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Abstract 

Diluent plays an important role in the solvent extraction of metals. The selection of a proper diluent 

is important since it affects the economics of the process. The effect of different diluents (aliphatic, 

mixed aliphatic-aromatic and aromatic) on the solvent extraction of Nd(III) by the neutral 

extractant tri-n-butylphosphate (TBP) from nitrate aqueous feed solutions was studied with 

variation of the following process parameters: extraction kinetics, phase disengagement time, TBP 

concentration, nitrate concentration, loading capacity of TBP and aqueous-to-organic phase 

volume ratio. The present study shows that the nature of the diluent has no effect on the extraction 

kinetics of Nd(III) by TBP. Phase disengagement times were relatively faster for aromatic diluents 

mailto:m.regadio@sheffield.ac.


2 

 

compared to aliphatic diluents. Conversely, extraction efficiencies were the highest for aliphatic 

diluents, slightly lower for mixed aliphatic-aromatic diluents and much lower for aromatic 

diluents. The poorer extraction efficiencies of aromatic diluents may be due to the lower 

concentration of free extractant as a result of the stronger interactions of the diluent with water 

and/or of the diluent with the extractant. The differences in extraction performance between 

aliphatic and aromatic diluents decrease with increasing nitrate concentration in the aqueous feed 

solution. Thus, the negative effect on the extraction of the aromatics in the diluent can be 

compensated by the positive effect of a higher concentration of salting-out nitrate ions in the feed. 

The present results reveal that the selection of the diluent can be preferably based on its cost, safety 

and biodegradability rather than on its physico-chemical properties, since the physico-chemical 

properties have a limited influence on the extraction of Nd(III) by TBP at highly concentrated 

nitrate solutions.  

 

Keywords: diluents; neutral extractant; rare earths; TBP; solvent extraction 

 

1. Introduction 

Solvent extraction (SX) is an important unit operation in hydrometallurgical processes used for 

the separation of mixtures of metal ions [1-6]. The separation and extraction of the metal values 

takes place by the preferential distribution of the metals between two immiscible phases: the 

aqueous and the organic phase. The aqueous phase is the metal-containing feed solution. The 

organic phase (or solvent) contains an extractant and a diluent, and, if necessary, a modifier [7]. 

The extractant actively reacts chemically with the metal ions to be transferred from the feed 
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solution. The diluent is an organic fluid used to dissolve the extractant and modifier, to form the 

solvent. The modifier improves some properties such as solubility, viscosity/hydrodynamic or 

kinetics.  

The diluent plays a significant role in the solvent extraction of metals [2, 8]. Most of the extractants 

cannot be directly used in their pure form for separation and purification of metal ions because 

they have a density close to that of the aqueous phase, are very viscous and some of them are even 

solid at room temperature. By dissolving the extractant in a diluent, the viscosity and density 

decrease, making the extractant suitable for practical use in solvent extraction. In addition, the 

diluent allows to prepare solvents with a desired concentration of extractant, which is often 

necessary to achieve a specific metal separation or metal loading of the organic phase (extracted 

metal concentration). Furthermore, the diluent greatly influences third-phase formation, which is 

a major concern, for instance, in the solvent extraction of actinides by tri-n-butyl phosphate (TBP). 

Aliphatic diluents cause more easily third-phase formation than aromatic diluents [9]. Among the 

aliphatic diluents, typically diluents with longer alkyl chains are more susceptible to third-phase 

formation than diluents with shorter alkyl chains [10-13].  

Any organic liquid used as a diluent in solvent extraction processes should have certain 

characteristics: mutual miscibility with the extractant and modifier, high solvency for the extracted 

metal complex, low volatility, high flash point, low surface tension, low solubility in the aqueous 

phase, low toxicity, low viscosity, a low price and being readily available. Additionally, the diluent 

should not strongly interact with the extractant/modifier in order not to influence the extraction 

efficiency significantly. In many cases the choice of a diluent is simply based on its cost and a few 

physicochemical properties. On the contrary, much more attention has been paid to the selection 

of the extractant. However, the selection of a proper diluent is important and cannot be readily 
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predicted since it strongly influences many extraction variables such as the phase disengagement 

times, extractant and diluent chemical stability, performance of the extractant, solubility of the 

metal-extractant complex; third-phase, CRUD and gel formations, selectivities of metal values or 

extractant loading capacity, which can all seriously affect the economics of the total process.  

The physical properties of diluents such as polarity, dielectric constant, density, viscosity and 

solubility parameter affect extraction and distribution ratios of metal ions. There are reports in the 

literature where the difference in extraction behavior was explained by considering the physical 

properties of the diluents [14-28]. The extraction of rare earths by the basic extractant Aliquat 336 

and by the solvating extractant tetraoctyl-diglycolamide (TODGA) decreased with increasing 

polarity of the diluent [27, 29]. The same relationship was observed for the extraction of actinides 

by TBP and of di-, tri- and tetravalent metals by thenoyltrifluoracetone with trialkylphosphine 

oxide or dialkylphosphate (Dcyclohexane > Dhexane > Dcarbon tetrachloride > Dbenzene > Dchloroform) [15, 18]. 

In some studies, the distribution ratio is also related to the dielectric constant of the diluent, 

decreasing the former when the latter increases (Dkerosene > Dcyclohexan > Dbenzene > Dchloroform) [2, 30, 

31]. Alguacil et al. reported that extraction of Fe(III) by the primary amine Primene 81R decreased 

with increasing dielectric constant and dipole moments of the diluents [28]. However, the 

distribution ratios could not be correlated to any particular one of the physical or chemical 

properties of the diluent [29]. 

In a recent paper, we reported the effect of diluents on the extraction of Nd(III) from aqueous 

chloride solutions by D2EHPA [33]. The extraction efficiency was found to be largely defined by 

the aromatic content of the diluent. As a continuation of this work, we discuss in present paper the 

effect of different diluents on the solvent extraction of Nd(III) by the neutral extractant, TBP from 

aqueous nitrate solutions. Solvent extraction is the sole industrial technology for separation of rare 
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earths. TBP is a well-known extractant for the solvent extraction of rare earths from nitrate feed 

solutions [34, 35] (Figure 1). The objective is to study the effect of different diluents on extraction 

parameters such as extraction kinetics, phase disengagement time, extractant concentration and 

loading capacity of the organic phase, nitrate and metal concentrations of the feed solution, and 

aqueous-to-organic phase volume ratio. A total of 11 diluents, including aliphatic diluents with 

different carbon chain length, mixed aliphatic-aromatic diluents and aromatic diluents, are 

considered. 

 

Figure 1. Structure of tri-n-butyl phosphate (TBP) 

2. Experimental and methods 

2.1 Chemicals and solutions  

Tri-n-butyl phosphate (TBP, 98%) and Nd(NO3)36H2O (99.9%) were purchased from Alfa Aesar 

(Karlsruhe, Germany). LiNO3 (99%) and toluene were obtained from SigmaAldrich (Diegem, 

Belgium). Hydrochloric acid (HCl, 37% in water) and n-dodecane (>99%) were bought from 

Acros Organics (Geel, Belgium). A 1000 mg L-1 praseodymium standard solution was purchased 

from Chem-Lab NV (Zedelgem, Belgium). The silicone solution in isopropanol SERVA (used to 

make the TXRF quartz glass carriers hydrophobic) was purchased from Electrophoresis GmbH 

(Heidelberg, Germany). Diluents other than the previously mentioned toluene and n-dodecane, 

were provided by Shell Global Solutions (Amsterdam, The Netherlands). All chemicals were used 

as received, without any further purification. 
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The organic solutions for the extractions tests consisted of 1 mol L–1 TBP dissolved in all the 

different diluents, except in the tests where the extractant concentration in the organic phase varied 

(0.1, 0.3, 0.7, 1 mol L–1 TBP). Two aqueous neodymium stock solutions of 10 and 100 g L –1 

Nd(NO3)3 (solution 1 and 2); and one LiNO3 stock solution of 6.5 mol L –1 (solutions 3), were 

prepared by dissolving Nd(NO3)36H2O and LiNO3, respectively, in ultrapure water. Solutions 1 

and 2 were acidified with a drop of 37 w% HCl to avoid hydrolysis of neodymium. Solution 3 was 

used as a source of nitrate ions. Solution 1 and solution 3 were combined to prepare the composite 

feed solutions (1 g L–1 Nd in a 3 mol L–1 nitrate matrix) for the extraction kinetics experiments and 

for the experiments were the TBP concentration in the organic phase and the nitrate concentration 

in the feed solution were varied. For the experiments where the initial neodymium concentration 

was varied, the aqueous feed solutions were obtained from solution 2 (100 g L–1 Nd(NO3)3) and 

serial dilutions of it (5, 10, 20 and 50 g L–1 Nd(NO3)3), after dissolving the amount of LiNO3 

necessary to keep in all the same total nitrate concentration (3 mol L–1). The composite solution of 

100 g L–1 Nd(NO3)3 in 3 mol L–1 nitrate matrix was also used in the experiments of phase 

disengagement time, extraction isotherms at room temperature, loading capacity of the organic 

phase and aqueous-to-organic phase volume ratio. 

 

2.2 Instrumental analyses 

A flat magnetic stirrer (MIX 15 eco model, 2mag magnetic emotion) was used to mix the two 

phases in solvent extraction batch experiments. The metal ion concentrations in aqueous solutions 

were measured with a benchtop total-reflection X-ray fluorescence (TXRF) spectrometer (S2 

Picofox model, Bruker). The pH of aqueous samples was controlled by a Slimtrode (Hamilton) 

pH-electrode connected to a S220 SevenCompact™ pH/Ion meter (Mettler‒Toledo). 
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2.3 Solvent extraction method  

Solvent extraction experiments were carried out by mixing equal volumes (except for phase ratio 

experiments) of aqueous and organic solutions (total volume 10 mL) in 20 mL glass vials using 

the flat magnetic stirrer at 800 rpm, room temperature (RT, 20 ± 2 C). After attaining the 

equilibrium, the mixing was stopped and allowed to settle until both phases were 

clearlyseparated. Then, a sample from the lower aqueous phase is pipetted and the concentrations 

of neodymium ions after extraction was determined there in the aqueous solution, together with 

the concentrations of neodymium ions before extraction in the feed solution, by a TXRF 

spectrometer. The metal concentration in the organic phase was then obtained by mass balance. 

All samples were measured in duplicate for 200 seconds by the TXRF spectrometer after proper 

dilutions and optimum internal standardization with praseodymium [36, 37].  

The distribution ratio (D) is defined as the ratio of the concentration of metal ion in the organic 

phase to that in the aqueous phase at equilibrium: 

 

𝐷 = 𝐶𝑒𝑞,𝑜𝑟𝑔𝐶𝑒𝑞,𝑎𝑞 = 𝐶𝑖𝑛,𝑎𝑞− 𝐶𝑒𝑞,𝑎𝑞𝐶𝑒𝑞,𝑎𝑞 · 𝑉𝑎𝑞𝑉𝑜𝑟𝑔        (1) 

where Ceq,org is the metal ion concentration in the organic phase after the extraction, Cin,aq is the 

initial metal ion concentration in the aqueous phase, Ceq,aq is the metal ion concentration in the 

aqueous phase after the extraction and, Vaq and Vorg are the volumes of aqueous and organic phases, 

respectively.  
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The percentage extraction (%E) is the amount of the metal extracted in the organic phase with 

respect to the initial amount in the feed solution and can be represented as: 

%𝐸 = 𝐷𝐷+𝑉𝑎𝑞/𝑉𝑜𝑟𝑔  ∙ 100 = 𝐶𝑖𝑛,𝑎𝑞− 𝐶𝑒𝑞,𝑎𝑞𝐶𝑖𝑛,𝑎𝑞  ∙ 100                (2) 

 

The aqueous-to-organic volume phase ratio (Θ) is the volume of aqueous phase divided by that of 

the organic phase: 

 

Θ = 𝑉𝑎𝑞𝑉𝑜𝑟𝑔                                                                                                                           (3) 

 

3. Results and Discussion 

The eleven diluents studied in the present work can be classified into three sets (Table 1). Set I 

consists of seven aliphatic diluents: n-dodecane (DD), Shell GTL solvent GS190 (FTS-A), Shell 

GTL solvent GS215 (FTS-B), Shell GTL solvent GS250 (FTS-C), Shell GTL Fluid G70 (FTF-A), 

ShellSol D70 (D70) and ShellSol D80 (D80). Set II consists of two mixed aliphatic-aromatic 

diluents: ShellSol 2325 (MS-A) and ShellSol 2046AR (MS-B). And set III consists two aromatic 

diluents, namely: ShellSol A150 (A150) and toluene. Except n-dodecane (n-C12) and toluene 

(methylbenzene), all the diluents have variable and unspecified compositions, normally derived 

from the processing of crude oil (e.g., mineral spirits), but also synthetic iso-alkanes derived from 

a “Gas-to-Liquid” process (e.g., Fischer-Tropsch process). 
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Table 1. Chemical composition and physical properties of the diluents. 

Set Diluent 

code 

Composition (wt%)  Density, 

15 C 

Dielectric 

constant 

δ, 
cal1/2 

/cm3/2 

Boiling 

range, 

°C 

Iso+n 

paraffins 

Naph-

thenes 

Aromat-

ics 

 

I DD 100 0 0  0.749* 2.01 7.9 216217 

FTS-A 97 3 <0.01  0.754 2.02 7.7 187218 

FTS-B 98 2 <0.01  0.767 2.03 7.5 218247 

FTS-C 98 2 <0.01  0.775 2.05 7.5 253270 

FTF-A 98 2 <0.01   0.778 2.05 7.5 179323 

D70 50 50 <0.01  0.796 2.1 7.6 203237 

D80  31 69 <0.5  0.820 – 7.5 212295 

II MS-A 44 35 15  0.814* – 7.7 217241 

MS-B 43 42 19  0.818 – 7.8 212271 

III A150 0 0 >99   0.887 2.4 8.7 185198 

 Toluene 0 0 100  0.867* 2.38 8.9 100111 

δ: Hildebrand solubility parameter of water in the diluent, FTS: Fischer-Tropsch Solvents, FTF: 

Fischer-Tropsch Fluids, MS: Mineral spirits, DD: n-dodecane, FTS-A: Shell GTL solvent 

GS190, FTS-B: Shell GTL solvent GS215, FTS-C: Shell GTL solvent GS250, FTF-A: Shell 

GTL Fluid G70, D70: ShellSol D70, D80: ShellSol D80. MS-A: ShellSol 2325, MS-B: ShellSol 

2046AR, A150: ShellSol A150, –: data not available, *: at 20 C. 

 

The solubility of TBP in the diluents was very high, being possible to prepare 3.3 mol L–1 of TBP 

in all the studied diluents (as high as 90 v% TBP). However, an extractant concentration of 1 mol 

L–1 TBP was chosen for the experiments. First, the extraction kinetics was studied as this is a 

crucial parameter in the optimization of the extraction process. The extraction reaction was fast, 

achieving the equilibrium in less than 5 minutes in all diluents (Figure 2). Thus, the extraction rate 

of Nd(III) by TBP does not depend on the nature of the diluent. 
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Figure 2. Percentage extraction of Nd(III) as a function of the equilibration time in selected 

diluents. Conditions: 991 mg L-1 Nd(III) + 3 mol L-1 NO3
– (supplemented by 3 mol L-1 LiNO3) in 

feed solution, 1 mol L-1 TBP in FTS-A, D80, MS-B and A150; Θ = 1, 800 rpm, 040 min, RT. 

 

Secondly, the effect of the nature of the diluent on the phase disengagement time (PDT) was 

measured at two different initial metal concentrations: 5 and 50 g L-1
 Nd(III) with 3 mol L-1

 NO3
-. The 

PDT is an important solvent extraction parameter influenced by the density, viscosity, temperature 

and interfacial tension. The PDTs were measured in triplicate by recording the time taken for the 

complete separation of aqueous and organic phases after mixing them for 5 min. The separation of 

both phases in all diluents and with both feed aqueous solution was fast: 0.3 to 1.7 min in all cases. 

In general, the PDT was faster in aromatic than in aliphatic diluents. Aromatic diluents have higher 

densities than aliphatic diluents (Table 2), which could inhibit the dispersion and coalescence 

properties. In most cases, the PDTs was slower with the highest metal concentration. The higher 
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the concentration of metals in the feed, the higher is the expected loading of metals in the organic 

phase. This results in an increased density of the organic phase, which in turn decreases the 

difference between the two phases and, therefore, decreases the ease of disengagement.  

Table 2. Phase disengagement time in seconds as a function of the diluent, at two different initial 

feed solution concentrations. 

Diluent a 
Phase disengagement time (s) 

[Nd]in,aq = 5 g L-1 b [Nd]in,aq = 50 g L-1 b 

FTS-A 53 90 

FTS-C 72 106 

FTF-A 27 95 

D80 24 75 

DD 54 29 

MS-B 60 44 

A150 32 45 

Toluene 21 26 
a 1 mol L-1 TBP dissolved in the diluents, b 3 mol L-1 NO3

– in the feed solutions, Θ = 1, 800 rpm, 

5 min, RT. 

 

Next, the effect of the TBP concentration on the extraction of Nd(III) from the nitrate feed solution 

using different diluents was studied (Figure 3). The extraction efficiency of Nd(III) increased with 

increasing extractant concentration, as expected according to Le Chatelier's principle. That is, the 

increase in the concentration of TBP would shift the extraction equilibrium of Eq. (4) to the right, 

towards the formation of more neutral nitrate complexes Nd(NO3)33TBP.  

 

Nd(NO3)3(aq) + 3TBP(org) ⇌ Nd(NO3)33TBP (org)               (4) 
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The extraction efficiency of Nd(III) is higher in aliphatic diluents, followed closely by mixed 

aliphatic-aromatic diluents. The lowest extraction efficiency was observed for the aromatic diluent 

A 150. Similar trends have been reported for the extraction of rare earths by solvating extractants 

from nitrate media and by acidic extractants from chloride solutions [27, 33]. The extraction 

efficiency decreased with increasing density, polarity, dielectric constant and Hildebrand solubility 

parameter value of the diluent in our tested conditions (Table 1). This lower extraction could have 

been the result of a lower free extractant concentration (i.e., extractant available for coordinating 

to metal ions). The availability of free extractant depends on the interaction between diluent and 

extractant (undesirable)-being the solubility parameter value an indicator to which extent diluent 

and extractant form a stable homogeneous mixture [38]. Aliphatic diluents have lower densities, 

dielectric constants and solubility parameter values than aromatic diluents, while aromatic diluents 

have the lowest average boiling points. These properties of the aromatic diluents may promote the 

interactions between extractant molecules and diluent molecules at the expense of the interactions 

between the extractant molecules and the rare-earth ions. The formation of such extractant–diluent 

species lowers the free extractant concentration, consequently decreasing the extraction efficiency 

of Nd(III) [39]. Likewise, Ritcey and Lukas proposed that the extraction is negatively affected by 

increasing the aromatic content of the diluent as more diluent is incorporated into the extracted 

species [29]. A second explanation is that aromatic diluents with higher dielectric constants 

interact more strongly with water via π-electrons of the aromatic ring, which leads to co-extraction 

of water, which in turn reduces the capacity of solvent since it makes less free extractant available.  

Similar to the extraction decrease with increasing aromatic content, in aliphatic diluents the 

extraction efficiency decreased with increasing alkyl chain length, but to a lesser extent than the 

effect of aromaticity. The extraction decreased with increasing polarity and dielectric constant of 
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the diluent in our tested conditions. Aromatic diluents have higher mass densities than aliphatic 

diluents, which could inhibit the dispersion and coalescence properties. As discussed in the 

introduction, the extraction of metals are influenced by the physical properties of diluents such as 

mass density, viscosity, dielectric constant, polarity and solubility parameters. However, the 

extraction efficiencies and distributions ratios cannot be correlated with any one particular physical 

property of the diluent, because the different factors that influence the distribution ratios are not 

independent of each other [29].  

 

Figure 3. Effect of TBP concentration on the extraction of Nd(III) in selected diluents. 

Conditions: 1060 mg L-1 Nd(III) + 3 mol L-1 NO3
– (supplemented by 3 mol L-1 LiNO3) in feed 

solution, 0.1 – 1 mol L-1 TBP in FTS-A, D80, MS-B and A150, Θ = 1, 800 rpm, 30 min, RT. 

Then, the dependence of extraction efficiency on the nitrate ion concentration by TBP diluted in 

several diluents was studied by varying the nitrate ion concentration from 1.5 to 6.5 mol L-1 (Figure 

4). The percentage extraction of Nd(III) increased along with the nitrate concentration, due to the 
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salting-out effect that occurs with these kind of metal ions that easily form nitrate complexes. At 

lower nitrate concentrations, the percentage extraction was higher in aliphatic diluents and lower 

in mixed aliphatic-aromatic and aromatic diluents. The differences in the extraction with TBP were 

less significant at high nitrate concentrations (<4 mol L-1), and thus also at high extraction 

efficiencies. When the extraction of Nd(III) by TBP was higher than 90% (4.5 mol L-1 NO3
–) there 

were no differences between diluents (Figure 4). Therefore, the positive salting-out effect of nitrate 

salt is compensating the negative effect of the aromatics content. When varying the concentration 

of the salting-out agent, neutral extractants were less influenced by the diluent nature than acidic 

extractants, although the lowest extraction by both TBP and D2EHPA was for the same aromatic 

diluent A 150 [33]. 

 

Figure 4. Effect of the nitrate concentration on the extraction of Nd(III) by TBP in selected 

diluents. Conditions: 981 mg L-1 Nd(III) + 1.5–6.5 mol L-1 NO3
– (supplemented by LiNO3) in 

feed solution, 1 mol L-1 TBP in FTS-A, FTF-A, D80, MS-B and A150, Θ = 1, 800 rpm, 30 min. 

RT. 
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Next, the effect of diluents on the extraction of Nd(III) by TBP was studied as a function of the 

initial Nd(III) concentration in the range of 1100 g L-1 while keeping the nitrate ion concentration 

at 3 mol L-1 (Figure 5). The extraction efficiency decreased with increasing initial metal 

concentration for all diluents, as expected. The higher the initial metal concentration, the lower 

was the percentage extraction. The extraction behaviour with different diluents was still following 

the same trend, being higher in aliphatic diluents, followed by mixed aliphatic-aromatic diluents 

and the lowest in pure aromatic diluents. The extraction efficiency in all aliphatic diluents was 

almost the same and there were no significant differences between aliphatic diluents with different 

hydrocarbon chain length. The extraction performance of these aliphatic diluents did well match 

with that of n-dodecane as diluent. There was only a marginal difference in extraction efficiency 

between aromatic diluent A150 and toluene. 



16 

 

 

Figure 5. Percentages extraction as a function of the initial metal concentration in selected a) 

aliphatic and b) aromatic diluents. Conditions: 1100 g L-1 Nd(III) + LiNO3 necessary to keep a 

constant nitrate concentration of 3 mol L-1, 1 mol L-1 TBP, Θ = 1, 800 rpm, 30 min, RT. 

 

The extraction isotherms at room temperature were constructed to calculate the maximum amount 

of Nd(III) which can be extracted from 3 mol L-1 nitrate feed solutions (Figure 6). The maximal 

Nd(III) loading capacities with 1 mol L-1 TBP (organic phase) and 3 mol L-1 nitrate (aqueous 

phase) were: 1012 g L-1 Nd(III), for aliphatic and mixed aliphatic-aromatic diluents and 67 g L-

1, for pure aromatic diluents. The aromatic organic phases would need higher nitrate concentrations 

than aliphatic diluents for attaining similar loading capacities. 
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Figure 6. Extraction isotherms representing the equilibrium concentrations of Nd(III) in the 

organic phase versus of Nd(III) in the aqueous phase in selected a) aliphatic and b) aromatic 

diluents. Conditions: [Nd(III)]: 1100 g L-1 + LiNO3 necessary to keep a constant nitrate 

concentration of 3 mol L-1, 1 mol L-1 TBP, Θ = 1, 800 rpm, 30 min, RT. 

 

Finally, the influence of the aqueous-to-organic volume phase ratio (Θ) was examined in all 

diluents, using a feed solution of 48.9 ± 0.3 g L-1 Nd(III) with 4 mol L-1 nitrate ion concentration 

(Figure 7). The maximum loading capacity by 1 mol L-1 TBP at 4 mol L-1 nitrate ion was 13.8 ± 

0.1 g L-1 in all aliphatic and mixed aliphatic-aromatic diluents, and 12.7 g L-1 for aromatic diluents. 

These are higher values than the ones noted above (Figure 6) due to the increase from 3 to 4 mol 
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L-1 of the nitrate concentration, as the nitrate ion is the driving force for the solvating extraction. 

Unlike in the case of high metal loadings of the acidic extractant D2EHPA [33], no gel formation 

in TBP with all diluents for all the parameter values studied was observed. Gel formation is 

generated by polymerization of extracted species in concentrated organic viscous solutions, and is 

a major issue that gives limitations for its use in solvent extraction processes. 

 

Figure 7. Effect of the phase ratio on the loading of 1 mol L-1 TBP in selected diluents from 

aqueous nitrate solutions. Conditions: 48.9 g L-1 Nd(III) + 4 mol L-1 NO3
– (supplemented by 3 

mol L-1  LiNO3) in feed solution, 1 mol L-1 TBP in FTS-A, D80, MS-B, and A150, 800 rpm, 30 

min, RT. 

 

The small differences in extraction efficiency between the studied diluents may be due to the 

symmetry and almost zero dipole moment of the metal complexes with TBP and therefore, there 

is almost no dipole interaction with the diluent that interferes with the extraction mechanism [18]. 
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As mentioned in the introduction, several studies stressed the importance of the dipole and 

dielectric constant of the diluent over the extraction of metal complexes [15,18, 27, 29-32]. Still, 

the diluents studied here showed similar extraction performance results, with the exception of the 

aromatic content in the diluent, that could be counteract by the nitrate concentration in the aqueous 

phase. Thus, other properties such as the cost of the diluent, its hazardness and biodegrability 

become important criteria for selecting the diluent [40, 41]. Diluents lacking of hazardous 

constituents such as n-hexane and/or naphthalene (i.e, FTS-A, FTS-B, FTS-C, FTF-A) would be 

preferred from the others (D70, D80, MS-A, MS-B), and without compromising the extraction 

efficiency. Within this “safer” diluent group, FT diluents are preferred because of its higher 

biodegradability [42, 43]. They consist predominantly of n-alkanes and simply branched iso-

alkanes, which are particularly susceptible to biodegradation relative to other hydrocarbon solvents 

on the market which consist of low-molecular-weight aromatics or cyclic alkanes [44].  

 

Conclusions 

The performance of different aliphatic, mixed aliphatic-aromatic and aromatic diluents was 

studied for the extraction of Nd(III) by a neutral extractant TBP. The nature of the diluent was 

found to have no effect on the extraction kinetics. The separation of the two phases was 

relatively faster in aromatic diluents than aliphatic diluents. Aliphatic diluents provided the 

highest extraction efficiencies, followed closely by mixed aliphatic-aromatic and farther behind 

by aromatic diluents. There was no significant difference in extraction behavior between diluents 

at higher initial nitrate concentrations. This may be due to almost null dipole interaction between 

the diluents and the metal nitrate:TBP complexes, and thus, no interference with the extraction 

mechanism. No gel formation was observed with all studied diluents. As a result, the selection of 
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a diluent can be made on the basis of factors other than the physico-chemical properties, such as 

cost, hazard and biodegradability, without compromising the extraction efficiency.  
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