
This is a repository copy of Dynamic DAG Scheduling on Multiprocessor Systems:
Reliability, Energy and Makespan.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/164762/

Version: Accepted Version

Article:

Huang, Jing, Li, Renfa, Jiao, Xun et al. (2 more authors) (Accepted: 2020) Dynamic DAG
Scheduling on Multiprocessor Systems: Reliability, Energy and Makespan. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems. (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE, 2020 1

Dynamic DAG Scheduling on Multiprocessor

Systems: Reliability, Energy and Makespan
Jing Huang, Renfa Li, Xun Jiao, Yu Jiang, Wanli Chang

Abstract—Multiprocessor systems are increasingly deployed
in real-time applications, where reliability, energy consumption,
and makespan are often the main scheduling objectives. In this
work, we investigate dynamic scheduling of tasks modelled by
directed acyclic graphs (DAGs), which is an NP-hard problem
with all existing methods being heuristics. Our contributions have
two steps: (i) Assuming that the allocation of DAG nodes to
processors is given, we propose OEA (Optimal Energy Allocation)
and SOEA (Search-based OEA) — the first optimal methods
that minimise the energy consumption whilst satisfying the
reliability requirement — for homogeneous and heterogeneous
systems, respectively; (ii) We present a novel scheduling algo-
rithm ODS (Out-Degree Scheduling) that allocates the DAG
nodes according to their out-degrees, and considering energy
consumption, reliability, as well as dynamic finish time. ODS
dominates the widely applied HEFT (Heterogeneous Earliest
Finish Time) in makespan. Combining SOEA with ODS makes
a complete solution to the problem of dynamic DAG scheduling
on multiprocessor systems, and achieves generally better results
compared to the existing approaches. Specifically, in most cases,
we are better on all the three objectives, i.e., reliability, energy
as well as makespan, and in other cases we are better on some
of the objectives.

Index Terms—DAG, dynamic scheduling, multiprocessor sys-
tems, reliability, energy consumption, makespan

I. INTRODUCTION

The complex functionalities of the emerging real-time appli-

cations, such as in the automotive, industrial automation, and

robotics domains, require multiprocessor systems for imple-

mentation. The tasks need to be modelled as directed acyclic

graphs (DAGs) to capture the dependency. Many of these

applications are safety-critical with constraints on reliability.

That is, the probability of failure must be very low during

runtime.

Another important objective is to minimise the energy

consumption. Taking the autonomous vehicles as an example,

the power consumption of the computing system is similar to

that of traction [1], [2]. The energy storage of battery-powered

J. Huang and R. Li are with the College of Computer Science and Electronic
Engineering, and the Key Laboratory for Embedded and Network Computing
of Hunan Province, Hunan University, China (E-mail: jingh@hnu.edu.cn,
lirenfa@hnu.edu.cn).

X. Jiao is with the Department of Electrical and Computer Engineering,
Villanova University, USA (E-mail: xun.jiao@villanova.edu).

Y. Jiang is with the School of Software, Tsinghua University, China (E-
mail: jy1989@mail.tsinghua.edu.cn).

W. Chang is with the Department of Computer Science, University of York,
UK (E-mail: wanli.chang@york.ac.uk).

Manuscript received 17 April, 2020; revised 17 June, 2020; accepted 6 July,
2020. This article was presented in the International Conference on Embedded
Software 2020 and appears as part of the ESWEEK-TCAD special issue.

W. Chang is the corresponding author.

devices, such as electric vehicles and drones, is especially

limited.

For the real-time applications in practice, there is a trend

that tasks may get added or removed online with no predictable

pattern. This makes static scheduling difficult and motivates

dynamic scheduling, where makespan, i.e., the time it takes

to complete the execution of a DAG, is often the performance

metric. An example is the move towards the AUTOSAR (AU-

Tomotive Open System ARchitecture) Adaptive standard [3]

in the automotive industry.

Main contributions: In this work, we study dynamic DAG

scheduling on multiprocessor systems, considering reliability,

energy consumption, and makespan. This is known to be

an NP-hard problem, where all existing methods are heuris-

tics [4]–[7]. Our contributions have two steps:

• Assuming that the allocation of DAG nodes to processors

is given, we propose the first optimal methods that

minimise the energy consumption whilst satisfying the

reliability constraint. OEA (Optimal Energy Allocation)

offers a closed-form solution for homogeneous architec-

tures, and SOEA (Search-based OEA) is an algorithm

built upon binary search for heterogeneous architectures.

• We report ODS (Out-Degree Scheduling), a novel

scheduling algorithm that allocates the DAG nodes ac-

cording to their out-degrees, and considering energy

consumption, reliability, as well as dynamic finish time.

ODS dominates the widely applied HEFT (Heteroge-

neous Earliest Finish Time) [8], [9] in the way that ODS

achieves shorter makespan than HEFT in certain cases

and is at least as good as it in all cases. Combining SOEA

with ODS makes a complete solution to the problem

of dynamic DAG scheduling on multiprocessor systems.

Extensive evaluations on DAGs with various degrees of

parallelism show that it achieves generally better results

compared to the existing approaches. Specifically, in most

cases, we are better on all the three objectives, i.e.,

reliability, energy as well as makespan, and in other cases

we are better on some of the objectives. Both SOEA and

ODS have polynomial time complexity.

To summarise, the studied problem is decomposed into

two. One is allocation of nodes to processors, with all the

three objectives considered, and the other is to compute

the frequencies of the processors that minimise the energy

consumption under the reliability constraint.

The rest of this paper is organised as follows. Section II

reviews the literature considering reliability, energy consump-

tion, and timing performance, separately and jointly, in embed-

ded systems. Section III describes the models and problem

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE, 2020 2

formulation. Section IV presents the methods for optimal

energy consumption. The new scheduling algorithm ODS is

given in Section V. The experimental results are reported in

Section VI and Section VII makes the concluding remarks.

II. RELATED WORK

There has been a large body of works investigating and

trying to optimise reliability, energy consumption, as well

as timing performance, in embedded systems [10], [6], [11],

[12], [4]. On reliability, the target is to reduce the occur-

rence of faults, transient or permanent, during task execution.

These faults may be caused by several factors, including

hardware failure, frequent temperature variation, and high

temperature [7]. Transient faults, which are related to soft-

error reliability, are much more likely to occur in practice

than permanent faults, which are related to lifetime relia-

bility [13], [14]. Therefore, many works focus on transient

faults. A widely accepted reliability model, proposed in [15],

approximates the possibility of no transient fault during the

time interval t with an exponential distribution e−λt, which in-

dicates that reliability decreases with time. Therefore, besides

redundancy [16], a common approach to improve reliability is

decreasing the task execution time [17], [18].

Energy consumption is often reduced with DVFS (Dynamic

Voltage and Frequency Scaling), which scales processors’

voltage and frequency simultaneously as a middleware im-

plemented on the operating system level [19]. Since high

frequency is the main cause of high energy consumption for a

processor, proper use of DVFS effectively saves energy [20].

Many works considering timing performance aim to com-

plete the execution of tasks as soon as possible, i.e., shorten the

makespan or scheduling length. A task’s makespan is mainly

determined by the scheduling algorithm. HEFT [8] is the most

popular DAG scheduling algorithm and widely believed to

achieve the shortest makespan in many cases. There are other

methods that take energy cost and reliability into account,

such as LEC (Least Energy Cost) [6] and MR (Maximum

Reliability) [21].

There have also been works that jointly consider reliability,

energy consumption, and timing performance, in embedded

systems. Reliability is maximised under hard energy con-

straints on real-time applications in [4], which can be applied

only to uniprocessor systems. A task allocation approach

LRDSA (Local Reliabiliy-Driven Scheduling Algorithm) is

reported in [5], enabling a trade-off between performance and

reliability. ESRG (energy-efficient scheduling with reliability

goal) is presented in [6] to improve energy efficiency and

reliability simultaneously. An evolutionary algorithm is em-

ployed in [7], which is computationally very heavy and does

not suit dynamic scheduling. These state-of-the-art algorithms,

including HEFT, LEC, MR, LRDSA, and ESRG, consider

similar models, platforms, and objectives to us. We will

compare our complete solution to dynamic DAG scheduling

on multiprocessor systems with them.

1
t

2
t

3
t

4
t

5
t

6
t

7
t

8
t

9
t

10
t

Fig. 1. An example DAG task 10 sub-tasks

III. MODELS AND PROBLEM FORMULATION

A. Application Model

A DAG task model is represented by G = (N,E), where

N is a set of nodes and E is a set of edges. Each node τi ∈
N denotes a sub-task of the DAG, and each directed edge

ei,j ∈ E specifies an execution order that the sub-task τj can

only start after the sub-task τi is completed. Correspondingly,

τj is called as an immediate successor of τi, and τi is an

immediate predecessor of τj . We use succ(τi) and pre(τi) to

denote the set of immediate successors and predecessors of τi,
respectively. In addition, each edge ei,j has a weight wi,j that

represents the communication cost between the sub-tasks τi
and τj . If two sub-tasks are allocated to the same processor,

the communication cost between them is commonly ignored.

An example DAG task with 10 sub-tasks {τ1, τ2, . . . , τ10}
is shown in Figure 1, where τ2, τ3, τ4, τ5, τ6 can only start

after τ1 is completed, and be executed in parallel. Table I

presents the computation matrix of this example on a three-

processor system, which lists the execution time of each sub-

task on every processor at the maximum frequency fmax. On

a heterogeneous platform, different processors offer different

computational capabilities [22]. The processor parameters will

be explained in the next sub-sections on the energy and relia-

bility model. This DAG task in Figure 1 with the computation

matrix and processor parameters has been widely used in the

literature. It will also be used as an illustrative example in this

work, and be referred to in the later sections.

B. Energy Model

The power dissipation of a processor mainly consists

of frequency-dependent dynamic consumption, frequency-

independent dynamic consumption, and static consumption.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE, 2020 3

TABLE I
THE COMPUTATION MATRIX OF THE DAG TASK IN FIGURE 1 ON A THREE-PROCESSOR SYSTEM WITH PARAMETERS

The computation matrix Processor parameters
Tτ1 Tτ2 Tτ3 Tτ4 Tτ5 Tτ6 Tτ7 Tτ8 Tτ9 Tτ10 P ∗ α c d λF

u1 14 13 11 13 12 13 7 5 18 21 0.04 2.9 0.8 3.0 2.0E-4
u2 16 19 13 8 13 16 15 11 12 7 0.04 2.9 0.9 3.0 1.3E-4
u3 9 18 19 17 10 9 11 14 20 16 0.04 3.0 1.0 3.0 0.9E-4

Among them, frequency-dependent dynamic power consump-

tion is the dominant component, and can be expressed by,

P = ξcv2f, (1)

where ξ is an activity factor, c is the loading capacitance, v
is the supply voltage, and f is the clock frequency. Given

that f ∝ v, we have P ∝ cfα, where α is approximately

3. For ease of discussion, we model the frequency-dependent

dynamic power consumption of a processor as cfα, and

use P ∗ to denote the frequency-independent dynamic power

consumption and static power consumption. The overall power

consumption of a processor uk is then,

P = P ∗ + cfα. (2)

For convenience, we normalise the frequency of a processor

such that fmax = 1. Assuming Tτi to be the execution time

of the sub-task τi on a processor with its maximum frequency

fmax, when the operating frequency is fi (fi ≤ fmax), the

execution time can be calculated as,

tτi = Tτi ×
fmax

fi
= Tτi ×

1

fi
. (3)

The energy required to complete τi is the product of the

processor power consumption and the execution time,

Eτi(fi) = P × tτi = (P ∗ + cfα
i)×

Tτi

fi
. (4)

The energy consumption of a DAG task equals the sum of all

sub-tasks,

EG(f) = Eτ1(f1) + Eτ2(f2) + · · ·+ Eτn(fn), (5)

where f = (f1, f2, . . . , fn) represents a vector.

C. Reliability Model

The reliability of a task is defined as the probability of no

fault during its execution. As discussed in Section II, similar to

many other works, we focus on the dominant transient faults,

which are related to processor frequency and can be modelled

with the following exponential distribution,

λ (f) = λF × 10
d(1−f)
1−fmin , (6)

where λF stands for the average number of faults per second

at the maximum frequency, d is a hardware-related constant,

and fmin is the minimum available frequency.

The longer it takes the task to execute, the higher the

probability of faults. Based on (6), the reliability of a sub-task

τi executed on a processor with frequency fi can be calculated

as,

Rτi (fi) = e
−λ(fi)×

Tτi
fi . (7)

A reliable DAG task requires that all the sub-tasks are success-

fully executed without faults. Therefore, the reliability R(G)
of a DAG task is equal to the product of all sub-tasks,

RG(f) = Rτ1(f1)×Rτ2(f2)× · · · ×Rτn(fn). (8)

D. Problem Formulation

With the above models, our problem can be formulated as

follows: Given a DAG task G = (N,E), a set of DVFS-

enabled processors U = {u1, u2, . . . , um}, and a reliability

requirement Rreq, we aim to find a scheduling algorithm

that minimises the makespan MSG, which is counted from

the DAG arrival to its execution completion, and the energy

consumption EG,

Minimise MSG and EG(f), (9)

subject to

RG(f) = Rτ1(f1)×Rτ2(f2)× · · · ×Rτn(fn) ≥ Rreq.

Similarly, we can also optimise MSG and the reliability RG

under the energy constraint EG ≤ Ereq , which is particularly

useful for the battery-powered devices, such as electric vehi-

cles and drones, when their energy storage is mostly drained

out.

IV. OPTIMAL ENERGY ALLOCATION

In this section, we assume that the allocation of DAG

nodes, i.e., the sub-tasks, to processors is known (which will

be done by ODS in the next section), and present the first

optimal methods — OEA and SOEA — that minimise the

energy consumption with the given reliability requirement. The

makespan will be dealt with in node allocation by ODS.

Excluding makespan, our problem becomes,

Minimise EG(f)

= Eτ1(f1) + Eτ2(f2) + · · ·+ Eτn(fn),
(10)

subject to

RG(f) = Rτ1(f1)×Rτ2(f2)× · · · ×Rτn(fn) ≥ Rreq.

This is a multi-variable optimisation problem. We use the KKT

(Karush-Kuhn-Tucker) method to solve it and construct

L(f , o) = EG(f) + o (Rreq −RG(f)) , (11)

which can be differentiated to be,

∂L (f , o)

∂fi
=

∂Eτi (fi)

∂fi
− o

∂RG(f)

∂fi
, (12)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE, 2020 4

where

∂Eτi (fi)

∂fi
= Tτi

(

c (α− 1) fα−2
i −

P ∗

f2
i

)

, (13)

and

∂RG(f)

∂fi
= Rτ1(f1)×· · ·×

∂Rτi(fi)

∂fi
×· · ·×Rτn(fn). (14)

According to (7), we get

∂Rτi (fi)

∂fi

= −e
−λ(fi)×

Tτi
fi ×

(

λ′ (fi)
Tτi

fi
+

(

Tτi

fi

)′

λ (fi)

)

= −e
−λ(fi)×

Tτi
fi ×

(

λ′ (fi)
Tτi

fi
−

Tτi

fi
2 λ (fi)

)

= e
−λ(fi)×

Tτi
fi

×
Tτi

fi

(

λF × 10
d(1−fi)
1−fmin ×

dln10

1− fmin
+

λ (fi)

fi

)

= e
−λ(fi)×

Tτi
fi ×

Tτi

fi

(

λ (fi)×
dln10

1− fmin
+

λ (fi)

fi

)

= Rτi(fi)× λ (fi)×
Tτi

fi

(

dln10

1− fmin
+

1

fi

)

.

(15)

Taking (15) into (14), we have

∂RG(f)

∂fi
= Rτ1(f1)× · · · ×Rτi(fi)× · · · ×Rτn(fn)

× λ (fi)×
Tτi

fi

(

dln10

1− fmin
+

1

fi

)

= RG(f)× λ (fi)×
Tτi

fi

(

dln10

1− fmin
+

1

fi

)

.

(16)

Equating (12) to 0,

Tτi

(

c (α− 1) fα−2
i −

P

f2
i

)

=

oRG(f)× λ (fi)×
Tτi

fi

(

dln10

1− fmin
+

1

fi

)

.

(17)

Taking RG(f) = Rreq into (17), we can obtain,

c (α− 1) fα−1
i −

P ∗

fi
=

oRreq × λ (fi)

(

dln10

1− fmin
+

1

fi

)

.

(18)

A. OEA for Homogeneous Systems

Based on (18), for homogeneous systems, where all pro-

cessors are identical, the energy consumption is minimal with

equal frequencies, and we set,

f = f1 = f2 = · · · = fn.

According to (7) and (8),

RG(f)

= Rτ1 (f)×Rτ1 (f)× · · · ×Rτ1 (f)

= e−λ(f)×
Tτ1
f × e−λ(f)×

Tτ2
f × · · · × e−λ(f)×

Tτn
f

= e−(Tτ1
+Tτ2

+···+Tτn)×
λ(f)
f .

(19)

We let RG(f) take the lower bound Rreq,

lnRreq = − (Tτ1 + Tτ2 + · · ·Tτn)×
λ (f)

f
, (20)

i.e.,
−lnRreq

Tτ1 + Tτ2 + · · ·+ Tτn

=
λ (f)

f
. (21)

The variable f in (21) is difficult to solve directly. Observ-

ing (21), we can find that λ(f) is a monotonically decreasing

function of f , and so is
λ(f)
f

. Since the left hand side of (21)

is a constant, the solution can be iteratively approached.

B. SOEA for Heterogeneous Systems

For heterogeneous systems with different processors, the

frequencies that optimise the energy consumption may be

different. We denote the parameters of the processor k as

αk, P ∗
k , ck, λk(f), and λk,F . Correspondingly, (18) can be

rewritten as,

ck (αk − 1) fαk−1
i −

P ∗
k

fi
=

oRreq × λ (fi)

(

dkln
10

1− fk,min
+

1

fi

)

,

(22)

where the indices k and i indicate that the task τi is allocated to

the processor k. There are two variables in (22), the frequency

fi and Lagrange factor o. To solve for fi, the Lagrange factor

o needs to be determined.

We first analyse the relationship between o and fi. To this

end, we treat the Lagrange factor o as a function of fi,

o(fi) =

ck (αk − 1) fαk−1
i −

P ∗
k

fi

Rreq × λ (fi)

(

dkln
10

1− fk,min
+

1

fi

)
, (23)

Considering the numerator of (23),

y(fi) = ck (αk − 1) fαk−1
i −

P ∗
k

fi
, (24)

we have

y′(fi) = ck (αk − 1)
2
fαk−2
i +

P ∗
k

fi
2 > 0, (25)

which means that y(fi) is a monotonically increasing function

of fi. On the other hand, the denominator of (23)

Rreq × λ (fi)

(

dkln
10

1− fk,min
+

1

fi

)

(26)

monotonically decreases with fi. Therefore, o(fi) is a mono-

tonically increasing function of fi. From (7), we can get

that Rτi(fi) is a monotonically increasing function of fi.

Therefore, RG(f) =
n
∏

i=1

Rτi (fi) monotonically increases

with fi as well as o(fi).
With the above analysis, we can apply a simple binary

search to find the o that corresponds to the set of frequencies

satisfying RG(f) = Rreq. Note that as the Lagrange factor,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE, 2020 5

Algorithm 1 Search-based Optimal Energy Allocation

Input: G = (N,E), U,Rreq .

Output: f1, f2, . . . , fn.

1: Compute ub and lb according to (27); //ub and lb are the

upper and lower bounds of the search region, respectively.

2: while (ub− lb > ε) do

3: mid← (ub+ lb)/2;

4: for each processor k do

5: flb ← fk,min, fub ← fk,max, f ← (flb + fub)/2;

6: while (fub − flb > ǫ) do

7: if o(f) < mid then

8: flb ← f ;

9: else

10: fub ← f ;

11: end if

12: f ← (flb + fub)/2;

13: end while

14: for each task τi allocated to the processor uk do

15: fi ← f ;

16: end for

17: end for

18: if RG(f)−Rreq < 0 then

19: lb← mid;

20: else

21: ub← mid;

22: end if

23: end while

24: return f1, f2, . . . , fn;

o is the same for all frequencies fi (1 ≤ i ≤ n). The search

range of o is,

min
1≤k≤m

o(fk,min) ≤ o ≤ max
1≤k≤m

o(fk,max), (27)

where o(fk,min) and o(fk,max) are the minimum and maxi-

mum frequency of the processor k, respectively.

The problem studied in this work is decomposed in the way

that one stage, i.e., computing the frequencies of processors

that minimise the energy consumption with the given reliabil-

ity requirement, after the allocation of nodes to processors, can

be solved with an optimal approach (the first in this context).

Once the problem is formulated, applying the KKT method is

quite standard, after which, a series of analyses (customised

in this problem setting) on the monotonic relationships are

required to reach the final solution.

Energy constraint: We can also maximise the reliability

and respect a constraint on energy consumption. Following

similar steps, (17) can be obtained. Treating oRG(f) together,

y(fi) = oRG(f) =

ck (αk − 1) fαk−1
i −

P ∗
k

fi

λ (fi)

(

dkln
10

1− fk,min
+

1

fi

)
, (28)

which is in a similar form to (23). Therefore, y(fi) is a

monotonically increasing function of fi. From (4) and (5), we

can get that EG(f) monotonically increases with fi. A simple

binary search can be deployed to find the y that corresponds

to the set of frequencies satisfying EG(f) = Ereq . Since

0 ≤ RG(f) ≤ 1, the search range of y is the same as (27) on

the upper bound and 0 on the lower bound.

The search algorithm: As discussed above, a binary search

algorithm is able to return the optimal solution to both

the problems with reliability and energy consumption as a

constraint, respectively. We present SOEA in Algorithm 1,

using the energy optimisation as an example for illustration.

The search range is computed in Line 1. The frequencies

corresponding to o = mid are derived in Lines 4-17. The

bounds of the binary search are updated in Lines 18-22. The

time complexity of SOEA is,

O (log(Lo/ε)×m× log(Lf/ε)× n) ,

where Lo is the search range from (27), m is the number of

processors, n is the number of tasks,

Lf = max
1≤k≤m

{fk,max − fk,min},

and ε is the accuracy, which in our work is set to 10−5. Whilst

SOEA is motivated in the DAG setting, it can be generally

applied as long as the allocation of tasks to processors is

known.

V. OUT-DEGREE SCHEDULING

In the last section, we present the methods that minimise

the energy consumption or maximise the reliability, assuming

that the allocation of DAG nodes (sub-tasks) to processors is

known. In this section, we will report how to perform such

allocation.

In task scheduling on multiprocessor systems, besides pro-

cessor allocation, the execution order of tasks also needs to

be determined, for which there exist many approaches. In this

work, we take a widely applied method, which executes tasks

in the decreasing order of their up-rank-values urv,

urv(τi) =
1

m

m
∑

k=1

Tk,τi + max
τj∈succ(τi)

{wij + urv(τj)} , (29)

where m is the number of processors as defined earlier in

the paper. Essentially, in a DAG, a node with long execution

time and a heavy successor (in terms of both communica-

tion cost and execution time) is prioritised to be executed.

The number of successors is not considered. For the ex-

ample in Figure 1 and Table I, we compute the up-rank-

values of the sub-tasks τ1, τ2, . . . , τ10 to be 108, 77, 80, 80,

69, 63, 43, 36, 44, 14. Therefore, the execution order is

τ1, τ3, τ4, τ2, τ5, τ6, τ9, τ7, τ8, τ10.

Following the execution order, the tasks get allocated to the

processors. The existing task allocation methods for DAG in

the literature mainly aim to shorten the makespan. The most

popular one is HEFT, which is believed to achieve the shortest

makespan in many cases. There are other methods that take

energy cost and reliability into account, such as LEC and

MR. Table II reports the scheduling results on the example

in Figure 1 and Table I by HEFT, LEC, and MR, where stτi
and ftτi denote the start and finish time of the sub-task τi,
respectively.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE, 2020 6

TABLE II
SCHEDULING RESULTS ON THE EXAMPLE IN FIGURE 1 AND TABLE I BY HEFT, LEC, AND MR

HEFT LEC MR

τi uk fi stτi ftτi Eτi Rτi uk fi stτi ftτi Eτi Rτi uk fi stτi ftτi Eτi Rτi

1 3 1 0 9 9.36 0.9992 3 1 0 9 9.36 0.9992 3 1 0 9 9.36 0.9992
2 1 1 27 40 10.92 0.9974 1 1 32 45 10.92 0.9974 3 1 9 27 18.72 0.9984
3 3 1 9 28 19.76 0.9983 1 1 21 32 9.24 0.9978 2 1 21 34 12.22 0.9983
4 2 1 18 26 7.52 0.9990 2 1 18 26 7.52 0.9990 2 1 34 42 7.52 0.9990
5 3 1 28 38 10.4 0.9991 1 1 45 57 10.08 0.9976 3 1 27 37 10.4 0.9991
6 2 1 26 42 15.04 0.9979 3 1 9 18 9.36 0.9992 3 1 37 46 9.36 0.9992
7 3 1 38 49 11.44 0.9990 1 1 57 64 5.88 0.9986 3 1 57 68 11.44 0.9990
8 1 1 57 62 4.2 0.9990 1 1 64 69 4.2 0.9990 1 1 69 74 4.2 0.9990
9 2 1 56 68 11.28 0.9984 2 1 70 82 11.28 0.9984 2 1 50 62 11.28 0.9984
10 2 1 73 80 6.58 0.9991 2 1 82 89 6.58 0.9991 2 1 85 92 6.58 0.9991

EG = 106.5,MSG = 80, RG = 0.9865 EG = 84.420,MSG = 89, RG = 0.9854 EG = 101.080,MSG = 92, RG = 0.9887

TABLE III
SCHEDULING RESULTS ON THE EXAMPLE IN FIGURE 1 AND TABLE I BY

ODS

ODS
τi uk fi stτi ftτi Eτi Rτi

1 3 1 0 9 9.36 0.9992
2 3 1 9 27 18.72 0.9984
3 1 1 21 32 9.24 0.9978
4 2 1 18 26 7.52 0.9990
5 1 1 32 44 10.08 0.9976
6 3 1 27 36 9.36 0.9992
7 1 1 44 51 5.88 0.9986
8 1 1 53 58 4.2 0.9990
9 2 1 57 69 11.28 0.9984

10 2 1 69 76 6.58 0.9991

EG = 92.2,MSG = 76, RG = 0.9863

It can be seen that for HEFT,

EG = 106.5,MSG = 80, RG = 0.9865,

for LEC,

EG = 84.420,MSG = 89, RG = 0.9854,

and for MR,

EG = 101.080,MSG = 92, RG = 0.9887,

which illustrates the different advantages of these three meth-

ods. That is, HEFT obtains the shortest makespan MSG = 80,

LEC gets the least energy cost EG = 84.420, and MR achieves

the highest reliability RG = 0.9887. As discussed earlier, our

SOEA can be used in combination with any of these three

algorithms.

Below we describe the proposed method that allocates

DAG sub-tasks (nodes) to processors, considering the dynamic

finish time of sub-tasks, energy consumption of processors,

and reliability of sub-tasks on processors. The complexity of

DAG scheduling mainly comes from the dependency between

nodes. Generally, executing a node with many successors

earlier is in favour of short makespan for the entire DAG.

For instance, in Figure 1, the sub-task τ1 has an out-degree

of 5 with 5 immediate successors τ2, τ3, τ4, τ5, τ6, where the

out-degree of a node is defined as the number of its immediate

successors. Prioritising τ1 in allocation potentially benefits all

its successors. Therefore, we only allocate those nodes with

larger out-degrees to processors with early finish time. That is,

we would like to execute those sub-tasks with larger number

of successors earlier. This is different from HEFT, where all

the nodes try to go for the processors with early finish time.

In HEFT, following the up-rank-values and ignoring the out-

degree, a node with a large number of light successors (short

execution time and low communication cost) may be delayed

as the system scheduling bottleneck, which harms the DAG

makespan.

The major steps of ODS are outlined as follows and shown

in Algorithm 2.

• Calculate the out-degree OD(τi) of each sub-task τi.
• Put all sub-tasks in a queue ODQ in the decreasing order

of OD(τi). Ties are broken with the up-rank-value.

• If a sub-task τi is in the region [ODQ[0], ODQ[l]], i.e.,

with a relatively larger out-degree, it will be allocated to

the processor k with

min
1≤k≤m

{ftτi,k + θ(1−Rτi,k)Tτi,k}, (30)

where ftτi,k, Rτi,k, and Tτi,k are the finish time, reliabil-

ity, and execution time of the sub-task τi on the processor

k, respectively, considering the maximum frequency [5].

• If a sub-task τi is in the region [ODQ[l+ 1], ODQ[n−
1]], i.e., with a relatively smaller out-degree, it will be

allocated to the processor k with

min
1≤k≤m

Eτi,k, (31)

where Eτi,k is the energy consumption of the sub-task τi
on the processor k, considering the maximum frequency.

• Calculate the up-rank-value urv(τi) for each sub-task τi.
• Allocate the sub-tasks in the decreasing order of urv(τi)

to the processors based on (30) and (31).

The finish time ftτi,k is equal to stτi,k+Tτi,k, where stτi,k
is the start time of the sub-task τi on the processor k, and can

be calculated by

max{ftτj + wji|τj ∈ pre(τi)}.

The start time of the entry sub-task is 0. The parameter θ
(θ ≥ 0) is used to balance the finish time with reliability, and

the parameter l (0 ≤ l ≤ n− 1) provides a trade-off between

finish time and energy cost.

ODS can be iterated over l and θ to find the solution

that suits the demand best. When θ = 0 and l = n − 1,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE, 2020 7

Algorithm 2 Out-Degree Scheduling

Input: G = (N,E), U, l, θ.

Output: EG,MSG, RG.

1: for i = 0 to n− 1 do

2: Calculate the out-degree OD(τi) of the sub-task τi;
3: Calculate the up-rank-value urv(τi) of the sub-task τi;
4: end for

5: Push all sub-tasks into the queue ODQ[] in the decreasing

order of OD(τi);
6: Push all sub-tasks into the queue rQ[] in the decreasing

order of urv(τi);
7: for j = 0 to n− 1 do

8: τi ← rQ[j];
9: if τi ∈ [ODQ[0], ODQ[l]] then

10: Allocate τi to the processor satisfying (30);

11: else

12: Allocate τi to the processor satisfying (31);

13: end if

14: end for

15: return EG,MSG, RG;

ODS is equivalent to HEFT. Therefore, ODS is able to obtain

solutions that are at least as good as HEFT. Table III reports

the scheduling results on the example in Figure 1 and Table I

by ODS. The target is to find the shortest makespan, which is

achieved when the parameter l is 3 and the parameter θ is 0.

Comparing the results in Table II and Table III, ODS achieves

a shorter makespan 76 than the 80 from HEFT, which has been

widely believed to be the shortest makespan for this popular

example in Figure 1 and Table I. ODS has polynomial time

complexity O(n3mLθ), where Lθ is the number of iterations

over θ, and the number of iterations over l is equal to the

number of sub-tasks n.

Novelty of ODS: There have been some works in the real-

time systems community that use out-degrees of nodes when

dealing with DAGs [23], [24]. However, they are on response-

time analysis, instead of scheduling approaches. Out-degrees

are taken in the high-performance computing community to

determine the scheduling order of DAG nodes, such as [25].

By contrast, we perform allocation of nodes to processors

(the scheduling order in each processor is implicit), which

is essential for heterogeneous architectures widely deployed

in embedded systems. In ODS, the out-degrees of nodes are

leveraged as a judging threshold, not directly employed for

allocation. That is, the nodes with larger out-degrees (likely

to impact the makespan strongly) are allocated to the processor

with the earliest finish time, and those with smaller out-degrees

(unlikely to impact the makespan strongly) to the processor

with the lowest energy consumption, both in the order of the

up-rank-value, which is known to be an effective metric.

ODS is a framework where HEFT is one instance of-

ten dominated by other instances. There are two important

concepts in ODS that are missing in HEFT. First, the out-

degrees should be considered in the scheduling and allocation,

even when only timing is of concern. Otherwise, as discussed

earlier, contention over the processors with early finish time

may be heavy for a node with a large number of light

successors, which could become the system bottleneck and

prolong the makespan. Second, ODS takes into account the

energy consumption, which is completely ignored by HEFT.

It makes little sense for those nodes that weakly impact the

makespan to still go for processors with early finish time (they

will not get the early processors anyway). Instead, they should

pursue processors with low energy consumption.

Flexible usage of ODS: Similar to HEFT, LEC, and MR,

ODS can be combined with SOEA to form a complete ap-

proach to address dynamic DAG scheduling on multiprocessor

systems. Since by varying l and θ ODS may generate a

set of solutions, each of which could go through SOEA for

further optimisation on reliability or energy consumption, it

has flexible usage to suit different demands. In the above

example, we pick up the solution with the shortest makespan,

ignoring energy and reliability. Together with SOEA, we can

constrain both the energy cost and reliability and optimise the

makespan. For example, a constraint on energy consumption

can be implemented in SOEA, and among the set of final

solutions (generated by ODS and going through SOEA), the

one satisfying the reliability requirement and minimising the

makespan is selected. It is also possible to take a multi-

objective optimisation perspective. For instance, SOEA en-

sures that the constraint on reliability is satisfied, and a Pareto

front between makespan and energy can be formed from the

set of final solutions.

ODS pays a price of iterations and gets a reward of solutions

with different strength. Under the fixed demand, it is possible

to derive the most suitable l and θ without iterations, which can

be investigated in future. In the experiments, we empirically

obtain a value of θ and a step size for the search over l.

VI. EXPERIMENTAL RESULTS

In this work, we propose ODS+SOEA to address dynamic

DAG scheduling on multiprocessor systems, considering relia-

bility, energy consumption, and makespan. ODS allocates the

DAG nodes to processors and SOEA determines their oper-

ating frequencies. In this section, we perform comprehensive

evaluation in terms of both the approaches for comparison and

the diversity of DAG applications.

A. Algorithms for Comparison

We compare our proposed ODS+SOEA with the state-

of-the-art approaches LRDSA [5], ESRG [6], as well as

MR+SOEA, LEC+SOEA, and HEFT+SOEA. As MR, LEC,

and HEFT only perform task allocation, we use SOEA to

help them decide the operating frequencies of processors,

for a fair comparison. All these existing approaches are

heuristics and able to optimise reliability, makespan, as well

as energy cost, to some extent, yet with different orientations.

LRDSA is a joint makespan and reliability optimisation al-

gorithm. ESRG targets reliability maximisation under energy

constraints. MR+SOEA, LEC+SOEA, and HEFT+SOEA fo-

cus on reliability, energy cost, and makespan, respectively,

as discussed earlier. We would like to make a note that

LRDSA has been followed up by a number of more recent

studies, however, with different orientations, such as resource

utilisation optimisation.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE, 2020 8

1
t

2
t

3
t

4
t

5
t

6
t

7
t

8
t

9
t

10
t

11
t

12
t

13
t

14
t

15
t

(a) An example FFT DAG applica-
tion with ρ = 2

1
t

2
t

3
t

4
t

5
t

6
t

7
t 8

t
9
t

10
t

11
t

12
t

13
t

14
t

(b) An example GE DAG application
with ρ = 5

Fig. 2. Examples of FFT and GE DAG applications.

B. Experimental Platform and DAG Applications

The occurrence probability of task failure is small and hard

to control on real systems. Therefore, similar to most existing

studies, we run simulations. Using C++, we simulate a fully

connected heterogeneous 32-processor system on a laptop with

16 GB of Memory and an Inter core i7 processor. Parameters

of the processors are randomly set in the following ranges:

P ∗ ∈ [0.4, 0.8], c ∈ [0.8, 1.3], f ∈ [0.3, 1.0], α ∈ [2.7, 3.0],
λF ∈ [0.1E − 5, 1.0E − 5], d ∈ [1, 3], which reflect the real-

world characteristics, such as for Intel Mobile Pentium III and

ARM Cortex-A9. It is to be noted that redundancy, which

can be deployed to achieve extremely high reliability, is not

considered in this work.

We perform evaluation under Fast Fourier Transform (FFT)

DAG applications, Gaussian Elimination (GE) DAG applica-

tions, and random DAG applications, which have different

characteristics described as follows:

• FFT applications have a high degree of parallelism.

Figure 2(a) shows an example with |N | = 15 sub-tasks.

This number of sub-tasks |N | is computed by

|N | = (2× 2ρ − 1) + 2ρ × log(2ρ)

= (2 + ρ)× 2ρ − 1,

where ρ is a natural number, i.e., ρ ∈ Z+ [8].

• GE applications have a low degree of parallelism.

Figure 2(b) shows an example with |N | = 14
tasks. The number of sub-tasks is computed by

|N | =
(

ρ2 + ρ− 2
)

/2, where ρ is a natural number,

ρ ∈ Z+.

• As the name suggests, random applications are ran-

domly generated, with random parallelism and compu-

tation/communication cost.

C. Evaluation Metrics

As discussed at the end of Section V, our approach

ODS+SOEA can be used flexibly, such as treating reliability

and energy cost as objectives or constraints. However, the other

existing approaches have limitation in how to be used. For

instance, LRDSA assumes that all processors run at the same

and stable frequency, the maximal frequency by default, which

is normalised to 1. The energy overhead can be adjusted by

changing the frequency. It is not able to precisely control the

value of reliability, making it impossible to take reliability

as a constraint. For fair comparison, the following evaluation

scenario is designed. We take the energy consumption as a

strict constraint for all the six approaches, and vary it to

create different cases. Under the energy constraint, we run the

other five approaches and find the best reliability Rbest. From

the solution set generated by ODS+SOEA, the one with the

closest reliability to Rbest is picked up, and then compared

to the other five approaches on makespan. Under the same

energy constraint, compared to the approaches with similar

reliability, we expect to see better makespan to show that our

approach is superior. Compared to the approaches with worse

reliability, it would be dominating if ours has better makespan,

and acceptable if not. The frequency of each processor can be

adjusted in the step of 0.0001.

D. Results and Analysis

Our experiments are conducted on three groups of DAG

applications: FFT, GE, and random. Each group is further

divided into four sub-groups. Each sub-group has 30 different

DAGs with the same number of nodes, in the range of 35 to

550. For each sub-group, we report the average performance

over the 30 DAGs. The units are omitted without affecting

the comparison. The range over the number of nodes in a

DAG under evaluation is sufficient to represent most, if not all,

embedded applications, such as in the domains of automotive,

avionics, industrial automation, and 5G networks, based on our

collaboration with the industry partners. DAGs with more than

100 nodes are rarely seen in embedded systems. For example,

a real-world DAG from the automotive industry is analysed

in [26], with a total of 9 nodes.

Experiment 1: We compare our proposed ODS+SOEA

against the five existing approaches, LRDSA, ESRG,

MR+SOEA, LEC+SOEA, and HEFT+SOEA, under the FFT

DAG applications. As shown in Figure 2 and explained in

Section VI-B, the number of sub-tasks and structure of an

FFT DAG is controlled by the parameter ρ. We set ρ to be 3,

4, 5, and 6. Correspondingly, the number of sub-tasks |N | is

39, 95, 223, and 511 in the four sub-groups. The computation

cost Tk,τi of the sub-task τi and the communication cost wi,j

between the sub-tasks τi and τj are randomly generated [27],

both in the range [10, 100]. For |N | = 39, |N | = 95,

|N | = 223, and |N | = 511, the energy constraint is given

from 250 to 400 with a step of 20, from 900 to 1100 with a

step of 20, from 2100 to 2600 with a step of 50, and from

5000 to 5900 with a step of 100, respectively.

The comparison results are presented in Figure 3, where

Figures 3 (a-d) show the makespan MSG when the number

of sub-tasks is 39, 95, and 223, 511, respectively, and Fig-

ures 3 (e-h) show the corresponding reliability. It is noted

that some algorithms may have similar results and hard to

distinguish in the figure. From the first three cases in Fig-

ures 3 (a-c) and (e-g), as well as most energy constraints of

the fourth case |N | = 511 in Figures 3 (d) and (h), we can see

that our ODS+SOEA has the highest reliability and shortest

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE, 2020 9

240 260 280 300 320 340 360 380 400 420

600

700

M
ak

es
pa

n
M

S G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(a) Makespan at |N | = 39

880 920 960 1000 1040 1080 1120
700

750

800

850

900

950

M
ak

es
pa

n
M

S G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(b) Makespan at |N | = 95

2000 2200 2400 2600
900

950

1000

1050

1100

M
ak

es
pa

n
M

S G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(c) Makespan at |N | = 223

5000 5200 5400 5600 5800 6000
1200

1220

1240

1260

1280

1300

1320

1340

1360

M
ak

es
pa

n
M

S G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(d) Makespan at |N | = 511

220 240 260 280 300 320 340 360 380 400 420

0.7

0.8

0.9

1.0

R
el

ia
bi

lit
y

R
G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(e) Reliability at |N | = 39

900 1000 1100

0.94

0.96

0.98

1.00

R
el

ia
bi

lit
y

R
G

Energy Cost EG

 LRDSA MR+SOEA
 LEC+SOEA HEFT+SOEA
 ESRG ODS+SOEA

(f) Reliability at |N | = 95

2000 2200 2400 2600
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

R
el

ia
bi

lit
y

R
G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(g) Reliability at |N | = 223

5000 5200 5400 5600 5800 6000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
el

ia
bi

lit
y

R
G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(h) Reliability at |N | = 511

Fig. 3. Comparison results under FFT DAGs

0 4 8 12 16 20 24 28 32

8

12

16

20

24

28

32

36

40

Ti
m

e
ov

er
he

ad
 (m

s)

Number of processors
(a) Time overhead with the number
of processors (39 nodes)

0 50 100 150 200 250 300 350 400 450 500 550 600
0

50

100

150

200

250

300

Ti
m

e
ov

er
he

ad
 (m

s)

Number of nodes
(b) Time overhead with the number
of nodes (32 processors)

Fig. 4. The runtime overhead of ODS+SOEA

makespan, clearly superior to all the existing approaches.

When |N | = 511 and the energy constraint is relaxed (i.e.,

being large), HEFT+SOEA achieves better makespan, yet

with significantly lower reliability. Following this observation,

HEFT+SOEA may be the best approach if an embedded

system is able to tolerate high energy consumption and

low reliability. Generally, as energy consumption increases,

makespan becomes shorter and reliability gets improved. In

addition, reliability deteriorates as the size of DAG increases,

indicating that large-scale applications are more likely to incur

failure.

The runtime overhead of the proposed ODS+SOEA is

reported in Figure 4, where (a) varies the number of processors

from 4 to 32 with the number of nodes fixed at 39, and (b)

varies the number of nodes at 39, 95, 223, and 511, with the

number of processors fixed at 32. The results show that our

approach is useful for most practical embedded applications

with scalability. Taking a common scenario with 39 nodes

and 8 processors as an example, the runtime overhead is less

than 15ms. We would like to make a note that the runtime

is measured on a general-purpose computer and could be

considerably reduced with hardware acceleration when used

in practice.

Experiment 2: We compare our proposed ODS+SOEA with

the five existing approaches under the GE DAG applications.

Similar to Experiment 1, we vary the number of sub-tasks

and energy constraints for evaluation. Figure 2 with the

explanation in Section VI-B shows that the number of sub-

tasks is determined by the parameter ρ. In this experiment, we

set ρ to be 12, 16, 20, and 32. Correspondingly, the number of

sub-tasks |N | is 77, 135, 209, and 527 in the four sub-groups.

The computation and communication cost for each sub-task

are again randomly generated, both in the range [10, 100]. For

|N | = 77, |N | = 135, |N | = 209, and |N | = 527, the energy

constraint is given from 700 to 900 with a step of 20, from

1000 to 1500 with a step of 50, from 2100 to 2500 with a step

of 50, and from 5700 to 6100 with a step of 50, respectively.

The comparison results are presented in Figure 5, where

Figures 5 (a-d) show the makespan MSG when the number

of sub-tasks is 77, 135, 209, and 527, respectively, and

Figures 5 (e-h) show the corresponding reliability. From

the two cases in Figures 5 (a) (c) and (e) (g), as well as

most energy constraints of the case |N | = 135 in Fig-

ures 5 (b) and (f), we can see that our ODS+SOEA has

the highest reliability and shortest makespan, better than all

the existing approaches. When |N | = 135 and the energy

constraint is large, HEFT+SOEA achieves shorter makespan,

yet with lower reliability. Similarly, when |N | = 527,

HEFT+SOEA has shorter makespan and lower reliability. In

general, HEFT+SOEA performs poorly on reliability, which

clearly shows the limitation of HEFT, especially considering

that the result has been optimised by SOEA. In addition,

HEFT+SOEA loses its makespan when the energy constraint

is strict. The main reason is that HEFT does not take energy

cost and reliability into account, which stresses the importance

to treat makespan, reliability, and energy together in DAG

scheduling.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE, 2020 10

700 750 800 850 900

1440

1480

1520

1560

1600

1640

M
ak

es
pa

n
M

S G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(a) Makespan at |N | = 77

1000 1100 1200 1300 1400 1500
2040

2080

2120

2160

2200

2240

2280

2320

2360

2400

2440

M
ak

es
pa

n
M

S G

Energy Cost EG

 LRDSA
 MR&SOEA
 LEC&SOEA
 HEFT&SOEA
 ESRG
 ODS&SOEA

(b) Makespan at |N | = 135

2000 2200 2400
3040

3060

3080

3100

3120

3140

3160

3180

3200

3220

M
ak

es
pa

n
M

S G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(c) Makespan at |N | = 209

5700 5800 5900 6000 6100

4450

4500

4550

4600

4650

4700

4750

4800

4850

4900

4950

5000

M
ak

es
pa

n
M

S G

Energy Cost EG

 LRDSA MR+SOEA
 LEC+SOEA HEFT+SOEA
 ESRG ODS+SOEA

(d) Makespan at |N | = 527

680 720 760 800 840 880 920
0.94

0.95

0.96

0.97

0.98

0.99

R
el

ia
bi

lit
y

R
G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(e) Reliability at |N | = 77

1000 1200 1400 1600
0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

R
el

ia
bi

lit
y

R
G

Energy Cost EG

 LRDSA
 MR&SOEA
 LEC&SOEA
 HEFT&SOEA
 ESRG
 ODS&SOEA

(f) Reliability at |N | = 135

2000 2200 2400
0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

R
el

ia
bi

lit
y

R
G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(g) Reliability at |N | = 209

5700 5800 5900 6000 6100
0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

R
el

ia
bi

lit
y

R
G

Energy Cost EG

 LRDSA MR+SOEA
 LEC+SOEA HEFT+SOEA
 ESRG ODS+SOEA

(h) Reliability at |N | = 527

Fig. 5. Comparison results under GE DAGs

125 150 175 200 225 250 275
50

55

60

65

70

75

80

85

90

95

M
ak

es
pa

n
M

S G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(a) Makespan at |N | = 100

250 275 300 325 350 375 400
75

80

85

90

95

100

105

110

115

120

125

130

M
ak

es
pa

n
M

S G

Energy Cost EG

 LRDSA MR+SOEA
 LEC+SOEA HEFT+SOEA
 ESRG ODS+SOEA

(b) Makespan at |N | = 150

400 450 500 550 600 650 700
100

110

120

130

140

150

160

170

M
ak

es
pa

n
M

S G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(c) Makespan at |N | = 250

800 1000 1200 1400
180

200

220

240

260

280

300

320

340

M
ak

es
pa

n
M

S G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(d) Makespan at |N | = 500

125 150 175 200 225 250 275

0.94

0.96

0.98

1.00

R
el

ia
bi

lit
y

R
G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(e) Reliability at |N | = 100

250 275 300 325 350 375 400
0.95

0.96

0.97

0.98

0.99

1.00

R
el

ia
bi

lit
y

R
G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(f) Reliability at |N | = 150

400 500 600 700
0.93

0.94

0.95

0.96

0.97

0.98

0.99

R
el

ia
bi

lit
y

R
G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(g) Reliability at |N | = 250

800 1000 1200 1400

0.88

0.90

0.92

0.94

0.96

0.98
R

el
ia

bi
lit

y
R

G

Energy Cost EG

 LRDSA
 MR+SOEA
 LEC+SOEA
 HEFT+SOEA
 ESRG
 ODS+SOEA

(h) Reliability at |N | = 500

Fig. 6. Comparison results under random DAGs

Experiment 3: We compare our proposed ODS+SOEA with

the five existing approaches, LRDSA, ESRG, MR+SOEA,

LEC+SOEA, and HEFT+SOEA, under random DAG appli-

cations, whose generation is controlled by six parameters, i.e.,

the number of sub-tasks, shape, average computation cost,

communication to computation ratio, the number of proces-

sors, and the heterogeneity factor. The parameter “shape”

affects the height and width of a DAG. The heterogeneity

factor, which is defined in the interval of [0.1, 1], reflects the

consistency between sub-tasks. The communication to compu-

tation ratio represents the execution of the sub-tasks relative

to the amount of data transmitted between them. A small ratio

indicates that the generated DAG is computationally intensive,

otherwise communicatively intensive. In this experiment, the

parameters shape, average computation cost, communication

to computation ratio, heterogeneity factor, and number of

processors are set to be 2, 10, 1, 0.8, and 32, respectively.

Similar to Experiments 1 and 2, a total of 4 sub-groups are

generated, each of them consisting of 30 DAGs. The numbers

of sub-tasks in each DAG for the four sub-groups are 100,

150, 250, and 500, respectively. The corresponding energy

constraints are given from 125 to 275 with a step of 25, from

250 to 400 with a step of 25, from 450 to 650 with a step of

25, and from 900 to 1300 with a step of 50, respectively.

The comparison results are presented in Figure 6, where

Figures 6 (a-d) show the makespan MSG when the number

of sub-tasks is 50, 100, 150, and 200, respectively, and

Figures 6 (e-h) show the corresponding reliability. From the

three cases in Figures 6 (a-c) and (e-g), our ODS+SOEA has

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE, 2020 11

the highest reliability and shorter makespan than MR+SOEA,

LEC+SOEA, and ESRG. LRDSA and HEFT+SOEA achieve

shorter makespan than ODS+SOEA, with the price of lower

reliability. Similarly, in the fourth case of Figure 6 (d)

and (h), HEFT+SOEA achieves shorter makespan with lower

reliability. Therefore, ODS+SOEA is in the same position as

HEFT+SOEA in the Pareto sense. Neither of them dominates

the other.

Summary: We have conducted comprehensive evaluation

on our proposed approach ODS+SOEA against five state-of-

the-art algorithms under three groups of DAGs with high, low,

and random parallelism, respectively. Generally, ODS+SOEA

performs better than the five existing approaches. In certain

cases, HEFT+SOEA achieves shorter makespan with lower

reliability. It is to be noted that we have only picked up one

solution from the set generated by ODS+SOEA. It is possible

that there exists another solution dominating HEFT+SOEA in

some of the cases. We would like to state that we do not claim

ODS+SOEA to be the dominantly best approach in all cases.

VII. CONCLUDING REMARKS

In this work, we have tried to address the dynamic DAG

scheduling problem on multiprocessor systems, considering

reliability, energy consumption, and makespan. Assuming that

the allocation of DAG nodes to processors is given, we propose

the first optimal methods, OEA and SOEA, to minimise

the energy consumption whilst satisfying the reliability re-

quirement. OEA has a closed-form solution for homogeneous

architecture, and SOEA is an algorithm built upon binary

search for heterogeneous systems. OEA and SOEA can be

used to maximise reliability and respect the constraint on

energy consumption as well. SOEA is able to be combined

with any scheduling algorithm that allocates DAG nodes to

processors.

We present a novel scheduling algorithm ODS that allocates

the DAG nodes according to their out-degrees, and considering

processors’ energy consumption, dynamic finish time of sub-

tasks, as well as reliability of sub-tasks on processors. Essen-

tially, we try to allocate those nodes with larger numbers of

successors to the processors with early finish time. ODS domi-

nates the widely applied HEFT as it is always able to generate

one solution equivalent to HEFT. Combining SOEA with ODS

makes a complete solution to dynamic DAG scheduling on

multiprocessor systems that can be flexibly used, and performs

generally better than the state-of-the-art approaches, including

LRDSA, ESRG, MR+SOEA, LEC+SOEA, and HEFT+SOEA.

Both SOEA and ODS have polynomial time complexity.

In this work, we decompose the problem to two stages, as in

one stage, the optimal solution can be computed. It is possible

to solve the problem as a whole, which could lead to better

results on one hand, and makes it very challenging to devise

effective approaches that can achieve these better results on the

other hand, due to the complexity. This is a promising future

research direction to pursue. In addition, ODS may be further

improved. First, as a heuristic, it may get better performance

if more factors, such as the computation and communication

cost, are considered. Second, it is now iterated over l and

θ. The time complexity can be further reduced if there are

methods to determine l and θ according to specific demands,

as has been discussed when summarising ODS.

Besides, this work can be extended towards hard timing

constraints, especially when considering multiple preemptive

(and even migrating) DAGs. Currently, we deal with a sin-

gle DAG, and can trivially support multiple non-preemptive

DAGs. DAGs could have mixed criticality levels, as derived

from the practical context, and may have different priorities,

which, e.g., could be assigned according to deadlines. The

existing literature on DAG scheduling towards timing guar-

antees is still quite limited, even if the other objectives like

energy consumption and reliability are not taken into account.

Generally, the scheduling methods are not able to exploit

the parallelism offered in multiprocessor systems, and the

analyses, although safe, are rather conservative and unsuitable

for practical design.

ACKNOWLEDGMENT

Jing Huang was supported by the Natural Science Founda-

tion of China Grant No. 61902118, 61932010, China Postdoc-

toral Science Foundation No. 2019M662771.

REFERENCES

[1] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf,
“Special session: Future automotive systems design: Research challenges
and opportunities,” in CODES+ISSS, 2019.

[2] D. Ziegenbein, S. Saidi, X. S. Hu, and S. Steinhorst, “Future
automotive HW/SW platform design (Dagstuhl Seminar 19502),”
Dagstuhl Reports, vol. 9, no. 12, pp. 28–66, 2020. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/12010

[3] AUTOSAR, “Adaptive platform 19.03,” 2019. [Online]. Available: https:
//www.autosar.org/standards/adaptive-platform/adaptive-platform-1903/

[4] B. Zhao, H. Aydin, and D. Zhu, “On maximizing reliability of real-time
embedded applications under hard energy constraint,” IEEE Transactions

on Industrial Informatics, vol. 6, no. 3, pp. 316–328, Aug 2010.
[5] X. Tang, K. Li, M. Qiu, and E. H.-M. Sha, “A hierarchical reliability-

driven scheduling algorithm in grid systems,” Journal of Parallel and

Distributed Computing, vol. 72, no. 4, pp. 525–535, 2012.
[6] G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, and K. Li, “Energy-efficient

fault-tolerant scheduling of reliable parallel applications on heteroge-
neous distributed embedded systems,” IEEE Transactions on Sustainable

Computing, vol. 3, no. 3, pp. 167–181, July 2018.
[7] J. Zhou, J. Sun, X. Zhou, T. Wei, M. Chen, S. Hu, and X. S. Hu,

“Resource management for improving soft-error and lifetime reliability
of real-time mpsocs,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 38, no. 12, pp. 2215–2228, 2018.
[8] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and

low-complexity task scheduling for heterogeneous computing,” IEEE

transactions on parallel and distributed systems, vol. 13, no. 3, pp. 260–
274, 2002.

[9] G. Xie, Z. Gang, R. Li, and K. Li, “Energy-aware processor merging al-
gorithms for deadline constrained parallel applications in heterogeneous
cloud computing,” IEEE Transactions on Sustainable Computing, vol. 2,
no. 2, pp. 62–75, 2017.

[10] W. Chang, A. Probstl, D. Goswami, M. Zamani, and S. Chakraborty,
“Battery- and aging-aware embedded control systems for electric ve-
hicles,” in 2014 IEEE Real-Time Systems Symposium, Dec 2014, pp.
238–248.

[11] Y. Ma, J. Zhou, T. Chantem, R. P. Dick, S. Wang, and X. S. Hu, “Online
resource management for improving reliability of real-time systems on
big-little type mpsocs,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 39, no. 1, pp. 88–100, Jan 2020.
[12] A. Dogan and F. Ozguner, “Matching and scheduling algorithms for

minimizing execution time and failure probability of applications in het-
erogeneous computing,” IEEE Transactions on Parallel and Distributed

Systems, vol. 13, no. 3, pp. 308–323, March 2002.
[13] L. Zhao, Y. Ren, and K. Sakurai, “Reliable workflow scheduling with

less resource redundancy,” Parallel Computing, vol. 39, no. 10, pp. 567–
585, 2013.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE, 2020 12

[14] A. Benoit, M. Hakem, and Y. Robert, “Fault tolerant scheduling of
precedence task graphs on heterogeneous platforms,” in 2008 IEEE

International Symposium on Parallel and Distributed Processing. IEEE,
2008, pp. 1–8.

[15] S. M. Shatz and J.-P. Wang, “Models and algorithms for reliability-
oriented task-allocation in redundant distributed-computer systems,”
IEEE Transactions on Reliability, vol. 38, no. 1, pp. 16–27, 1989.

[16] A. Girault and H. Kalla, “A novel bicriteria scheduling heuristics
providing a guaranteed global system failure rate,” IEEE Transactions

on Dependable and Secure Computing, vol. 6, no. 4, pp. 241–254, 2008.
[17] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, and K. Li, “Maximizing

reliability with energy conservation for parallel task scheduling in a
heterogeneous cluster,” Information Sciences, vol. 319, pp. 113–131,
2015.

[18] Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling for dis-
tributed computing systems under different operating conditions,” IEEE

Transactions on Parallel and Distributed Systems, vol. 22, no. 8, pp.
1374–1381, 2010.

[19] Q. Qiu and M. Pedram, “Dynamic power management based on
continuous-time markov decision processes,” in Proceedings of the 36th

annual ACM/IEEE Design Automation Conference, 1999, pp. 555–561.
[20] J. Huang, R. Li, J. An, D. Ntalasha, F. Yang, and K. Li, “Energy-efficient

resource utilization for heterogeneous embedded computing systems,”
IEEE Transactions on Computers, vol. 66, no. 9, pp. 1518–1531, 2017.

[21] G. Xie, G. Zeng, Y. Chen, Y. Bai, Z. Zhou, R. Li, and K. Li, “Minimizing
redundancy to satisfy reliability requirement for a parallel application on
heterogeneous service-oriented systems,” IEEE Transactions on Services

Computing, 2017.
[22] Z. Guo, A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, and N. Guan,

“Energy-efficient real-time scheduling of dags on clustered multi-core
platforms,” in 2019 IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), 2019, pp. 156–168.
[23] A. Melani, M. Bertogna, V. Bonifaci, A. Marchettispaccamela, and

G. Buttazzo, “Response-time analysis of conditional dag tasks in mul-
tiprocessor systems,” pp. 211–221, 2015.

[24] J. Fonseca, G. Nelissen, and V. Nelis, “Schedulability analysis of dag
tasks with arbitrary deadlines under global fixed-priority scheduling,”
Real-time Systems, vol. 55, no. 2, pp. 387–432, 2019.

[25] M. Taufer and A. L. Rosenberg, “Scheduling dag-based workflows on
single cloud instances: High-performance and cost effectiveness with
a static scheduler,” The International Journal of High Performance

Computing Applications, vol. 31, no. 1, pp. 19–31, 2017.
[26] M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware

generation of single-rate dags from multi-rate task sets,” in 2020 IEEE

Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2020, pp. 226–238.
[27] https://sourceforge.net/projects/taskgraphgen/, online, (2015).

