracking.

. . S e . In Proc. IEEE Intelligent Transportation Systems Comfp. 1044-1049,
ideal to dif cult weather and lighting conditions. We gained 5547 9 P Y orp

a detection rate of up to 97% with a high precision rate ¢f] w. Yao and U. Stilla: Comparison of two methods for vehicle extraction
95% not Only for day CondltlonS, but also for rainy, Snowy’ from airborne LIDAR data toward motion analyS|EEE Geoscience

f d h | Id chall . dii Thi Remote Sensing Letter®:607-611, 2011.
0ggy, and many other real-world challenging conditions. [§] Distronic Plus with Steering Assist: techcenter.mercedes-benz.eam/

is a signi cant step forward compared to previously reported distronic plus steeringassist/detail.html, 2013.
results. The paper provided a detailed proposal for vehidf F Garcia, P. Cerri. A. Broggi, A. Escalera, and J.M. Armingo: Data fusion

detecti d dist timati . | | . for overtaking vehicle detection based on radar and optical ow. In Proc.
etection an IStance estmaton, using only monocular Vi- \egg Intelligent Vehicles Symposiupp. 494-499, 2012.

sion, and a real-time data stream from a mounted camera. Ti® A. Haselhoff, A. Kummert, and G. Schneider: Radar-vision fusion for

experiments showed a Superior performance of the newly pro- vehicle detection by means of improved Haar-like feature and AdaBoost

. approach. In ProcEuropean Signal Processing Corgp. 2070-2074,
posed AGHaar vehicle detector, compared to common LBP or 2887_ P 9 9 Corfp

standard Haar-like classi ers. It also became apparent that thel P.K. Zoratti: Automotive driver assistance systems: Using the processing
proposed virtual-symmetry detection is important for detecting Power of FPGAs. White Paper: XA Spartan-6 Automotive FPGASs,

) . . o . XILINX, WP399 (v1.0), 2011.
vehicles at very close distances in addition to medium or fﬁrz] R. Klette: Concise Computer Vision. Springer, London, 2014.

distances, that can also be covered by the AGHaar approaah} A. Ali and S. Afghani: Shadow based on-road vehicle detection and
The results of the proposed trigonometric distance estimator veri cation using Haar wavelet packet transform. In Prit&€EE Int. Conf.

. . . Information Communication Technologjqsp. 346-350, 2005.
was suf ciently accurate to warn a distracted driver at thg4] s. Han, Y. Han, and H. Hahn: Vehicle detection method using Haar-

appropriate time, before an imminent rear-end collision occurs. like features on real time system. In Prodlorld Academy Science
. . Engineering Technol . 455-459, 2009.
The time-effectiveness of the proposed methods and ngineering 'echind ogyp

. . . . G. Toulminet, M. Bertozzi, S. Mousset, A. Bensrhair, and A. Broggi:
implemented D-S fusion technique allows us a real-time Vehicle detection by means of stereo vision-based obstacles features

processing of 25 to Z@s for the entire multi-data fusion extraction and monocular pattern analy#<EE Trans. Image Processing
- - 15:2364-2375, 2006.
system using only one monocular camera. The results obtaldrix

. ) S. Hermann and R. Klette: Iterative semi-global matching for robust
on a Corei5 2.7 GHz PC platform with 8GB of RAM an driver assistance systems. In Présian Conf. Computer Vision. NCS

Windows 7. 7726, pp. 465-478, 2012.
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Comprehensive experimental studies for our all-weather yaar.jike feature detectors. TR, CS Department, Univ. lllinois Urbana-
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