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Methods 

 

Experimental Protocols 

Bacterial strains and fluorescent labelling  

The clean deletion mutants and the corresponding WT strains17,31 used in this study were 

labelled with either CFP or YFP using a Gmr mini-Tn7 vector32, using a three-strain mating 

protocol. Briefly, P. aeruginosa colonies were grown overnight at 42°C on an LB (Lennox, 20 

g/l, Fisher Scientific) plate containing 1.5% (w/v) agar (Difco brand, BD). These were then 

mixed with both the mini-Tn7 donor E. coli strain and an SM10 λpir E. coli helper strain on 

the surface of a fresh LB agar plate. The resulting mixed three strain plate was incubated 

overnight at 30°C. Cells were then resuspended in liquid LB and transformants selected on LB 

agar plates containing both gentamicin (30 mg/l) and kanamycin (25 mg/l). The resulting CFP 

and YFP labelled strains were then directly competed with unlabelled strains to confirm that 

the impact of the labelling process on growth rate and motility was negligible (Extended Data 

Fig. 8a). 

 

Bacterial cell culture 

We streaked -80°C freezer stocks onto LB agar plates and incubated them overnight at 37°C. 

Single colonies were picked and grown overnight in liquid LB at 37°C under continuous 

shaking. The following day, overnight cultures were diluted 30-fold in fresh LB broth and 

returned to the 37°C shaking incubator for two hours to obtain cells in exponential phase. 

Immediately before being used in colony experiments, the optical density at 600 nm (OD600) 

was adjusted to 0.05 (approximately 12,500 cells µl-1) using fresh LB. For co-culture 

experiments, the optical densities of cultures of each individual strain were adjusted to OD600 

= 0.05. These were then mixed in a single tube to ensure both strains were present in equal 

proportion. All colony-based assays were conducted at room temperature using LB agar 

composed of 5 g/l NaCl (Fisher Scientific), 5 g/l yeast extract (Bacto brand, BD) and 10 g/l 

tryptone (Bacto brand, BD), solidified with either 0.8% (w/v, subsurface assays unless 

otherwise specified) or 1.5% (w/v, surficial assays) agar.  

 

Microscopic imaging 

We used three microscopes in this study: two higher magnification inverted microscopes 

(denoted as “Zeiss inverted” and “Nikon inverted” within this text and our Supplementary 

Methods section) and a lower magnification stereo zoom microscope (“Zeiss zoom”). 

Specifications of these instruments are provided in Supplementary Table 1. 

 

Surficial colony competition assays 

Surficial colonies were inoculated with a liquid culture containing an equal fraction of two 

different strains, as described above. We spotted 10 µl of exponential phase culture onto a 

freshly poured 1.5% (w/v) LB agar plate and sealed the plate lids with Parafilm (Bemis) to 

prevent evaporation. The surficial colonies in which we evaluated the distribution and 



 2 

orientation of cells using scanning laser confocal microscopy (Extended Data Fig. 2b, c) were 

incubated at room temperature for 16 h, ensuring that the colony was still sufficiently thin that 

its entire thickness could be imaged. In contrast, the surficial colonies used to quantify the 

relative fitness of WT/ΔpilH cells and their macroscopic distribution (Fig. 2a, b) were 

incubated at room temperature for 48 h.  

We calculated the average number of cell divisions in each strain over the 48 hours of 

competition using the expression 

 

number of cell divisions =	 log& 'number	of	cells	of	strain inoculated onto surface

number of cells of strain in colony after 48 h
4 . (1) 

We measured the number of cells of each strain used to inoculate the surface by diluting the 

mixed liquid cultures used for inoculation and then spreading them onto LB plates. The 

resulting colonies were counted manually after incubation overnight using the Zeiss zoom 

microscope, which allowed us to distinguish YFP and CFP expressing colony forming units 

(CFUs).  

A similar technique was used to estimate the number of cells of each strain in each colony after 

48 h of incubation. Whole surficial colonies were scraped, resuspended in fresh media, and 

vortexed. The resulting suspensions were then diluted, spread onto LB plates, and incubated 

overnight. We again used the Zeiss zoom microscope to manually enumerate the number of 

CFUs expressing either YFP or CFP.  

We imaged the colonies after 48 h of competition to visualize the distribution of the two 

different strains. P. aeruginosa natively produces secretions called siderophores that have 

similar excitation and emission spectra to CFP33,34. While individual CFP and YFP labelled 

cells can easily be distinguished in the monolayer of subsurface colonies (Fig. 2g), surficial 

colonies are thicker, incubated for longer, and must be imaged with lower resolution objectives 

(owing to the lack of a coverslip). These three factors made it difficult to distinguish CFP-

labelled cells from siderophore secretions in surficial colonies. To circumvent this problem, we 

imaged surficial colonies using a combination of brightfield and YFP fluorescence, such that 

regions with a larger fraction of CFP cells appeared darker grey in the merged brightfield/YFP 

images (Fig. 2a).  

 

Subsurface assays 

We prepared subsurface colonies using a protocol similar to one previously described35. 

Briefly, a pad of LB agar was cut from a freshly poured plate and transferred to a glass slide. 

We used an agar concentration of 0.8% (w/v), unless otherwise specified (Extended Data Fig. 

10). The pad was spotted with a 1 µl drop of bacterial culture adjusted to an optical density of 

OD600 = 0.05, which was then allowed to dry until fully evaporated. The pad was then carefully 

inverted and placed into a coverslip-bottomed Petri dish (175 µm coverslip thickness, MatTek), 

sandwiching the cells between agar and the glass coverslip. By fully enclosing the agar pad, 

these dishes prevented evaporation and agar shrinkage over the course of the experiment. We 

found it was essential to use freshly poured agar to ensure consistency between experiments. 

We note that the bacterial culture was spotted onto the side of the agar that was facing up when 
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it was initially poured (i.e. the side that was exposed to air rather than the side against the 

plastic Petri dish). 

Experiments with cells that lack pili (ΔpilB17, Fig. 1f, g) and flagella (ΔflgK36, Extended Data 

Fig. 1a, b)  indicate that the cells in our assays move solely via pili-based motility. While cells 

can swim in agar at low concentrations37,  we found that the lowest concentration of agar used 

in our experiments (0.8%) supressed flagella-based motility. ΔflgK cells, which lack flagella, 

form subsurface colonies under 0.8% agar that actually expand at a faster rate than WT cells, 

verifying that the colony expansion observed in our assay is not driven by flagellar motility 

(Extended Data Fig. 1a, b). This finding is consistent with previous work that shows mutants 

lacking flagella exhibit more rapid twitching motility than WT cells18, likely because flagella 

tend to adhere to surfaces.  

A detailed description of each type of assay performed in the subsurface environment is 

provided in the Supplementary Methods. 

 

Imaging rosette formation 

Quantifying the movement of both defects and individual cells during the process of rosette 

formation (Fig. 4d-f, Extended Data Fig. 7, Supplementary Video 9) was exceptionally 

challenging, as it required imaging the monolayer at high spatial resolution (63X 

magnification, two frames per minute) at precisely the time and place that rosettes begin to 

form. It was difficult to estimate a priori where rosette formation would occur and thus where 

to place the Zeiss inverted microscope’s relatively small field of view to capture these events. 

To maximize our chances of success, we inoculated multiple ΔpilH-YFP/WT-CFP subsurface 

colonies with 10 µl of culture at a range of different optical densities (OD600) in a 6-well 

coverslip-bottomed plate (175 µm coverslip thickness, MatTek). We then imaged the 

monolayer of each colony in turn, starting from the colony initiated with cells at the highest 

optical density. As rosettes form earlier in colonies inoculated at higher densities, this provided 

multiple opportunities to image the monolayer precisely at the moment that rosette formation 

begins. 

Initially, we attempted to take time-lapse images of rosette formation using fluorescent 

confocal microscopy so we could use their YFP and CFP labels to continuously follow how 

the two strains were distributed. However, this bleached the cells and adversely affected their 

movement. Instead, we imaged the dynamics of rosette formation using brightfield microscopy 

for a period of one hour (Supplementary Video 9). After rosettes had formed, we then 

immediately switched over to fluorescent confocal imaging, which allowed us to quantify the 

distribution and orientation of the two different strains within the same rosette (Fig. 4f). Both 

brightfield and confocal microscopy were performed on the Zeiss inverted microscope. 

 

Liquid culture competition assay 

To compare the growth rate of mutants (Extended Data Fig. 8b), we grew the different strains 

in liquid culture and estimated their fitness relative to a WT reference strain by counting CFUs. 

We mixed a CFP labelled WT reference strain with YFP labelled ΔpilH, ΔpilB, and WT test 

strains in a 1:1 ratio. Liquid cultures were started at OD600 = 0.02 and placed in a shaking 
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incubator at 23°C, the same temperature used in the subsurface colony experiments. We 

counted the number of YFP and CFP expressing CFUs after t = 0, 210, and 420 mins of 

competition to calculate the relative fitness, w, of the YFP test strain compared to that of the 

CFP control: 

𝑤 =	 ln(𝐶;(𝑡) 𝐶;(0)⁄ )
ln(𝐶?(𝑡) 𝐶?(0)⁄ )	, (2) 

where 𝐶;(0) and 𝐶?(0) are respectively the numbers of YFP and CFP cells measured at the 

beginning of the competition, and 𝐶;(𝑡) and CC(t) are the numbers of YFP and CFP cells at 

time 𝑡. 
 

Measurement of cell length in liquid cultures 

To measure the lengths of cells in liquid culture (Extended Data Fig. 6a), we combined 

exponentially growing cultures of ΔpilH-YFP and WT-CFP at a 1:1 ratio. These were fixed 

with 3% paraformaldehyde and then diluted in phosphate buffered saline (PBS, Fisher 

Scientific) in 96-well plates with optical bottoms (Nunc brand, Thermo Scientific). We then 

centrifuged plates to ensure that cells were oriented flat against the optical bottoms of the wells 

and imaged them in brightfield, YFP and CFP channels at 63X magnification using the Zeiss 

inverted microscope. Cell lengths were then measured using our FAST software (see below). 
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Analysis of Experimental Data 

Quantification of subsurface colonies 

Our automated measurements of colony edge positions (Figs. 1f, g, 2d, Extended Data Figs. 

1a, b, 9b), cell packing fractions (Fig. 2e, Extended Data Fig. 10a) and strain composition (Fig. 

2f, Extended Data Figs. 9c, 10b) were performed using custom Matlab (Mathworks) scripts, 

which have been made publicly available as the colEDGE package (see Code Availability 

statement below). For a detailed description of the techniques used in this package, please see 

the Supplementary Methods and Supplementary Fig. 1. 

 

Single-cell tracking 

We attempted to use existing software packages to track movement of individual cells within 

the monolayer of our subsurface colony experiments. As a single monolayer image can contain 

more than 10,000 cells, we found existing software packages (most of which are designed for 

tracking sparse objects at low density) were prohibitively slow and/or were incapable of 

correctly segmenting individual cells when they are tightly packed together. Obtaining an 

accurate segmentation under these densely packed conditions is particularly challenging 

because the boundaries that separate neighbouring cells tend to be both thin and very faint.  

To overcome these problems, we developed a new Matlab-based tracking platform named 

FAST38 (Feature-Assisted Segmenter/Tracker). In brief, FAST uses a standard tracking by 

detection framework39. Firstly, individual cells are isolated from their neighbours using a 

sequence of segmentation routines. Next, we measure the “features” of each cell within each 

frame (including cell position, orientation, morphology, and fluorescence intensity). Finally, 

we use these features to follow individual cells between frames using an algorithm that 

automatically trains itself using unsupervised machine learning to optimize tracking based on 

the available feature information. 

In the segmentation stage, we use brightfield images to identify individual cells in the 

monolayer. Our software uses a combination of automated ridge detection40, topographical 

watershed41 and intensity thresholding to generate black and white binary images of cells that 

are not connected to one another. Using this binary image as a mask, we then extract each cell’s 

features from the original brightfield image. 

Tracking is achieved via a two-stage algorithm. In the first stage, a low-fidelity nearest-

neighbour tracking algorithm is used to generate a set of putative links between objects in 

consecutive frames. The subset of links with the smallest corresponding frame-frame object 

displacements is then classified as “correct”, typically forming around half of the total putative 

links. This subset forms the training dataset. Statistical parameters are then extracted from this 

training dataset, allowing us to quantify how robust each feature is as a marker of object identity 

and thus quantify its utility in linking objects between sequential frames. In the second stage 

of the tracking algorithm, these measurements are used to dynamically adjust the weighting of 

each feature such that unreliable features have a reduced weighting compared to more reliable 

features. Tracking is then repeated, using these reweighted features as inputs. This approach 

allowed us to obtain extremely large tracking datasets, for example yielding a total of 161,769 

cell trajectories for a single movie of the WT monolayer. 
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We note that, while FAST has primarily been developed for tracking of single cells in dense 

monolayers, its capabilities can also be leveraged to analyse other datasets. For example, FAST 

can also be used to track topological defects through time and space (see following section).  

 

Detection and analysis of topological defects  

Comets and trefoils occur at singularities in cell orientation. Our automated approach for 

locating these singularities is similar to that described in42: in the first stage, we used the 

OrientationJ plugin for Fiji43 to measure the local orientation of cells using the tensor method44. 

Experimental images of the monolayer were loaded into Fiji and directly analysed using 

OrientationJ. For consistency, we also used the same defect analysis pipeline to analyse the 

output of our 2D SPR model: a timeseries of images was created by drawing rods as grey 

ellipses on a white background. These images were then processed using OrientationJ in the 

same way as for our experimental images. To facilitate direct comparison between our 

experiments and simulations, we set the size of the structure tensor window, which defines the 

spatial scale over which the orientation field is calculated, to a length equivalent to two cell/rod 

widths. This process yields the orientation of cells, q  = [−𝜋/2, 𝜋/2)	at each pixel in the input 

image (Fig. 3b). 

The position, orientation and topological charge of defects was quantified using our custom 

package known as Defector (see Code Availability statement below and Supplementary 

Methods). We next used FAST to track the movement of defects using these three quantities 

as “features” (see above). To reduce noise, defects that were present for fewer than five 

timepoints were excluded from our analyses. This analysis yielded a total set of 1344 trefoil 

trajectories and 1382 comet trajectories. 

The root mean square displacement (RMSD) of tracked trefoils and comets was calculated 

using: 

 

𝑅(𝜏) = 	I〈K𝑥(𝑡 + 𝜏) − 	𝑥(𝑡)N& +	K𝑦(𝑡 + 𝜏) − 	𝑦(𝑡)N&〉 . (5) 
 

where 𝜏 is the lag time, (𝑥, 𝑦)	is the position of the defect, and 〈∙〉 denotes an ensemble average 

across all times 𝑡 and across all defect trajectories. 

True to its name, pili-based “twitching” motility is jerky and highly unsteady, owing to the 

stochastic retraction and detachment of individual pili6,45. Obtaining a reliable measure of cell 

movement around defects thus required averaging of data across a large number of defects and 

cell trajectories so that the stochastic component of each cell’s movement was averaged out. 

To accomplish this, we first tracked the movement of defects and cells independently from one 

another. Next, we transformed the coordinate system of each cell trajectory so that its origin 

and orientation were measured relative to the centre and orientation of a nearby defect. This 

allowed us to combine cell trajectories collected from around a large number of different comet 

and trefoil defects. After the cell trajectories were aligned with one another in the same 

reference frame, we averaged the cell velocities in a two-dimensional array of bins. The size 
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of each bin was 3.2 µm × 3.2 µm. All velocity measurements were made with respect to the 

laboratory reference frame, not the reference frame of the defect. 

We calculated the flowfield around defects in the SPR model in the same way as for the 

experiments, though rod trajectories were obtained directly from the model output, rather than 

from our FAST tracking software. To facilitate direct comparison between the SPR model and 

experiments, we normalized the flowfield velocities around defects by dividing them by the 

average speed of all cells within the simulation or field of view, respectively. 

 

Quantification of collective cell motility during rosette development 

While our FAST software can track horizontally oriented cells in the monolayer of colonies, 

once cells had reoriented perpendicular to the surface it was exceedingly difficult to distinguish 

individual cells. Instead of single-cell tracking, we therefore characterized the collective 

movement of cells during rosette formation using a technique known as particle image 

velocimetry (PIV), which operates on a coarse-grained level and does not require the 

segmentation of individual cells. 

PIV analysis was conducted on a one-hour long timeseries of 63X magnification images 

recorded during the process of rosette formation. Images were pre-processed using contrast 

normalization and manually stabilized to remove thermally-induced drift in the xy-plane. The 

resulting images were analysed using PIVlab, an open-source Matlab-based software46. We 

filtered our results using PIVlab’s built-in tools to remove spurious data points. Specifically, 

velocity vectors that exceeded 0.6 µm min-1 were removed and replaced with velocities 

interpolated from neighbouring points, which helped to reduce noise. The resulting 

measurements of instantaneous velocity were then averaged over the entire one-hour period 

(Fig. 4e, Extended Data Fig. 7a). 
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Self-propelled rod (SPR) simulations 

Our individual-based SPR simulations are based on a previously described model15,47. In brief, 

cells are modelled as rigid rods, which repel each other through an interaction potential, 𝑈. 

Additionally, rods are self-propelled by a force, 𝐹, acting along their axis. In the 2D SPR model 

used to generate Fig. 3d, the equations of motion that determine how the position 𝒓V and 

orientation 𝜃V of rod 𝛼 changes over time are given by: 

𝒇Z ∙ 𝜕𝒓V𝜕𝑡 = 	− 𝜕𝑈V𝜕𝒓V + 𝐹𝒖]V , (6𝑎) 

𝑓a 𝜕𝜃V𝜕𝑡 = 	−𝜕𝑈V𝜕𝜃V , (6𝑏) 
where 𝒇Z is the translational friction tensor, 𝑓a  is the rotational friction constant and 𝒖]V is the 

orientational unit vector (𝒖]V 	= 	 (cos(𝜃V), sin(𝜃V)). 
During rosette formation, cells can reorient out of the plane. To model this process, we give 

the rods in our simulations an additional degree of freedom, by allowing them to change their 

polar angle 𝜙 with respect to the 2D plane. The equation of motion for 𝜙 is similar to that for 

the azimuthal angle 𝜃, but must additionally take into account the elastic restoring force 

imposed by the overlaying agar and extracellular polymeric secretions (EPS) that acts to keep 

cells oriented flat against the surface48,49. Taking these into account, we arrive at the third 

equation of motion: 

𝑓d 𝜕𝜙V𝜕𝑡 = 	− 𝜕𝑈V𝜕𝜙V +
𝑘𝑙V&
2 cos𝜙V sin 𝜙V , (7) 

where 𝑘 is the stiffness of the overlying substrate and 𝑙V is the length of the rod. This additional 

governing equation is used in the simulations presented in Fig. 4a-c and Extended Data Figs. 

5, 6b-e. Further details about these simulations and a more detailed derivation of Eq. (7) can 

both be found in the Supplementary Methods. 

Data availability 

Source data for figures 1-4 and extended data figures 1, 3-6, 8-10 are provided with the paper. 

Additionally, data that support the findings of this study can be accessed at 

https://doi.org/10.15131/shef.data.12735251.v1.  

Code availability 

The FAST cell tracking package can be accessed at https://doi.org/10.5281/zenodo.3630641, 

with extensive documentation on its use and functionality available at 

https://mackdurham.group.shef.ac.uk/FAST_DokuWiki/dokuwiki. The Defector defect 

detection package is available at https://doi.org/10.5281/zenodo.3974873, while the colEDGE 

colony composition package can be accessed at https://doi.org/10.5281/zenodo.3974875. 
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