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Abstract 

Praseodymium-doped zirconolite ceramics targeting nominal composition Ca1-xPrxZrTi2-5x/3Al5x/3O7 (x ≤ 0.20, Δx=0.05) were 

fabricated by a mixed oxide solid state reaction, at 1350 ˚C in air for 20 h. Praseodymium (Pr) was employed as a surrogate 

for neptunium (Np), with Al3+ co-accommodated to provide charge balance. High-resolution transmission electron microscopy 

and electron diffraction analyses confirmed that zirconolite crystallised as the 2M monoclinic polytype throughout the phase 

evolution, with no evidence of transformation to other polytype structures. Phase assemblage and microstructural data were 

consistent with zirconolite occupying a high fraction of the phase assemblage (> ca. 93 wt. %), alongside a minor secondary 

perovskite phase at all levels of targeted Pr incorporation. Despite this, it was demonstrated near theoretical density formed 

through a solid-state fabrication route, and we therefore propose that, through analogy with the corresponding Pr solid solution, 

zirconolite may be a suitable candidate for the immobilisation of Np-bearing wastes. 
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1 Introduction 

The effective management and disposition of minor actinide species (MA) such as 237Np and 241Am, derived from 

reprocessing spent nuclear fuel (SNF) [1], requires the development of refractory wasteforms with high aqueous 

durability [2,3]. Of these, 237Np is of particular importance due to its extremely long half-life and large quantities 

(t1/2 = 2.1 × 106
 y; ~ 0.04 wt.% in PWR spent nuclear fuel; the specific activity is 26 Bq/µg), providing a significant 

contribution to the overall radiogenic waste output in the disposal environment [4]. Wasteforms previously 

proposed for Np include bitumen, borosilicate glass and zirconia [5-7]. The chemical immobilisation of Np may 

best be achieved through accommodation in solid solution with a suitably durable ceramic material, such as the 

titanate phases utilised in the Synroc mineral assemblage, which exhibit superior aqueous durability with respect 

to vitrified wasteforms, providing extensive isolation from the biosphere over geological timescales [8-10].   

As an attractive ceramic wasteform, zirconolite (nominally CaZrTi2O7) has demonstrated compositional flexibility 

[11,12], exceptional chemical stability [13], and high radiation tolerance [14]. Zirconolite has demonstrated affinity for 

the incorporation of actinide species in solid solution, such as U [15], Np [16,17] and Pu [16,17] with moderate to high 

waste loading, although depending on the solid solution regime, this may be accommodated by polytypical 

transition. Considering Np, the incorporation of tetravalent Np4+ within the Ca2+ site in zirconolite was reported 

by Begg et al. with the formation of a near-single phase Ca0.8Np0.2ZrTi1.6Al0.4O7, although no comments were 

made with respect to the zirconolite crystal structure, either by powder X-ray diffraction or electron diffraction 

[16,17]. Therefore, it remains unclear whether the incorporation of Np4+ within the zirconolite structure resulted in 

a polymorphic transition to either the zirconolite-4M or 3T structures. Furthermore, these materials were 

fabricated by sol-gel route, by which a liquid mixture of alkoxides and nitrates were stirred until dry and calcined 

prior to solid state sintering [18]. A solid state reaction from constituent oxide precursors is considered a preferable 

immobilisation route, as the process is straightforward with proven scalability, with minimal secondary 

contamination from handling of liquid phases.  

Praseodymium (Pr) is considered a suitable surrogate for Np on the basis of cost and expediency [19], with both 

elements exhibiting comparable ionic radii in 8-fold coordination (Pr4+ = 0.96 Å, Np4+ = 0.98 Å) [20], the Pr6O11 

(Pr2
3+Pr4

4+O11) precursor contains mixed oxidation states in the ratio Pr3+ : Pr4+ = 1 : 2. In the present work, we 

report the incorporation of Pr as a representative surrogate for Np, within zirconolite targeting Ca1-xPrxZrTi2-

5x/3Al5x/3O7, whose solid solution is designed to accommodate Pr3+: Pr4+ at a 1:2 molar ratio within the Ca2+ site 

with Al2O3 to provide charge compensation. Therefore, the aim of this work was to determine the solubility of Pr 



within the zirconolite structure utilizing a conventional solid state synthesis route from mixed oxide precursors, 

to provide insight into the phase assemblage and polytype assignment of the Np surrogate zirconolite wasteform.  

 

2 Experimental Procedure 

2.1 Materials Synthesis 

Zirconolite ceramics targeting Ca1-xPrxZrTi2-5x/3Al5x/3O7 (x ≤ 0.20; Δx = 0.05) were prepared via solid state 

synthesis from constituent oxides CaTiO3 (> 99.5% purity, Macklin Reagent Co., China), ZrO2 (> 99.8% purity, 

Xili Grinding Tech. Co. Ltd., China), TiO2 (anatase, > 99.5% purity, Macklin Reagent Co., China) Pr6O11 (> 

99.9% purity, Shanghai Aladdin Bio-chem Technology Co., Ltd., China) and Al2O3 (> 99.9% purity, Shanghai 

Aladdin Bio-chem Technology Co., Ltd., China). Precursors were batched according to desired compositions 

(Ca1-xPrxZrTi2-5x/3Al5x/3O7, x ≤ 0.20, Δx = 0.05) and homogenised by roller milling with ZrO2 media for 24 h, with 

acetone added as a milling agent. After drying, the milled precursor material was pressed into the walls of a 

stainless steel die (20 mm diameter) and compressed under ~ 100 MPa uniaxial pressure. Pellets were placed into 

a furnace and sintered in air at 1350 ˚C, for a dwell time of 20 h. 

2.2 Materials Characterization  

Reacted pellets were finely ground and analysed by powder X-ray diffraction (powder-XRD) using a Bruker 

Advance D8 diffractometer (Cu-Kα, λ = 1.5418 Å); diffraction data were acquired in the 2θ range of 10˚ ~ 80˚, 

with step size of 0.02˚ and 1 s per step. Refinement of powder XRD data was performed using the Rietveld method, 

allowing calculation of the zirconolite unit cell parameters and relative weight fraction of accompanying phases, 

using the GSAS package with EXPGUI interface [21]. Selected area electron diffraction data (SAED) and high-

resolution transmission electron microscope (HRTEM) images were acquired on the crushed grain from 

specimens of x = 0.05 and 0.15 using a FEI Tecnai G2 F20 transmission electron microscope. The density of the 

sintered pellets was measured by the Archimedes method using deionised water as the medium. The sintered 

pellets were polished to a 1.0 µm finish and thermal etched at 1200 oC for 2 h in air prior to microstructure 

observation. Backscattered electrons (BSE) images of pellet surfaces were collected using a FEI 430 Nova 

NanoSEM scanning electron microscope (SEM), equipped with a X-MarN (Oxford Instruments) for energy 

dispersive X-ray spectroscopy (EDS) analysis. In order to determine the average composition of the zirconolite 

phase, 10 EDS measurements were taken from spatially distributed areas for each sample. A powdered aliquot for 



each composition was prepared for X-ray photoelectron spectroscopy (XPS) using a K-Alpha X-ray Photoelectron 

Spectrometer system (Thermofischer Scientific) operating at 10-8 – 10-9 Torr, by finely spreading on adhesive 

carbon tape, together with a Pr6O11 reference compound. A monochromated Al Kα source was used (1486.7 eV) 

with peaks referenced to a carbon C 1s peak (284.6 eV).  

 

3 Results and Discussion 

Powder XRD data for each composition is displayed in Fig. 1, with the major phase clearly identified as 

zirconolite-2M (prototypically CaZrTi2O7, space group C2/c, ICSD: 190015 [22]) at all targeted levels of Pr 

concentration. No ancillary reflections attributed to Pr6O11, Pr2O3 or Al2O3 were detected, indicating Pr and Al 

were successfully incorporated within the zirconolite-2M structure throughout the solid solution range. 

Polymorphic transformations from zirconolite-2M to zirconolite-4M or zirconolite-3O have been previously 

reported for closely related systems; Ca1-xZr1-xNd2xTi2O7 [23], CaZr1-xCexTi2O7 
[24], CaZr1-xUxTi2O7 [11] and Ca1-

xGdxZrTi2-x(Fe,Al)xO7 [25], however in the present work, powder XRD data were consistent with zirconolite 

adopting the 2M polytype throughout the phase evolution, as compared with Bragg position of zirconolite-2M 

(black vertical lines in the bottom of Fig. 1) and its theoretical intensities (green vertical lines). A minor perovskite 

phase (nominally CaTiO3, ICSD: 183209) was detected by the prominent reflection at 2θ = 33.1˚ at all levels of 

targeted Pr incorporation (0.05 ≤ x ≤ 0.20). Furthermore, the relative intensity of the perovskite reflections 

appeared to increase as a function of (x). Quantitative phase analysis, produced from Rietveld refinement of 

powder XRD data was collected and displayed in Table 1. When targeting x = 0.05, the phase assemblage was 

comprised of 97.04 ± 0.05 wt. % zirconolite-2M and 2.96 ± 0.48 wt. % perovskite. The relative overall occupation 

of the zirconolite-2M phase was observed to decreased to 93.19 ± 0.12 wt. % when the composition targeted x = 

0.20. The relative density of the sintered product for each composition is also listed in Table 1; the product density 

appeared to increase relative to the targeted Pr concentration, which may incur benefit with regards to volume 

reduction and incorporation rate. 



 

Fig. 1) Powder XRD data for Ca1-xPrxZrTi2-5x/3Al5x/3O7 at x = (a) 0.05 , (b) 0.10 , (c) 0.15  and (d) 0.20  

compositions sintered in air at 1350 ˚C for 20 h. Green labels and black vertical lines are representative of the 

theoretical intensities and the Bragg positions of zirconolite-2M reflections (ICSD: 190015 [22]).  

Table 1) Weight fraction of the zirconolite-2M phase and relative density of obtained product, alongside 

comparison of nominal and measured Ca1-xPrxZrTi2-5x/3Al5x/3O7 compositions determined by EDS analysis.  

# - Data are calculated based on only cations and normalised. 

Doping 

Level 

(x) 

Zirconolite-

2M Yield 

(wt. %) 

Relative 

Density 

(%) 

Atomic 

Ratio (at. 

%) 
#
 

 

Ca 

 

Pr 

 

Zr 

 

Ti 

 

Al 

0.05 97.04 ± 0.05 
82.43 ± 

0.07 

Theoretical 23.75 1.25 25.00 47.92 2.08 

Measured 22.31 ± 0.18 1.74 ± 0.39 31.89 ± 0.37 40.32 ± 0.39 3.74 ± 0.14 

0.10 95.37 ± 0.07 
86.63 ± 

0.03 

Theoretical 22.50 2.50 25.00 45.83 4.17 

Measured 20.48 ± 0.19 3.23 ± 0.35 32.42 ± 0.47 39.92 ± 0.34 3.96 ± 0.18 

0.15 94.29 ± 0.09 
92.59 ± 

0.11 

Theoretical 21.25 3.75 25.00 43.75 6.25 

Measured 18.58 ± 0.32 5.10 ± 0.26 32.94 ± 0.48 37.38 ± 0.55 5.99 ± 0.16 

0.20 93.19 ± 0.12 
92.05 ± 

0.03 

Theoretical 20.00 5.00 25.00 41.67 8.33 
Measured 17.94 ± 0.21 6.61 ± 0.23 33.24 ± 0.56 35.44 ± 0.36 6.78 ± 0.17 

 

 

 



Zirconolite intergrowth defects are a common artefact, resulting in variation of stacking sequence of adjacent 

HTB modular layers, manifesting in the formation of zirconolite polytypes such as 4M or 3T. The formation of 

zirconolite polytypes is dependent on the targeted solid solution regime and processing environment [24]. The 

incorporation of small concentrations of dopant atoms (such as REE3+ species) is often sufficient to promote 

complex intergrowth defects that not readily detected by powder XRD analysis. Selection Area Electron 

Diffraction (SAED) analysis is capable of detecting the signatures of stacking disorder; Vance et al. reported 

extensive streaking in zone axis diffraction data for zirconolite-4M [15]. In order to determine the polytype obtained 

throughout the phase evolution of Ca1-xPrxZrTi2-5x/3Al5x/3O7, SAED patterns were acquired for x = 0.05 and x = 

0.15 (Fig. 2). 

 

Fig. 2) SAED patterns for Ca1-xPrxZrTi2-5x/3Al5x/3O7 taken along the [142̅] and [010] zone axis of x = 0.05 (Fig. 

2a-b); [142̅] and [110] zone axes of x = 0.15 (Fig. 2c-d). 

Both data sets in Fig. 2 were absent of significant twinning or stacking disorder, exhibiting sharp, well-defined 

reflections. For both x = 0.05 and x = 0.15 compositions, the SAED data could only be indexed to the zirconolite-

2M polytype (space group C2/c) confirming that no polytypical transformations occurred throughout the evolution 

of the solid solution. Depending on the synthesis method, zirconolite-2M may crystallise with extensive stacking 



faults, for example in the case of Liao et al. in which zirconolite-2M was derived from a glass-matrix [26]. In order 

to investigate the nano-scale structure of Ca1-xPrxZrTi2-5x/3Al5x/3O7 samples (x = 0.05, x = 0.15), were analysed by 

HRTEM (Fig. 3). Clear lattice fringes were visible, without major distortions or lattice defects, demonstrating 

Ca1-xPrxZrTi2-5x/3Al5x/3O7 compositions were highly crystalline without obvious stacking faults. These data 

indicate that the atomic planes are well ordered as zirconolite-2M, consistent with powder XRD data. 

 

Fig. 3) HRTEM images of Ca1-xPrxZrTi2-5x/3Al5x/3O7 with corresponding SAED at x = (a) 0.05 and (b) 0.15. 

Representative microstructures of Ca1-xPrxZrTi2-5x/3Al5x/3O7 ceramics (0.05 ≤ x ≤ 0.20) are displayed in Fig. 4; 

despite minor visible porosity, the sintered ceramic specimens demonstrated a relatively dense morphology. A 

near homogeneous matrix of zirconolite-2M was observed by backscattered electron contrast, with minor 

inclusions of perovskite evidenced, as darker grains relative to the BSE contrast of the bulk (highlighted by red 

circles in Fig. 4). It was evident from close inspection of EDS data for the perovskite grains (Fig. 5) that Pr was 

incorporated in dilute solid solution with the CaTiO3 phase, indicative of a secondary reaction product rather than 

unreacted precursor. This may be problematic for Np containing wastes, as synthesis under reducing conditions 

may promote the partial formation of Np3+, and subsequent accommodation in the perovskite phase. The leaching 

rate of calcium in CaTiO3 at 90oC under different pH levels was previously measured to be 6.30 × 10-2 g·m-2 ·d-1 

(pH = 2.1), 2.7× 10-1 g·m-2 ·d-1 (pH = 3.1) and 3.70 × 10-2 g·m-2 ·d-1 (pH = 12.9) [27]. All of these values was much 

higher than Ca in CaZrTi2O7 (in the order of magnitude of 10-3 g·m-2 ·d-1 [27]). As CaTiO3 has demonstrated lower 

aqueous durability than the target CaZrTi2O7 phase, the partial retention of the Np inventory in this manner may 

substantially reduce the overall wasteform performance, by promoting the premature release of Np from CaTiO3. 



Further studies on optimal formulation by starting from the excessive amount of ZrO2 and TiO2 in the raw 

materials would be desirable to remove the perovskite phase. 

 

Fig. 4) Representative BSE micrographs of the Ca1-xPrxZrTi2-5x/3Al5x/3O7 ceramic microstructure at x = (a) 0.05, 

(b)  0.10, (c)  0.15 and (d)  0.20, after sintering in air at 1350 ˚C for 20 h. Red circles highlight the CaTiO3 

phase. The black region in grain boundary is the porosity. 

 

Fig. 5) Representative BSE micrograph and corresponding EDS data mapping for the x = 0.20 sample. The red 

circles highlight the CaTiO3 phase. 



The normalised composition of the zirconolite phase produced at each targeted concentration of Pr was determined 

by EDS spot analysis (Table 1). The atomic ratio of Pr and Al increased gradually as a function of the substitution 

level, indicative of successful incorporation within the target host phase. Surprisingly, the ratio of Zr was 

consistently elevated with respect to the nominal composition; however, this may be attributed to the presence of 

the perovskite phase, resulting in the deficiency of Ca and Ti in zirconolite. The sum of Ca and Pr remained near-

constant throughout the phase evolution (~ 24 at. %), with similar trends observed for (Ti +Al). 

In order to determine the oxidation state of Pr within the zirconolite host phase, samples were analysed using XPS 

(Fig. 6). The zirconolite spectra exhibited a line profile consistent with the Pr 3d5/2 spectra, consisting of two 

maxima separated by ~ 4.1 eV binding energy, with no visible shift observed. Comparison of zirconolite XPS 

spectra with the Pr6O11 standard indicated the oxidation state of Pr remained constant as the concentration of Pr 

increased from x = 0.10 to x = 0.20. Attempts were made to resolve the Pr 3d XPS data using component functions, 

however by reviewing the available literature for quantitative determination of Pr XPS spectra, no reliable 

calculations were available (unlike Ce 3d, for example) The fitting of Pr 3d core levels is difficult and remains 

controversial [28,29], as Pr2O3 and PrO2 compounds both exhibit signals in the Pr 3d5/2 and 3d3/2 peak [30], hence it 

was not possible to exclude either Pr oxidation state in the sample, in particular for samples with dilute Pr content 

(ca. 8 wt. % for x = 0.20). X-ray absorption near edge structure (XANES) data would be desirable for future work 

[31-33] to elucidate the true oxidation state(s) for these compounds. 



 

Fig. 6) XPS spectra of Pd 3d5/2 for synthesised zirconolite samples (a) x = 0.10, (b) x = 0.15, (c) x = 0.20. 

Standard spectra for Pr6O11 are shown and overlaid for comparison (red curve). 

 

4 Conclusions 

In the present work, the phase assemblage and microstructure of Ca1-xPrxZrTi2-5x/3Al5x/3O7 ceramics fabricated by 

a conventional solid state synthesis route, from mixed oxide precursors, was systematically investigated, with Pr 

included as a representative surrogate for Np. Synthesis in air at 1350 ˚C produced a phase assemblage comprised 

of zirconolite-2M (> 93 wt. %) and a secondary perovskite phase at all levels of targeted Pr concentration. 

Zirconolite was confirmed to adopt the 2M crystal structure by HRTEM and SAED analysis, which is favourable 

considering the high radiation tolerance and aqueous durability of this phase [27]. Analysis of XPS spectra was 

consistent with the oxidation state of Pr remaining consistent throughout the phase evolution. SEM analyses 

revealed all specimens sintered with a comparatively dense morphology. The work presented within demonstrate 

that incorporation of Np within zirconolite may be a feasible route towards disposition, through analogy with the 

surrogate Pr solid solution, in the compositional range 0.05 ≤ x ≤ 0.20.   
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Fig. 1) Powder XRD data for Ca1-xPrxZrTi2-5x/3Al5x/3O7 at x = (a) 0.05 , (b) 0.10 , (c) 0.15  and (d) 0.20  

compositions sintered in air at 1350 ˚C for 20 h. Green labels and black vertical lines are representative of the 

theoretical intensities and the Bragg positions of zirconolite-2M reflections (ICSD: 190015 [22]).  

Fig. 2) SAED patterns for Ca1-xPrxZrTi2-5x/3Al5x/3O7 taken along the [142̅] and [010] zone axis of x = 0.05 (Fig. 

2a-b); [142̅] and [110] zone axes of x = 0.15 (Fig. 2c-d). 

Fig. 3) HRTEM images of Ca1-xPrxZrTi2-5x/3Al5x/3O7 with corresponding SAED at x = (a) 0.05 and (b) 0.15. 

Fig. 4) Representative BSE micrographs of the Ca1-xPrxZrTi2-5x/3Al5x/3O7 ceramic microstructure at x = (a) 0.05, 

(b)  0.10, (c)  0.15 and (d)  0.20, after sintering in air at 1350 ˚C for 20 h. Red circles highlight the CaTiO3 phase. 

The black region in grain boundary is the porosity.  

Fig. 5) Representative BSE micrograph and corresponding EDS data mapping for the x = 0.20 sample. The red 

circles highlight the CaTiO3 phase. 

Fig. 6) XPS spectra of Pd 3d5/2 for synthesised zirconolite samples (a) x = 0.10, (b) x = 0.15, (c) x = 0.20. Standard 

spectra for Pr6O11 are shown and overlaid for comparison (red curve). 

 

Table 1) Weight fraction of the zirconolite-2M phase and relative density of obtained product, alongside 

comparison of nominal and measured Ca1-xPrxZrTi2-5x/3Al5x/3O7 compositions determined by EDS analysis. # - 

Data are calculated based on only cations and normalised.  

 

 

 

 


