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Bacteria commonly live attached to surfaces in very dense collectives containing billions 

of cells1. While it is known that motility allows these groups to expand en masse into new 

territory2–5, how bacteria collectively move across surfaces under such tightly packed 

conditions remains poorly understood. Here we combine experiments, cell tracking and 

individual-based modelling to study the pathogen Pseudomonas aeruginosa as it 

collectively migrates across surfaces using grappling-hook like pili3,6,7. We show that the 

fast moving cells of a hyperpilated mutant are overtaken and outcompeted by the slower 

moving wild-type at high cell densities. Using theory developed to study liquid crystals8–

13, we demonstrate that this effect is mediated by the physics of topological defects, points 

where cells with different orientations meet one another. Our analyses reveal that when 

defects with topological charge +1/2 collide with one another, the fast-moving mutant cells 

rotate to point vertically and become trapped. By moving more slowly, wild-type cells 

avoid this trapping mechanism, allowing them to collectively migrate faster. Our work 

demonstrates that the physics of liquid crystals explains why slow bacteria can 

outcompete fast moving cells when competing for new territory. 
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Bacteria generate collective motility on surfaces through a variety of mechanisms2–5,14. While 

flagellar-based swimming in three dimensions is perhaps the best understood form of bacterial 

locomotion, swimming cells must be concentrated by orders of magnitude for collective 

behaviours to emerge, which are typically disrupted within minutes by oxygen depletion15,16. 

In  contrast, groups of bacteria can spontaneously generate collective motility when pulling 

themselves across two-dimensional surfaces using twitching motility, which is instead driven 

by grappling hook-like appendages called Type-IV pili3,6,7. Here we study the relationship 

between individual and collective twitching motility within large groups of the opportunistic 

pathogen P. aeruginosa. We focus on movement in subsurface colonies sandwiched between 

agar and a coverslip (Fig. 1a), where movement is driven by pili, not flagella (Extended Data  

Fig. 1a,b), and where high-resolution time-lapse imaging can be used to follow individual cells 

as they collectively move along the glass surface. However, the phenomena we describe are 

not specific to this one assay. We also show that the key features are reproduced in classical 

bacterial colonies grown on the surface of agar (Fig. 1a-d, Extended Data Fig. 2, 

Supplementary Video 1).  

Recent microfluidic experiments have shown that deleting the pilH gene, which encodes a 

response regulator in the two component system that regulates twitching motility17, causes cells 

to move faster than wild-type (WT) cells18, likely because they express a larger number of 

pili17.  To confirm that this increase in speed also occurs in subsurface colonies, we developed 

a cell tracking algorithm to record the movement of thousands of individual cells within a single 

field of view (Methods, Supplementary Video 2). This revealed that individual ∆pilH cells 

move approximately twice as fast as WT cells in both densely packed collectives (Fig. 1e, 

Extended Data Fig. 3a) and at lower cell densities (Extended Data Fig. 3b). However, this 

difference in individual cell speed did not translate to how quickly colonies spread across the 

surface. While the faster motility of ∆pilH cells allowed them to initially spread outwards faster 
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than WT cells, their expansion rate plateaued after four hours. In contrast, the expansion rate 

of WT colonies steadily increased over a period of approximately six hours, eventually 

reaching a value four times greater than that of ∆pilH colonies and ten times greater than that 

of colonies of the non-piliated ∆pilB strain (Fig. 1f, g, Supplementary Video 3). An increase in 

individual motility, therefore, did not translate successfully to an increase in collective motility. 

Previous work has shown that strains which dominate the nutrient-rich edge of colonies can 

obtain a substantial growth advantage19. To investigate how this might affect the competitive 

ability of ∆pilH cells, we inoculated surficial colonies with equal proportions of ∆pilH and WT 

cells. This revealed that ∆pilH cells remained trapped in the nutrient poor interior of the colony, 

while WT cells migrated outwards (Fig. 2a), allowing the latter to undergo approximately three 

more cell divisions over a 48-hour period (Fig. 2b). We next analysed the dynamics of this 

competition in greater detail using subsurface colonies and automated image analysis to 

simultaneously measure colony expansion rate, cell packing fraction, and genotypic 

composition (Fig. 2c-g, Supplementary Fig. 1, Supplementary Video 4, Supplementary 

Methods). Consistent with their initial rapid expansion in monoculture colonies, ∆pilH cells 

initially outnumbered WT cells at the expanding edge of the colony (hereafter “the front”). 

However, once the front transitioned from loosely packed groups of cells to a confluent 

monolayer (Fig. 2e, g), the colony expansion rate rapidly increased from 0.75 µm min-1 to 5.0 

µm min-1 (Fig. 2d) while the proportion of ∆pilH cells at the front fell sharply, dropping from 

82% at 200 min to 3% at 350 min (Fig. 2f).  

What could be responsible for this rapid decline of ∆pilH despite its faster individual 

movement? Direct observation of the colony monolayer at the same time as the precipitous 

decline of fast moving ∆pilH cells suggested that ∆pilH cells lack the ability to move 

collectively and were more likely to become trapped in place than WT cells (Supplementary 

Video 5). To understand how the collective behaviours of the two strains differ, we turned to 
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tools originally developed to study liquid crystals. Densely packed cells tend to align in the 

same direction2, and this nematic ordering produces collective movement on length scales 

substantially larger than that of a single cell20,21. Moreover, we observed that topological 

defects, an emergent feature of nematic systems, move about within the monolayer of cells 

(Supplementary Video 6, Methods). The two types of defects,  with a topological change +1/2 

and -1/2 respectively, Fig. 3a-c, denoted here as “comets” and “trefoils”, are generated and 

annihilated in pairs (Extended Data Fig. 4a, b), as predicted by theory8,9.  

To investigate the physical properties of defects, we developed automated tools to combine 

single-cell tracking data collected across hundreds of defects. This revealed that the movements 

of  both WT cells (Fig. 3d) and ∆pilH cells (Extended Data Fig. 4c) around comets and trefoils 

closely match predictions from both an individual-based model of self-propelled rods (SPR)15 

and a continuum model of active nematics10, though ∆pilH flowfields are larger in scale than 

those of the WT. Theory predicts that comets migrate along their axis at a speed proportional 

to the activity of the nematic, a measure of the force exerted by each of the individuals that 

make up the system. In contrast, trefoils are predicted to move diffusively11. Consistent with 

this, we observed that the root mean squared displacement (RMSD) of comets was larger in 

∆pilH monolayers than in WT monolayers, while the RMSD of trefoils was similar in both 

genotypes (Fig. 3e, f). These observations indicate that both WT and ∆pilH monolayers behave 

as an active nematic, with the latter possessing greater activity.  

Comets elastically repel one another in a nematic confined to two dimensions12. However, 

previous theoretical predictions9,13 and experiments with liquid crystals13 suggested that when 

the nematic is allowed to reorient out of the 2D plane, two comets with topological charge +½ 

could merge together at a sufficiently small separation, forming a +1 defect and causing the 

cells within to “escape into the third dimension” by standing up vertically. We hypothesized 

that this process could only occur if the merging comets generated sufficient force to overcome 
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the repulsion between them, potentially explaining why only the higher activity ∆pilH cells 

become trapped in place. To test this possibility, we first extended our SPR model to three 

dimensions to allow rods to reorient out of the plane and simulated collisions between comets 

(Methods). Stable structures of upright rods (“rosettes”) formed once the rods’ propulsive 

force, F, increased beyond a critical threshold, Fv, confirming our intuition (Fig. 4a, Extended 

Data Fig. 5, Supplementary Videos 7, 8). ∆pilH cells are also slightly longer than WT cells 

(Extended Data Fig. 6a), but this acts to suppress the nucleation of rosettes rather than promote 

it22 (Extended Data Fig. 6b-e, Supplementary Notes). To test if the increased force generated 

by ∆pilH cells is alone sufficient to preferentially trap them in rosettes, we next used our 3D 

SPR model to simulate the interaction of two different genotypes that each exert a different 

propulsive force (Fig. 4b, c). This showed that higher-force mutants, on average, move more 

slowly than the WT cells because a larger fraction of the higher-force mutants become stuck in 

rosettes where their movement is arrested. 

We tested these theoretical predictions by inoculating subsurface colonies composed of a 

mixture of both ∆pilH and WT cells. In these colonies, we observed that ∆pilH cells 

spontaneously formed rosettes, whereas WT cells did not (Supplementary Video 5). Moreover, 

we were able to quantify the movement of topological defects when the fraction of ∆pilH cells 

in the front begins to sharply decrease (Fig. 2f). We observed comets approaching each other 

(Fig. 4d) before the monolayer of cells began to reorient out of plane, forming a rosette with a 

stable topological charge of +1 (Fig. 4e, Extended Data Fig. 7, Supplementary Video 9) as 

predicted by our SPR model (Fig. 4a). Even though this colony was initiated with an equal 

fraction of WT and ∆pilH cells, confocal imaging revealed that the core of this rosette was 

nearly entirely composed of vertically oriented ∆pilH cells (Fig. 4f). Once initiated, rosettes in 

both experiments and simulations grew larger in size (Supplementary Videos 8, 9). These 

dynamics are reminiscent of the “inverse domino” cascade of cell verticalization seen at the 
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centre of non-motile Vibrio cholerae bacterial colonies when they reach a critical size22,23, 

which is instead driven by buckling induced by cell division22. 

The direct observation of rosettes in our experiments and their close correspondence with those 

observed in our models provides strong evidence that ∆pilH cells become trapped as a direct 

consequence of their higher activity. However, we also considered other possible pleiotropic 

effects of this mutation, such as an increase in doubling times24 and cell-cell adhesion24,25. 

Extensive analyses rule these out as explanations of the sudden decline of the fraction of ∆pilH 

cells at the colony front (Supplementary Notes, Extended Data Figs. 8, 9). We also considered 

whether a deficiency in chemotaxis might play a role in the slower expansion of ∆pilH cells. 

We could not directly confirm, however, if chemotaxis plays any role in colony expansion in 

our assays because the only known mutant deficient in pili-based chemotaxis, ∆pilG18, shows 

little, if any, motility under agar (likely because they produce relatively few pili17,18, 

Supplementary Notes, Extended Data Fig. 1c).  We decided that a more straightforward and 

definitive test of whether rosette formation was responsible for ∆pilH cells’ reduced capacity 

to spread was to cover colonies with progressively stiffer agar, which acts to increase the 

stabilising torque that resists cell verticalization (Methods, Eq. 7). Increasing the agar 

concentration of the overlying pad was observed to both dramatically suppress the formation 

of rosettes and allow ∆pilH cells to expand much further before they were fully displaced by 

WT cells (e.g. stiffer agar increased the proportion of ∆pilH cells in the front by 80-fold after 

1.2 mm of collective expansion, Supplementary Notes, Extended Data Fig. 10). These 

experiments, along with the observations that the proportion of ∆pilH cells in the front only 

begins to decrease once cells transition from individual to collective motility and start to form 

rosettes (Fig. 2e,f, Supplementary Videos 5, 9), strongly suggest that the loss of ∆pilH cells 

from the front of mixed colonies is caused primarily by their tendency to become trapped in 

rosettes, rather than due to a deficiency in chemotaxis or another putative mechanism. 
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Recently, two preliminary reports have shown wild-type P. aeruginosa and Myxococcus 

xanthus cells can form multiple layers of horizontally aligned cells when moving collectively 

using pili-based motility26,27. While we also observe that both WT and ∆pilH cells form these 

terrace-like structures at the very edge of our colonies (Extended Data Fig. 10c), their 

morphology and distribution is very different to the verticalized rosettes, which occur deeper 

within the colony and are dominated by the faster moving ∆pilH cells . Nevertheless, these new 

studies contribute to our understanding of the diverse physical mechanisms that dictate the 

architecture of bacterial colonies and further illustrate how they can serve as model systems of 

active matter20,22,23,26–29. 

Our results show that the physics of active liquid crystals can exert a fundamental limit on the 

speed of motility within crowds of bacteria. Cells that exceed this critical threshold form high-

velocity comets that are unstable to verticalization upon collision, causing fast-moving cells to 

become trapped within the interior of colonies where nutrients are scarce30. However, bacteria 

that move more slowly as individuals are able to avoid this fate and collectively expand faster. 

In the race into new territory, the physical processes we describe therefore favour bacteria that 

exercise restraint by moving slowly and prudently.  
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Fig. 1 | Pili-based motility drives the spread of P. aeruginosa colonies, but cells that 

individually move faster spread more slowly. a, Both subsurface colonies, which grow 

beneath a layer of agar, and surficial colonies, which grow on top of agar, consist of four distinct 

regions. b, c, d, The “edge” contains small groups of loosely packed cells, the “monolayer” is 

composed of tightly packed cells lying flat against surface, the “transitional” region is a mixture 

of horizontally and vertically oriented cells, and in the “dense” region almost all cells are 

vertical. Panel d shows magnified views of each subsurface colony region. e, The probability 

density function (PDF) of the speed of individual WT and ∆pilH cells within the monolayer 

region. f, g, Measurements of the subsurface colony radius, 𝑟"#$, and expansion rate, d𝑟"#$/d𝑡 

for monocultures of WT (black), ∆pilH (orange) and non-piliated ∆pilB (red) cells. Inset in f 

shows a magnified view of the first 300 mins. Bold lines in f, g indicate the mean of three 

separate experiments. 
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Fig. 2 | WT cells outcompete ∆pilH cells when mixed together in the same colony. a, 

Surficial colonies inoculated with equal proportions of YFP and CFP labelled cells after 48 

hours. Dashed purple lines indicate the boundary of the “homeland”, the region where cells are 

initially inoculated onto the agar. Due to imaging constraints (Methods), we show only the YFP 

and brightfield channels. Both strains appear in the latter, so regions with more CFP-labelled 

cells appear darker. b, Number of cell divisions occurring over 48 hours of incubation within 

colonies shown in a. Grey and yellow bars denote populations labelled with CFP and YFP, 

respectively. Error bars show the standard deviation of 4 replicates. c, Subsurface colonies were 

initialized with equal proportions of YFP labelled ∆pilH and CFP labelled WT cells. We 

analysed dynamics within both the homeland (stationary, purple boxes) and the “front” of the 

colony, which follows the edge of the colony has it expands (green boxes, Supplementary Video 

4). d, Measurement of the distance between the front and homeland regions, 𝑟"#$, reveals a 

seven-fold increase in colony expansion rate at t = 300 mins (dashed lines, fitted with piecewise 

linear regression). The areal packing fraction (the fraction of the surface covered by cells) (e), 

and the relative frequency of ∆pilH cells (f) at the front also show sharp transitions at t = 300 

mins. Bold lines in d-f indicate the mean from three separate experiments. Upon reaching 

confluence at t = 200 mins, cells in the homeland became too tightly packed to resolve their 

identity. g, Magnified images of the leading edge of a subsurface colony initiated with equal 

fractions of WT (cyan) and ∆pilH (yellow) cells. These images were processed as described in 

the Methods. 
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Fig. 3 | Subsurface colonies exhibit patterns of collective motility consistent with a nematic 

system driven out of equilibrium. a, Two types of topological defects occur in 2D nematic 

systems: trefoils, which exhibit three-fold rotational symmetry and have a topological charge 

of -1/2, and comets, which migrate along their single axis of symmetry and have a charge of 

+1/2 (see text). b, The locations and orientations of defects in the monolayer of a WT 

subsurface colony (left, Supplementary Video 6) were obtained by quantifying the local cell 

orientation (right). c, Magnified views of the red and blue boxes in b illustrate how defects 

occur at singularities in cell orientation. d, Simultaneous tracking of both defects and individual 

cells within a monolayer (Supplementary Videos 2, 6) allows the mean cell flow around defects 

to be resolved. The structure of the flow closely resembles that predicted from a self-propelled 

rod (SPR) simulation and an analytical model (Methods). Red lines show streamlines and the 

background colours indicate flow speed. e, f, The root mean squared displacement (RMSD) 

measures how far defects move over a given lag time, plotted here on both a linear (e) and 

logarithmic scale (f). Triangles in f show the slopes predicted for ballistic (1:1) and diffusive 

(1:2) movement. 
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Fig. 4 | ∆pilH cells are preferentially trapped by rosettes, preventing their outward 

migration. a, A 3D SPR simulation of two comets colliding with one another shows that rods 

propelled by smaller force (𝐹=1) remain flat against the surface after an initial transient, while 

those propelled by a larger force (𝐹=3) form a stable, vertically oriented rosette 

(Supplementary Video 7). Colour denotes the angle of rods relative to the surface, 𝜙. b, SPR 

simulations initialized with randomly oriented rods, half of which are propelled by a fixed force 

of 𝐹*=𝐹+=1.5 (cyan, “WT”) and the other half by a variable force 𝐹, (yellow, “mutant”). The 

left axis shows the mean speed of the 𝐹, population at steady-state normalized by that of the 

F1 population. The right axis indicates the fraction of each population that is vertically oriented 

(defined as 𝜙 > 85°). Error bars indicate standard deviation of three different simulations, each 

with a different random initial configuration. c, A rosette from a 𝐹*=1.5, 𝐹,	= 3 simulation at 

steady-state, where 𝜙*  and 𝜙, denote the orientation of the two respective populations. d, Two 

comets approaching one another in a colony initiated with an equal number of WT and ∆pilH 

cells (Supplementary Video 9). e, Measurements of cell velocity within same region as d during 

rosette development. Blue arrows and colormap respectively show streamlines and divergence 

of the time-averaged flow field (Methods). Regions of negative divergence indicate zones of 

cell accumulation. f, Three-dimensional confocal image of the rosette that formed within the 

same region shown in d and e, taken 60 mins after d (Methods). Vertical slices through the 

rosette are shown to the top and right, at locations indicated by triangles. (f, inset) A magnified 

view of the rosette (purple box in f) shows is it mostly composed of ∆pilH cells in a vertical 

orientation. Main panel shows maximal z-projection of both YFP and CFP channels, while 

insets show individual z slices. 


