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ABSTRACT The state of charge (SOC) estimation of Li-ion batteries has attracted substantial interests in
recent years. Kalman Filter has been widely used in real-time battery SOC estimation, however, to build a
suitable dynamic battery state-space model is a key challenge, and most existing methods still use the off-
line modelling approach. This paper tackles the challenge by proposing a novel sparse learning machine
for real-time SOC estimation. This is achieved first by developing a new learning machine based on the
traditional least squares support vector machine (LS-SVM) to capture the process dynamics of Li-ion
batteries in real-time. The least squares support vectormachine is the least squares version of the conventional
support vector machines (SVMs) which suffers from low model sparseness. The proposed learning machine
reduces the dimension of the projected high dimensional feature space with no loss of input information,
leading to improved model sparsity and accuracy. To accelerate computation, mapping functions in the high
feature space are selected using a fast recursive method. To further improve the model accuracy, a weighted
regularization scheme and the differential evolution (DE) method are used to optimize the parameters. Then,
an unscentedKalman filter (UKF) is used for real-time SOC estimation based on the proposed sparse learning
machine model. Experimental results on the Federal Urban Drive Schedule (FUDS) test data reveal that the
performance of the proposed algorithm is significantly enhanced, where the maximum absolute error is only
one sixth of that obtained by the conventional LS-SVMs and the mean square error of the SOC estimations
reaches to 10−7, while the proposed method is executed nearly 10 times faster than the conventional
LS-SVMs.

INDEX TERMS Sparse learning machine, state-of-charge (SOC), least squares support vector machine
(LS-SVM), differential evolution (DE), unscented Kalman filter (UKF).

I. INTRODUCTION
In recent years, the transportation electrification through
mass roll-out of electric vehicles has been considered as an
important measure to tackle the global challenges of cli-
mate change and environmental pollutions due to substantive
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consumption of fossil fuels in the transportation sector [1].
Li-ion batteries are widely used for energy storage because
of their favourable advantages of high energy density, high
power performance and long cycle life [2], [3]. However,
the battery pack is often composed of hundreds or thou-
sands battery cells. The battery management system (BMS)
is essential to achieve a high operation safety level and high
efficiency in battery charging and discharging [4]. The state
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of charge (SOC), indicating the remaining capacity, is an
important battery state to estimate in BMS in order to main-
tain the battery operation safety and efficiency [5].

The battery SOC estimation has been intensively
researched in the literature. The conventional direct mea-
surement methods [1], including the ampere-hour method [6]
and the open circuit voltage (OCV) based method [7], may
easily lead to accumulated deviations due to the measurement
errors. Besides, the OCV-basedmethod takes long time (more
than 1 hour) to measure the OCV which makes this method
hardly applicable on-line [5]. To overcome this drawback,
different model-based methods have been developed, such
as the equivalent electric circuit models (EECMs) [1], [8],
artificial neural networks [9] and least square support vector
machine (LS-SVM) [2], etc. However, the majority of the
existing model based approaches involve a complex offline
model identification phase. When they are applied online,
the resultant models are sensitive to measurement errors.

To reduce the impact of measurement errors on the esti-
mation accuracy, the Kalman filter is widely adopted. The
Kalman filter uses both the model outputs and the measure-
ments to achieve optimal estimation of state variables by
minimizing the mean square errors of the outputs. However,
the classical Kalman filter is only suitable for linear systems.
For the complex nonlinear processes of battery charging and
discharging, the extended Kalman filter (EKF) [10]–[12],
the unscented Kalman filter (UKF) [13], [14] and other
Kalman filter variants [2], [15] have been successfully
applied to the battery SOC estimation. The EKF method is
capable of producing more accurate SOC estimation through
linearizing the battery state-space equation using Taylor
expansion series. The iterative process of the EKF heavily
depends on the initial model and the initial state estimation.
Furthermore, the Jacobian matrix may not be obtainable in
some cases [15]. Unlike the EKF method, the UKF method
based on the unscented transform ismore robust, accurate and
easier to implement. Similarly to the EKF method, the per-
formance of the UKF method is still highly dependent on
the initial model. In order to overcome the shortcomings
of UKF, the adaptive unscented filter (AUKF) method [16]
which adaptively adjusts the process noise covariance and the
measurement noise covariance in the estimation process, has
been successfully applied to the SOC estimation.

In summary, the existing model based methods for the bat-
tery SOC estimation use the offline models. Their accuracy
will be compromised due to real-time noise and the initial
state-space model, though the AUKF can reduce the impacts
of measurement and process noises at the cost of increased
computation cost. To overcome the drawback, online battery
model identification has been researched in the last few years,
such as the RTLS-based observer method [3] and the Gaus-
sian process regression method [17]. This paper follows the
similar technical route to build an online battery state-space
model. In order to reduce the computation time incurred by
existing approaches, a sparse learning machine (LM) trained
only using a very small number of samples is developed

for SOC estimation, in replacement of the conventional
LS-SVM model. Although the traditional LS-SVM method
can find the solutions quickly by solving a set of linear
equations, yet poor sparseness and model accuracy are the
shortcomings [18]–[20].

To enhance the sparsity of LS-SVMmodels, various meth-
ods have been proposed in the literature. They can be gen-
erally categorized into two groups: sparse samples methods
and features selection methods [18], [20]. The sparse sam-
ples methods often involve reduction or selection of support
vectors. The reduction methods prune the support vectors
to approximate the original SVM model. For example,
Suykens et al. proposed a class of pruning methods based
on the spectrum of the support values [21], [22]. Other
works [23]–[25] proposed to improve these pruning methods
by iteratively solving a smaller set of linear equations. For
the selection methods, the model sparsity is considered in
advance by fixing the number of the prototype vectors which
are iteratively selected [26]–[29]. These methods induce a
low rank kernel matrix to approximate the primal space.
For example, in [18], [28] the model sparsity is achieved
by directly selecting support vectors (SVs) from the training
data set based on a certain criterion. The main issue with
these methods lies in the fact that a small improvement in the
sparsity is often achieved at the cost of significantly increased
computational effort, while information embedded into the
removed data is lost. For the features selection method,
the selection of kernel functions is a key stage. Jiao et al. [30]
proposed a fast sparse approximationmethod LS-SVM (FSA-
LSSVM) which iteratively build an approximated model
by selecting the basic kernel function one by one. Zhou
[19], [29] given an equivalent form of the cost function based
on the kernel function to look for a low-rank approximation.
However, Li and Zhang et al. [31] presented a sparse learning
machine based on the LS-SVMs cost function, and the fast
recursive algorithm (FRA) [32] is used to select the mapping
function.

In this paper, a sparse learning machine namely
S-DE-WLM is used to build the battery state-space model
based our early work in [31], and the main technical contri-
butions are summarized as follows:
• The UKF method which has proved to be more effec-

tive than a few other KF variants is applied to the
SOC estimation of Li-ion batteries. Compared to the
EKF method, the UKF method is capable of produc-
ing more accurate estimations for strongly nonlinear
system with a large initial deviation. Besides, the UKF
method without measurement noise adjustment reduce
the overall computation time compared to the AUKF
method. In order to increase the online estimation accu-
racy, a battery state-space model is built first using
the proposed sparse learning machine. The new model
for online SOC estimation is not reliant on the first
principle laws governing the battery’s electrochemical
processes and can be adjusted for real-time battery
operation.
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• To strike the balance between the model accuracy and
model complexity, a regularization term is added to the
traditional sum of squared error cost function. Further,
a weighting scheme is applied to adjust the contribution
of each training sample based on its proximity to the
next forecasting time interval. The closer to the next
forecasting interval, the sample will be given a larger
weight. Using the weighted regularization scheme,
the accumulatedmeasurement error can be reduced and
the model accuracy for short-term prediction can there-
fore be enhanced in real-time applications. In detail,
the online model is built using a narrow sliding window
of data samples at each time interval, e.g. 10 samples
at each time interval. The number of selected sam-
ples, i.g. 10 samples, is determined by trial-and-error
through extensive experiments. It is a trade-off between
the computational complexity of model training and
resultant model accuracy. Among these data samples,
not all have the same level of contributions in predicting
the SOC at the next time interval. Intuitively, the closer
the stronger the influence becomes.

• To improve the sparsity of the proposed model, a fast
recursive method is applied to select the nonlinear
feature based on the weighted LS-SVM formulation.
Instead of using the kernel trick, the feature map-
ping functions is determined first. According to the
principle of parsimony, the minimum feature space is
then determined which uses the least square method to
calculate the net contribution of a feature to the cost
function. Based on this contribution, a projected feature
is selected or removed by the learning machine.

• Finally, the differential evolution (DE) algorithm
[33]–[35] is adopted to optimize the centers and widths
of the RBF mapping function to improve the model
accuracy.

The remainder of this paper is organized as follows.
Section II introduces the battery state-space model for SOC
estimation. In Section III, a sparse learning machine based on
the LS-SVM formulation is presented for online modelling.
The SOC estimation approach is detailed in Section IV using
UKF assisted with the proposed sparse learningmachine. The
experimental and results are presented in Section V. Finally,
Section VI concludes this paper.

II. THE BATTERY MODEL
In order to estimate the SOC of Li-ion batteries in real-time
using the UKF method, an adaptive online model in the state-
space expression is built first. The flowchart of the battery
SOC estimation is illustrated in Fig.1.

In Fig.1, a small set of data samples {[soc_m, i]; v} at the
time instant k are used to build the sparse learning machine
model, where soc_m = [soc_m(k), · · · , soc_m(k − m)]
is the past m + 1 SOC values, i = [i(k), · · · , i(k − m)]
and v = [v(k), · · · , v(k − m)] are the past m+1 terminal
current and voltage measurements. The model is adaptively
adjusted using the DE algorithm based on the estimation error

FIGURE 1. The structure for battery SOC estimation.

e = [e(k), · · · , e(k−m)] in order to produce a more accurate
prediction output v(k + 1) at the time instant k + 1.
In addition, a state equation which describes the estimated

states is dynamically updated over time. In this paper, the state
equation is built based on the battery SOC dynamics. The
complete model including a state equation for dynamic SOC
forecasting and a measurement equation is given below.

A. STATE EQUATION
Battery SOC is defined as the ratio of the remaining charge
respect to the fully capacity. Suppose the nominal capacity
and the remaining capacity are denoted as Qn and Qt respec-
tively. Then SOCt is given by [2]

SOCt = Qt/Qn

= (Q0 −

∫ t

0
η · i(τ ) dτ )/Qn

= SOC0 −

∫ t

0
η · i(τ ) dτ/Qn (1)

where i(τ ) is the charging/discharging current at time instant
τ , and η = 1/3600.

Eqn.(1) can be expressed in the following recursive form

SOCk = SOCk−1 − η ·1t · ik/Qn (2)

where SOCk and SOCk−1 denote the SOC at the time instant
k and k − 1 respectively. 1t denotes the time interval of the
sampling period, and ik represents the terminal current at time
instant k .

B. MEASUREMENT EQUATION
In general, the battery terminal behaviour which is described
as a highly nonlinear model can correlate the SOC and the
terminal current to the terminal voltage. The sparse learning
machine which is capable of capturing the nonlinear char-
acteristics of a process is used to build the measurement
equation that exhibits a nonlinear behaviour. Assuming the
discharging current, the SOC and the terminal voltage at the
time instant k are ik , SOCk , and Vk respectively, the measure-
ment equation [31] can be expressed as follows

Vk = h(SOCk , ik )+ b

=

m∑
i=1

wm,jexp{−
(uk − ucj)T0

−1
j (uk − ucj)

2
} + b (3)
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where uk = [ik , SOCk ] consists of the current ik , the state of
charge SOCk at the time instant k respectively. The Gaussian
function exp{− 1

2 (uk − ucj)
T0−1j (uk − ucj)} is a feature map

to produce the jth feature, wm,j are the linear coefficients, and
m is the final dimension of the feature space. The hyparam-
eters ucj and 0j are selected training samples center and the
variance, and b is the constant term in the model.

III. A SPARSE LEARNING MACHINE
Evidently, an accurate model needs to be built for the mea-
surement equation as shown in section II. In order to enhance
the model accuracy and to reduce the computation complex-
ity, a sparse learning machine is presented in the following
section. To achieve the sparse solution while considering the
unbalanced data samples, a weighting scheme is adopted to
adjust the contributions of samples to the sum of the squared
errors (SSE) cost function [36]. In the following, a weighted
LS-SVM model is presented first in part A, then a fast algo-
rithm to build a sparse learning machine is given in part B.
Then part C provides the details of parameter optimization
in the sparse learning machine. Finally, the whole sparse
learning machine construction procedure is summarized in
part D.

A. THE WEIGHTED LS-SVM MODEL
Consider a nonlinear multiple-input single-output system

y = f (x) (4)

where x ∈ <m and y ∈ <.
Now suppose the above nonlinear system is approximated

using a SVM model

y = 8(x) · w+ e (5)

where x ∈ <N×k and y ∈ <N×1 denotes N pairs of samples
{(x1, y1), (x2, y2), · · · , (xN , yN )}. w ∈ <(N+1)×1 presents the
linear parameter vector. e ∈ <N×1 is the model residual
vector. 8 = [81(x),82(x), · · · ,8N (x),E] ∈ <N×(N+1)

including the constant terms (E = [1, · · · , 1]T ) are series
of mapping functions projecting the input space to a high-
dimensional feature space.

The weighted least squares algorithm [37] used in the
model identification can be formulated as follows

min
w,ei

J =
1
2
‖w‖2 +

1
c
·

N∑
i=1

1
2λi
· e2i

st ei = yi −8(xi) · w (6)

where ‖w‖2 represents the regularization term for a trade-off
between the magnitude of the coefficients and the estimation
error, c is the regularization parameter. 8(xi) = [81(xi),
82(xi), · · · ,8N (xi), 1] represents N + 1-dimensional fea-
tures induced by a sample. [λi], i = 1, · · · ,N is defined as
a sequence of random numbers to weigh the contribution of
each sample.

The following cost function can be obtained using the
Lagrangian method

L =
1
2
‖w‖2 +

1
c
·

N∑
i=1

1
2λi
· e2i −

N∑
i=1

αi{8(xi) · w+ ei − yi}

(7)

where α = [α1, · · · , αN ]T is the Lagrange multiplier vector.
The Karush-Kuhn-Tucker (KKT) conditions for optimiz-

ing the above cost function are given below

∂L
∂w
= 0⇒ w =

N∑
i=1

αi8(xi),

∂L
∂ei
= 0⇒ αi =

ei
c · λi

, ∀i ∈ {1, · · · ,N }

∂L
∂αi
= 0⇒ w ·8(xi)+ ei − yi = 0, ∀i ∈ {1, · · · ,N }

(8)

Thus the optimality problem can be formulated as

y =Mα (9)

where M = K + c · 3 is a positive definite symmetric
matrix and K = 8T8 is the matrix of the kernel
function. A typical kernel function is radial basis func-
tion (RBF) given byK(xi, xj) =exp(−‖xi − xj‖/(2σ 2)).3 =
diag(λ1, · · · , λN ) is the weight vector related to the error
spectrum.

Substituting the solution α̂ of linear equations (9) into (8),
the resultant LS-SVM model for (5) is given as

ŷ = Kα̂ (10)

where ŷ is the estimation outputs.

B. A FAST ALGORITHM TO BUILD A SPARSE
LEARNING MACHINE
Though the computation load in the training process is partly
reduced by introducing the kernel function, to solve the
KKT equations (9) is still computationally expensive. Thus
a fast recursive method is presented to build a sparse learning
machine applied to the LS-SVM formulation. Unlike the
kernel method, the nonlinear features are constituted by the
mapping functions [18], [31]. The basis mapping functions
are first selected using the entire training samples for a high-
dimensional feature space. Gaussian Basis function has a
good approximation performance for unknown nonlinear sys-
tems, so here the feature space with m dimension is written
as

8m(xi) = [81(xi), · · · ,8m(xi)]

8j(xi) = exp{−
1
2
(xi − sj)T0−1j (xi − sj)} (11)

where j = 1, · · · ,m and m is the maximum dimension of the
mapped high dimensional space Fm. 0−1j is the width (vari-
ance) matrix and sj is selected training samples center matrix.
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Including the constant terms, the N + 1 candidate features
in matrix notation (8 in Eqn. (5) ) are given as

8N (x) =


81(x1) · · · 8N (x1) 1
81(x2) · · · 8N (x2) 1
· · · · · · · · ·

81(xN ) · · · 8N (xN ) 1

 (12)

Noting that (6) is a constrained optimization problem
with one equality which is solved by the direct substitution
method, the cost function can thus be redefined as

min
w,µi

J =
1
2
‖w‖2 +

1
c
·

N∑
i=1

1
2λi
· (yi −8(xi) · w)2 (13)

and

J =
1
2
wTw+

1
2c
· (y−8 · w)T3−1(y−8 · w) (14)

where 8 = [81, · · · ,8N , 1Nx1]T , 8j = [8j(x1), · · · ,
8j(xN )] and 3 = diag(λ1, · · · , λN ).

Then the partial derivative of the cost function with respect
to the variable w is given by

∂J
∂w
= w+

1
c
·8T8 · w−

1
c
·8T3−1y (15)

Setting the gradient (15) to zero, the minimal w can be
computed as

ŵ = (c · I +8T3−18)−18T3−1y (16)

According to the well-known matrix inversion lemma
[A + BCD]−1 = A−1 − A−1B[DA−1B + C−1]−1DA−1, w
can be reformulated as

ŵ =
1
c
· (I −8T (88T

+ c ·3)−18)8T3−1y

=
1
c
·8T (I − (88T

+ c ·3)−188T )3−1y

=
1
c
·8T (I +

3−1

c
88T )−13−1y

= 8T (88T
+ c ·3)−1y (17)

Therefore the linear model in the feature space is built by

ŷ = 8(x) · ŵ (18)

Then the estimation error is given by

e = y−8(x) · ŵ

= c ·3(88T
+ c ·3)−1y (19)

Substituting (17) and (19) into (14), the minimal cost func-
tion can be expressed as

J = (8T (c ·3+88T )−1y)T (8T (c ·3+88T )−1y)

+
1
c
·(c·3(c·3+88T )−1y)T3−1(c·3(c·3+88T )−1y)

= yT (88T
+ c ·3)−1y (20)

Referring to (17) and (20), define a recursive matrixM

M = 88T
+ c ·3 (21)

According to the FRA method [32], the features are
selected from the candidate feature matrix one by one based
on their contributions to the cost function. Suppose k features
were selected, the recursive matrixM is calculated by

Mk = 8k8
T
k + c ·3 (22)

where k = 1, · · · ,m andM0 = c ·3.
According to the definition in (22), the matrixMk has the

following properties:

MT
k = (8k8

T
k + c ·3)

T
= Mk (23)

M−1k+1 = (8k+18
T
k+1 + c ·3)

−1

= (8k8
T
k +8k+18

T
k+1 + c ·3)

−1

= (Mk +8k+18
T
k+1)

−1

= M−1k −
M−1k 8k+18

T
k+1M

−1
k

1+8T
k+1M

−1
k 8k+1

= M−10 −

k∑
i=1

M−1i−18i8
T
i M
−1
i−1

1+8T
i M
−1
i−18i

(24)

where k = 0, · · · ,m − 1 and M−10 =
1
c · 3

−1
=

1
c ·

diag(λ−11 , · · · , λ−1N ) is a diagonal matrix.
The cost function and the w estimation with k features

become

ŵk = 8T
kM
−1
k y (25)

Jk = yTM−1k y (26)

Now, the net contribution of the (k+1)th feature to the cost
function can be given

1Jk+1 = yT (M−1k −M
−1
k+1)y

= yT
M−1k 8k+18

T
k+1M

−1
k

1+8T
k+1M

−1
k 8k+1

y (27)

where k = 0, · · · ,m− 1.
In order to simplify the computation of the net contribu-

tion and the linear parameter, two new intermediate matrices
A ∈ <m×N = {ak+1,i} and B ∈ <m = {bk+1} are defined

ak+1,i = 8T
k+1M

−1
k 8i

bk+1 = yTM−1k 8k+1 (28)

where k = 0, · · · ,m − 1 and i = 1, · · · ,N . Note that
(ak+1,i = 8T

k+1M
−1
k 8i) 6= (ai,k+1 = 8T

i M
−1
i−18k+1)

because ofMk 6= M i−1.
ak+1,i can be iteratively calculated as follows:

ak+1,i = 8T
k+1M

−1
k 8i

= 8T
k+1(M

−1
0 −

k∑
j=1

M−1j−18j8
T
j M
−1
j−1

1+8T
j M
−1
j−18j

)8i

= 8T
k+1M

−1
0 8i −

k∑
j=1

8T
k+1M

−1
j−18j8

T
j M
−1
j−18i

1+8T
j M
−1
j−18j

= 8T
k+1M

−1
0 8i −

k∑
j=1

aj,k+1aj,i
1+ aj,j

(29)
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Similarly,

ai,k+1 = 8T
i M
−1
i−18k+1

= 8T
i (M

−1
0 −

i−1∑
j=1

M−1j−18j8
T
j M
−1
j−1

1+8T
j M
−1
j−18j

)8k+1

= 8T
i M
−1
0 8k+1 −

i−1∑
j=1

8T
i M
−1
j−18j8

T
j M
−1
j−18k+1

1+8T
j M
−1
j−18j

= 8T
i M
−1
0 8k+1 −

i−1∑
j=1

aj,k+1aj,i
1+ aj,j

(30)

where i and k reflect the position of the features in the matrix
8 described by (12).
Particularly, the bottom triangular elements inAwith k > i

can be computed as

ak+1,i = 8T
k+1M

−1
0 8i −

k∑
j=1

aj,k+1aj,i
1+ aj,j

= 8T
i M
−1
0 8k+1 −

i−1∑
j=1

aj,k+1aj,i
1+ aj,j

−

k∑
j=i

aj,k+1aj,i
1+ aj,j

=
ai,k+1
1+ ai,i

−

k∑
j=i+1

aj,k+1aj,i
1+ aj,j

(31)

While for B, by using (24), bk+1 can be computed

bk+1 = yTM−1k 8k+1

= yT (M−10 −

k∑
j=1

M−1j−18j8
T
j M
−1
j−1

1+8T
j M
−1
j−18j

)8k+1

= yTM−10 8k+1 −

k∑
j=1

yTM−1j−18j8
T
j M
−1
j−18k

1+8T
j M
−1
j−18j

= yTM−10 8k+1 −

k∑
j=1

aj,k+1bj
1+ aj,j

(32)

Then, substituting the definition of ak+1,i and bk+1
into (27), the net contribution of a new feature to the cost
function can be calculated as

1Jk+1 = yT
M−1k 8k+18

T
k+1M

−1
k

1+8T
k+1M

−1
k 8k+1

y

=
(bk+1)2

1+ ak+1,k+1
(33)

By computing the net contribution of each candidate fea-
ture to the cost function using equation (33), the best feature
can be selected one by one.

After m features are selected, the estimated linear
parameters w is given by

ŵ = 8T
mM
−1
m y

=


8T

1
8T

2
...

8T
m

M−1m y =


8T

1M
−1
m y

8T
2M
−1
m y
...

8T
mM
−1
m y

 (34)

With (28), the estimate of each element ŵm,i,
i = 1, · · · ,m is computed as

ŵm,i = 8T
i M
−1
m y

= 8T
i (M

−1
0 −

m∑
j=1

M−1j−18j8
T
j M
−1
j−1

1+8T
j M
−1
j−18j

)y

= 8T
i M
−1
0 y−

m∑
j=1

aj,ibj
1+ aj,j

= yTM−10 8i −

i−1∑
j=1

aj,ibj
1+ aj,j

−

m∑
j=i

aj,ibj
1+ aj,j

=
bi

1+ ai,i
−

m∑
j=i+1

aj,ibj
1+ aj,j

(35)

C. MODEL PARAMETERS
In the aforementioned learning machine framework, a num-
ber of parameters including the regularization parameter,
the weights for the training errors, as well as the parameters in
the mapping function are introduced. Though the introduced
regularization parameter has been discussed in [31] and [38],
there is still no effective way to optimize the parameter.
Here, the regularization parameter is dynamically adjusted
in the experiments. On the other hand, a sparse solution is
achieved by selecting the mapping function while the sample
information is retained. Further, based on [39], a weighting
scheme is introduced to the training errors, where the samples
closer to the next prediction time are given larger weights.
That is, for 10 samples used to train model, 10 randomweight
values are generated within the range of (0,10). These weight
values are sorted in the ascending order, the smallest is ranked
as the first, and the largest is ranked the last. Then, to predict
the voltage at time instant k + 1, the sample at time instant k
is given the largest weight, while the sample at k − 9 is given
the smallest weight.

Furthermore, the centers in the mapping functions which
are directly selected from the training samples may not be the
optimal ones. Thus the centers and the widths of the mapping
functions are optimized using a computationally effective
method such as the differential evolution (DE) algorithm in
this paper. Defining a nonlinear vector X = [x1, x2]T to
represent the optimized centers and widths of the mapping
functions where xi ∈ [xi,min, xi,max], i = 1, 2, the procedures
of the DE algorithm used to optimize the parameters are given
as follows.
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Step 1 Initialization. The evolutionary parameters such as
the upper/lower bounds [Xmin, Xmax], the maximum num-
ber of generations T , the mutation parameter F ∈ [0, 2],
the population size N and the crossover factors CR ∈ [0, 1]
are initialized firstly. Then real-valued vectors are generated
as the initial population. Hence, the ith vector is expressed as

X i,0 = [x1i,0, x
2
i,0]

T (36)

Step 2 Evaluation. The net contribution of each individual
solution is computed using (33)

Step 3 Mutation. The ith mutated vector V i,t at the
t th ( t = 0, · · · ,T ) generation is produced by three randomly
selected individuals at the t th ( t = 0, · · · ,T ) generation.
Suppose 3 integers (r1, r2, r3 ∈ 1, · · · ,N and r1 6= r2 6=
r3 6= i) are selected randomly, the mutated vector is given as

V i,t =

{
X r1,t + F(X r2,t − X r3,t ), V i,t ∈ [Xmin,Xmax]
Xmin + F(Xmax − Xmin), otherwise

(37)

Step 4 Crossover.A portion uji,t of parameters in the exist-
ing target vector U i,t at the t th ( t = 0, · · · ,T ) generation is
replaced by

uji,t =

{
vji,t randj ≤ CR or j = randni
x ji,t randj > CR and j 6= randni

j = 1, 2 (38)

where randj ∈ [0, 1] and randni ∈ 1, 2, vji,t is an element of
Vi,t .
Step 5 Selection. Comparing the cost values of Xi,t and

Ui,t , the better one will be selected into the next generation

X i,t+1 =

{
U i,t net(U i,t ) > net(X i,t )
X i,t net(U i,t ) ≤ net(X i,t )

i = 1, · · · ,N (39)

Step 6 Iteration. Steps 2-6 are repeated until the evolution
has reached T generations.

D. THE SPARSE LEARNING MACHINE CONSTRUCTION
PROCEDURE AND COMPUTATIONAL COMPLEXITY
ANALYSIS
Now given all the above preminaries, the whole procedure
to produce the sparse learning machine is summarized as
follows.

Step 1. Initialization:
a) Select suitable values for the regulation parame-

ters c and the weight matrix 3 of errors based on
experiments;

b) Set the max dimension n of the high-dimension
feature space with the initial dimension k = 0,
the size (ss) of the population, the initial popu-
lation ([sj;0

−1
j ], j = 1, · · · , ss) for initial can-

didate mapping functions (80 = [Φ1, · · · , Φss])
using the training samples;

c) Set the parameters of the DE algorithm.

Step 2. Forward learning machine construction:

a) Set k = k+1, at the k th step, 1 ≤ k 5 n step, cal-
culate ai,j (i = 1, · · · , k) and bj (j = 1, · · · ,M )
using (29), (30) and (32). Then compute the net
contributions of all candidate solutions to the cost
function using (33) generated by the initial map-
ping functions.

b) Optimize the mapping function using the DE
algorithm and update the net contributions.

c) Select the feature with the maximum net contri-
bution as the k th column in the feature matrix.

d) If the desired number of dimension (n) is reached,
or MSE satisfies the accuracy, go to Step 3.
Otherwise, go back to 2(a).

Step 3. calculate the linear parameter using (35).

It is clear that solving the weighted LS-SVM is equivalent
to computing the inverse of a full N × N matrix in (9),
with the complexity O(N 3). Here using the above proposed
forward selection assisted method to construct the sparse
learning machine, the computational complexity is reduced
to O(n · N 2), where n is the number of selected features.

IV. BATTERY SOC ESTIMATION USING UKF METHOD
From section II, the real-time battery SOC estimation proce-
dure has two parts. Firstly, a sparse learning machine model
is built using the proposed algorithm in section III to cap-
ture the nonlinear behaviours of batteries. Then substituting
the measurement model into the batteries state-space model,
the batteries SOC can be estimated using the UKF method.
From the (2) and (3), the state-space model for UKF is
formulated as
SOCk = SOCk−1 − η ·1t · ik/Qn + sk
= f (SOCk−1, ik )+ sk
Vk =

∑m
i=1 wm,jexp{−

1
2 (uk−ucj)

T0−1j (uk−ucj)}+vk
= h(SOCk , ik )+ vk

(40)

where sk and vk represent the process and the measurement
noises respectively. f (·) is the state equation which indicates
the relationship of the state variable (SOC) and control vari-
able (i). h(·) is the measurement equation identified by the
proposed model.

Then the unscented Kalman Filter (UKF) is applied which
is shown in Fig.1. The predicted SOC ( ˜soc(k + 1)) at the
time instant k + 1 is calculated by the state equation with
K1 = η · 1t/Qn. Furthermore, ˜soc(k + 1) is updated as
ˆsoc(k + 1) using the proportion function with gain K . The
details of the UKF method is described as follows

Step 1 Initialization. Calculate the initial states and the
covariance matrix as

ˆSOC0 = E[SOC0] (41)

P0 = E[(SOC0 − ˆSOC0)T (SOC0 − ˆSOC0)] (42)
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Step 2 Unscented Transformation.
1) In order to simplify the functions f (·) and h(·), the state

matrix is extended as

ˆSOC
a
k−1 = [ ˆSOC

T
k−1, 0, 0] (43)

Pak−1 = diag(Pk−1,Q,R) (44)

where Q and R is the covariance of the process noise and
the measurement noise respectively. ˆSOC

a
0 = [ ˆSOC

T
0 , 0, 0],

Pa0 = diag(P0,Q,R).
2) Compute the sigma points by

χk−1,0 = ˆSOC
a
k−1

χk−1,i = ˆSOC
a
k−1 + (

√
(L + λ)Pak−1)i, i = 1, · · · ,L

χk−1,i = ˆSOC
a
k−1 − (

√
(L+λ)Pak−1)i, i = L+1, · · · , 2L

(45)

where ˆSOC
a
k−1 and Pak−1 are the states and the covariance

matrix at the time instant k−1 respectively. (
√
(L + λ)Pak−1)i

stands for the ith row of the square-rooting matrix. L is
the number of dimensions after the state-space is extended
as formulated in (43) and (44), and L = 3 in this paper.
λ = α2(L + t)− L in which t = 0 represents the distribution
of the sigma samples, while α ∈ [10−2, 1] impacts the non-
linear characteristic of the measurements.

3) Compute the weights (c(m)) for the mean and (c(c))
for the covariance as follows

c(m)0 = λ/(L + λ)

c(c)0 = λ/(L + λ)+ (1− α2 + β)

c(m)i = c(c)i = λ/2(L + λ) i = 1, · · · , 2L

(46)

where β = [0, 2] is determined by the distribution of the
states.

Step 3 Prediction. The predicted state and the correspond-
ing state covariance are updated as

χk|k−1,i = f (χk−1,i, ik ) (47)

˜SOCk|k−1 =

2L∑
i=0

c(m)i χk|k−1,i (48)

Pk|k−1 =
2L∑
i=0

c(c)i (χk|k−1,i

− ˆSOCk|k−1)(χk|k−1,i − ˆSOCk|k−1)T (49)

while the prior estimations of the measurements are obtained
as

Zk|k−1,i = h(χk|k−1,i, ik ) (50)

Ṽk|k−1 =
2L∑
i=0

c(m)i Zk|k−1,i (51)

Step 4 Correction (Estimation). Based on the prediction
of the voltage measurement, the state is modified as follows

Pz,k =
2L∑
i=0

(Zk|k−1,i − Ṽk|k−1)(Zk|k−1,i − Ṽk|k−1)
T

(52)

Pxz,k =
2L∑
i=0

c(c)i (χk|k−1,i

− ˜SOCk|k−1)(Zk|k−1,i − Ṽk|k−1)
T

(53)

K = Pxz,kP
−1
z,k (54)

ˆSOCk = ˆSOCk|k−1 + Kk (Vk − V̂k|k−1) (55)

V. EXPERIMENTAL RESULTS
To build the battery model using the proposed algo-
rithm, a series of experiments were conducted on a 5-Ah
LiFePo4 battery using amulti-functionArbin BT2000 battery
test device and the test data were recorded by a host com-
puter. The battery was placed in a temperature chamber with
constant temperature of 25�. The voltage and current were
recorded every 1s until the measurements falls within 0.02%
of the full scale range (FSR) at low power applications and
0.05% of the FSR at high power applications. The Federal
Urban Drive Schedule (FUDS) was tested on the batteries as
shown in [1].
Firstly, a normalization process is applied to the acquired

data because the magnitudes for the current, SOC and voltage
are quite different. Here, the max-min normalization method
defined below is adopted

U = Umin + (Umax − Umin)

◦ [(uu− uumin)� (uumax − uumin)] (56)

where U is the normalized matrix ranges from Umin to Umax ,
and uu is the actual matrix. Accordingly, the uumin and uumax
consist of the minimum value and the maximum value of
each variable respectively. The operators ◦ and � denote
the Hadamard product operator and the inverse operator of
Hadamard product respectively.
Secondly, a series of tests were conducted to choose suit-

able regularization parameter and the weights. As indicated
earlier, the weights for the errors are randomly generated and
the difference between two consecutive weights is set around
0.5 and the maximum weights is set to 10. The maximal fea-
ture dimension is 4. Then for the DE algorithm the mutation
parameter is set as F1 = 0.08 for optimizing the centres and
F2 = 0.8 for the widths. The crossover factors CR = 0.2
and CR = 0.6 are applied for the centers and the widths
respectively. The population size n = 8 and the maximum
generation is set to l = 20. Considering that the batterymodel
varies with time, the measurement equation is retrained when
every 10 new training samples are collected. The training and
validation performances using the different weights are given
in Table 1.
In Table 1, the RMSE (root-mean-square error) is chosen

as the model performance indicator. The test results are illus-
trated in Fig. 2. It is clear that the model is more accurate
using the ascending weights which the absolute errors are
almost within ±0.02. Especially for non-smooth ramp data
points, the prediction results are more accurate than the cases
when the same weights or the descending weights are applied
to the errors.
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TABLE 1. Performance of S-DE-WLM under different parameter
distributions.

FIGURE 2. Training results of the FUDS process using different weights.

FIGURE 3. Validating results of the FUDS process using different weights.

Then, the proposed model is compared with the conven-
tional LS-SVM model and the SVM model. The LS-SVM
method is detailed in [40] and the RBF kernel function is
tuned by both the k-fold cross validation (LSSVM in the fol-
lowing figures and tables) and the DE method (DE-LSSVM
in the following figures and tables). The SVM model is also
built for the comparison purpose where the parameters are
optimized by both the k-fold cross validation (SVM in the
following figures and tables) and theDEmethod (DE-SVM in
the following figures and tables) [41], [42]. In order to verify
the proposed method, two numbers of mapping functions

TABLE 2. Computation time of different algorithms.

TABLE 3. Performance of different algorithms.

including 10 and 4 are tested in this paper which are named as
’S-DE-WLM-N10’ and ’S-DE-WLM-N4’ respectively. The
training and validation computation time and the performance
of the three methods are listed in Table 2 and Table 3.

The maximum computation time and the mean computa-
tion time shown in Table 2 are calculated on the whole cycle
simulations using 23170 samples. The maximum time for
all algorithms are less than the sampling time (1 second).
However, the average computation time using the proposed
new modelling approach is significantly less than the other
two methods. This is due to the introduction of the fast recur-
sive algorithm for constructing a sparse features space thus
reducing the algorithm complexity. The root mean square
error (RMSE) and the maximum absolute error (MAX)
in Table 3 reveals that the proposed method can achieve better
accuracy than the other method with much less time.

The training results and the validation results are detail
illustrated in Fig 4 and Fig 5 respectively.

According to Fig 4, it is evident that the outputs of the
resultant model produced by the proposed algorithm is sim-
ilar as the conventional LS-SVM method. The modelling
errors produced the proposed method are almost within
[−0.005, 0.005] which is similar to the LS-SVM method
but has the similar performance as the DE-LSSVM, SVM,
DE-SVM. While for predicting ramped non-smooth data
points, the SVM method is the worst with the absolute error
reaching 0.06. However, the validation results illustrated
in Fig 5 show that the models built by the proposed algorithm,
the DE-LSSVM method, the SVM model and the DE-SVM
method all have better generalization performance than the
LS-SVM model. The validation results obtained by the pro-
posed method is more accurate where all the absolute errors
are almost contained within a smaller range [−0.02, 0.02]
and only a few reached to 0.05, while the absolute errors
of the LS-SVM model are sometime even greater than 0.5.
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FIGURE 4. Training results of the FUDS process using different methods.

FIGURE 5. Validating results of the FUDS process using different methods.

The reason is that the model sparseness is lost using the
LS-SVM method, leading to poor generalization perfor-
mance. Though the DE method is adopted to improve this
problem the computation time is still high. Accordingly,
the S-DE-WLM improves the generalization capability while
reduces the computational complexity.

Once the measurement equation developed by the pro-
posed method is combined with the state equation, the UKF
algorithm is then applied to estimate SOC. In the initialization
process, t is set to zero given in section IV, while themeasure-
ment noise covariance, α and β are set as 1e−5, 5e−1, 1 and 0
respectively. The estimated SOC which is illustrated in Fig 6
tracks well with its reference SOCwhich are calculated by the
ampere-hour method ignoring the measurement noise in the
lab environment based on the known initial SOC. Considering
that the initial SOC in the actual working condition is
unknown, the initial SOC is set to 0.7. It is clearly shown
that the SOC estimation can quickly follow the actual SOC

FIGURE 6. The estimated SOC of the FUDS process using the UKF.

values. Once the SOC estimation approaches to the reference
SOC, the RMSE can reach 2.4882e−04. The error of the SOC
estimation is between−0.05% and+0.2% as shown in Fig 6,
outperforming the results reported in the literature [2] which
is between −0.79% and 0.94%. While in literature [43],
the error is within ±15% using the Ampere hour counting
method when it is applied in a practical environment. While
the EKF achieves 5% error. Thus, the SOC estimation used
the proposed method in this paper is more accurate.

VI. CONCLUSION
A novel sparse learning machine based on the LS-SVM for-
mulation has been proposed for real-time SOC estimation in
this paper. A mapping function instead of the kernel func-
tion is first applied to produce the nonlinear features space.
In order to construct sparse learning machine, a fast selection
method is used to select the mapping function, while the
nonlinear parameters in the mapping functions are optimized
by the DE algorithm. The proposed method is used to develop
the SOC estimation model based on the FUDS test data sets.
The experimental results confirm that the proposed method
can build a more accurate battery model with excellent gener-
alization performance in comparison with two other methods,
namely SVM and LS-SVMmodels. Note that a small data set
is used to train the model, and the proposedmethod is suitable
for online implementations.

The obtained battery model is then used as the measure-
ment equation, a highly accurate SOC estimation is achieved
by using the UKF algorithm. The estimated SOC values are
consistent with the referenced SOC with a 10−7 mean square
error on the FUDS test data. It is demonstrated that the UKF
method is more accurate than other KF variants on SOC
estimations.
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