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We study the instability of a Bénard layer subject
to a vertical uniform magnetic field, in which the
fluid obeys the Maxwell-Cattaneo (MC) heat flux-
temperature relation. We extend the work of Bissell
(Proc. R. Soc. A 472: 20160649, 2016) to non-zero
values of the magnetic Prandtl number p,,. With
non-zero pp,, the order of the dispersion relation is
increased, leading to considerably richer behaviour.
An asymptotic analysis at large values of the
Chandrasekhar number @ confirms that the MC effect
becomes important when cQY? is O(1), where C
is the Maxwell-Cattaneo number. In this regime, we
derive a scaled system that is independent of Q.
When CQl/ 2is large, the results are consistent with
those derived from the governing equations in the
limit of Prandtl number p — co with py, finite; here
we identify a new mode of instability, which is due
neither to inertial nor induction effects. In the large pm,
regime, we show how a transition can occur between
oscillatory modes of different horizontal scale. For
Q@ > 1 and small values of p, we show that the critical
Rayleigh number is non-monotonic in p provided that
C > 1/6. While the analysis of this paper is performed
for stress-free boundaries, it can be shown that other
types of mechanical boundary conditions give the
same leading order results.
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1. Introduction

The recent interest in the dynamics of Maxwell-Cattaneo (or non-Fourier) fluids is motivated by
a variety of practical applications for which the Fourier law of heat flux is inadequate. Maxwell
[1], in his study of the theory of gases, proposed that the relation between the heat flux and the
temperature gradient should not be instantaneous (as indeed is disallowed by relativity theory),
but instead must involve a finite relaxation time. Cattaneo [2] proposed a similar relation for
solids, which was developed further by Oldroyd [3]. Other important contributions were made
later, by, for example, Fox [4] and Carrassi & Morro [5].

The idea of a finite relaxation time is incorporated into the Maxwell-Cattaneo (MC) relation
between the heat flux g and the temperature T', which takes the form

Dg

Tfrﬁ =—q — KVT, (1‘1)

in which 7, is the relaxation time and K is the thermal conductivity. The introduction of a finite
relaxation time changes the fundamental nature of the parabolic heat equation of Fourier fluids, in
which heat diffuses with infinite speed, to a hyperbolic heat equation with the solution of a heat
wave that propagates with finite speed [6,7]. When 7 =0, we recover the Fourier law, with an
instantaneous flux-gradient relation. The importance of the thermal relaxation term is typically
expressed via the Maxwell-Cattaneo coefficient C', which is defined as the ratio of the thermal
relaxation time to twice the thermal diffusion time; i.e. C = 7 K/(2pcpd?), where p is the density,
cp is the specific heat at constant pressure and d is a representative length scale. For later use, the
thermal diffusivity « is defined as k = K/(pcp). Thus the classical Fourier law has C' = 0.

The Maxwell-Cattaneo heat transport effect has been studied in a wide variety of different
physical contexts: for example, in solids [8], in fluids [9-15], in porous media [16,17], in nanofluids
and nanomaterials [18,19], in liquid helium [20,21], in biological tissues [22,23], and, in the context
of double diffusive convection, in stellar interiors [24-27].

The problem of (non-magnetic) convection incorporating MC heat transport has received
considerable attention [9,11-15]. Whereas standard Rayleigh-Bénard convection is susceptible
only to steady (direct) instability (so-called ‘exchange of stabilities’) [28], the MC effect can also
lead to instability occurring in an oscillatory manner; indeed, this is the preferred mode if C
is sufficiently large. The accuracy of the Fourier law for experiments involving simple classical
fluids suggests that 7 is usually very small, as shown in [5], where it is suggested that 7 can
be as small as 10~ s for gases; this leads to very small values of C. However, for more complex
fluids, 7, and hence C, can be much larger. For example, Neuhauser [29], in her investigation
of thermal relaxation in superfluid Helium-3, found that 7 has values in the range 30s — 400s;
Mohammadein [30], in his study of the thermal relaxation time in two-phase bubbly flow, found
that the relaxation time varied between 10™s and 3s. It is though important to bear in mind
that even though C' may be extremely small, passing from C'=0 to C' < 1 represents a singular
perturbation, in which the extra effect can permit new types of solution that involve C' in an
essential way.

Motivated by astrophysical applications, in this paper we consider in detail the effect of the MC
effect on the onset of convection in an imposed vertical magnetic field (magnetoconvection). In the
classical (C = 0) problem, instability can occur either as a steady or oscillatory mode, depending
on the values of the various governing parameters [31]. It is therefore of interest to understand
how the stability properties of oscillatory modes are influenced by the MC effect, which itself
leads to oscillations being preferred. Also, as we shall explain in detail below, very high magnetic
field strengths, as can occur astrophysically, can lead to the MC term having a significant effect
on the dynamics even when C' is tiny.

The linear stability problem for magnetoconvection with the MC effect has been analysed by
Bissell [32], who, however, considered only the case of zero magnetic Prandtl number (pm, =v/7,
where v is the kinematic viscosity and 7 the magnetic diffusivity; compare the Prandtl number
p=v/kK, where & is the thermal conductivity). While this is appropriate for terrestrial situations,
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in which pn, is very small, in astrophysical situations, p» can be O(1) (stellar interiors) or larger
(interstellar medium). Indeed, even for the classical magnetoconvection problem (C' = 0), much of
the interesting dynamics arises only for p,, > p. The extension to non-zero p., is non-trivial, since,
whereas for the p,,, = 0 case the linear system is governed by a third order dispersion relation, as
is the classical problem of magnetoconvection, finite p,,, introduces a new mode, with a fourth
order dispersion relation. For general parameter values, the stability problem must be solved
numerically. However, it is possible to make analytical progress in a number of limiting cases;
in particular, in the case where the Chandrasekhar number ), a measure of the strength of the
imposed magnetic field, is large; in an astrophysical context, this is an important and well-studied
regime for the classical problem. Here we are able to show, via a precise asymptotic ordering, that
the influence of the MC effect is felt strongly (i.e. at leading order) for very small values of C, with
C=0Q ).

The layout of the paper is as follows. Section 2 contains the mathematical formulation of
the problem. The main stability results are contained in §3; in §3(a) we derive the governing
dispersion relation; the instability criteria are derived in §3(b); numerical results for various
limiting cases are contained in §3(c). Section 4 considers the role of py, in determining the
preferred behaviour. Section 5 considers the large () regime, and the paper concludes with a
discussion in § 6 of the astrophysical implications.

2. Formulation of the problem

We consider a horizontal layer of an incompressible (Boussinesq) viscous Maxwell-Cattaneo fluid,
initially at rest, contained between two planes a distance d apart. A uniform vertical magnetic
field B = Byz is imposed. The lower plane (z =0) and the upper plane (z = d) are maintained
at uniform temperatures T, T'r, respectively, with T > T, so that the layer is heated from
below, giving rise to a uniform adverse temperature gradient /3. This basic state is given a small
disturbance, giving rise to perturbations in velocity u, pressure p, temperature 6, density p,
magnetic field b and heat flux gq. On introducing characteristic units of distance, time, velocity,
heat flux, temperature, magnetic field and pressure by d, d? /K, Kk/d, BK, Bd, Bon/v and povk/ d?,
the dimensionless linearised perturbation equations can be written as

LU G4 Roz 49020 + VP, 2.1)
p Ot 0z
00 R
a—u-z—F, (2.2)
20%§+JW+V%:O, (2.3)
ob _ Ou 2
Pmg, =50 +pV7b, (2.4)
V-u=V-b=0, (2.5)

where IT is the total pressure (gas + magnetic) and
F=V.q. (2.6)

The Rayleigh number R, Chandrasekhar number (), Maxwell-Cattaneo coefficient C, Prandtl
number p and magnetic Prandtl number p., are defined as
R— gd3d4 _ B(Z)d2 C= K v v

_ _Trk oV - 2.7
P H ,U/OpOnV7 2d2 ’ p K/’ Pm 777 ( )

where 7 is the thermal relaxation time, 7 is the magnetic diffusivity, pg is the reference density,
o is the permeability and & is the coefficient of thermal expansion. Note that the scaling of the
magnetic field has been chosen in order that the limit of p;, — 0 is straightforward. The equations
can also be formulated using ¢ = 1/ rather than p, (see, for example, [31]).
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Equations (2.1) — (2.6) are solved subject to boundary conditions depending on the thermal,
dynamical and electrical properties of the boundaries. We define a Cartesian coordinate system
(z,y, z) with the fluid confined to the (dimensionless) region 0 < z < 1. All variables are periodic
in the horizontal directions. The horizontal boundaries are perfectly thermally conducting, hence

0=0 at z=0,1. 2.8)

We assume that the horizontal boundaries are impermeable and stress-free, leading to the

conditions

Oug 8uy
— - =0,1 2.
= 0 at z=0,1, (2.9)

where u = (ugz, uy, uz ). We discuss other mechanical boundary conditions in § 6

Uz

The magnetic boundary conditions are more complicated, since they depend on the electrical
conductivity and magnetic permeability of the boundaries (see, e.g., [33,34]). However, studies
of similar problems have shown that the general stability properties are qualitatively similar for
different conditions [35]. For simplicity, here we follow the counsel of Weiss and Proctor [31] and
adopt the most mathematically tractable conditions, namely

b
ba=by =5,

=0 at 2=0,1, (2.10)

where b= (bz, by, bz).

3. Stability analysis

(a) The dispersion relation

It is convenient to decompose the solenoidal fields « and b into their poloidal and toroidal parts
by writing
u=up+ur, up=VXVXPZ ur=VxTZz, (3.1)

b=bp+by, bp=V xV xSz bpr=V xUz. (3.2)

As in the classical magnetoconvection problem (see, for example, [31]), the equations for 7 and
U describe decaying Alfvén waves, which are not coupled to the convection. Thus we need
concentrate only on the equations for P and S. The governing equations are therefore

10 (o25) 0 (o2 4
5&(v P)_ RO +pQ- (v 3)+v P, (3.3)
P R
(2()& + 1) (E +vH7D> —v2, (3.4)
s _ op 2

where V% is the horizontal Laplacian. Equation (3.3) is derived from the z-component of the curl
of the curl of the momentum equation (2.1); equation (3.4) comes from combining equations (2.2)
and (2.3); equation (3.5) is derived from the z-component of the induction equation (2.4).
As in the classical problem, for the boundary conditions given by (2.8) — (2.10), we seek normal
modes with
0 xPx f(z,y)sinmz est, S f(z,y)cosmz et (3.6)

where the planform function f(z,y) satisfies
Vhf=—kKF. 3.7)
Substituting from (3.6) into equations (3.3) — (3.5) leads to the dispersion relation

8% (52Cs +1) + 8%) (s +pB) (pms + pB*) — pRE(2Cs + 1) (pms + p3°)

+ p2Qn2g? (8(203 F1)+ 52) -0, (3.8)
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where 52 = k2 + 72, This expression reduces, as it must, to expression (3.26) in [31] when C'=0,
and to expression (4.3) in [15] when @ =0. It is convenient to remove all factors of w2 by the
substitution

k=nk, B=n8, s:7r2§, C:é/ﬂ'Z, R:7r4R, Q=7T2Q. (3.9)
On dropping the tildes, (3.8) then becomes

82 (5(2Cs +1) + 8°) (5 + pB*) (pms + pB”) — pRE* (2Cs + 1) (pms + p5°)
+p2QB? (8(205 T+ 52) -0, (3.10)

where now 32 = k? + 1. This is a quartic polynomial in s:

a4s4 + a353 + a252 +ais+ag=0, (3.11)
with
aqg =2Cpm, (3.12)
a3 =pm + 2Cp(1 + pm) B>, (3.13)
a2 = (p+pm + ppm) 8% + 20p° (8" + Q) — 2Cppm RE* /87, (3.14)
ar=(p+p° + ppm)B* +1°Q — ppmBRE*/3* — 2Cp° R, (3.15)
ao=p° (8% + QB® — RK?). (3.16)

(b) Bifurcations to instability

Bifurcations to instability can occur in either a steady or oscillatory fashion. Steady bifurcations
occur when s = 0, with the value of R given by

(3.17)

It is important to note that there is no dependence of R on p (provided that it is non-zero),
pm or, particularly, C. Thus the MC effect has no influence on the onset of steady convection;
criterion (3.17) is simply that of the classical problem [28,31]. It can be seen from (3.17) that R®)
is minimised at a finite value of k2, k2., say; we denote this minimum value of R®) by R£S).

To determine the occurrence of oscillatory bifurcations, we set s = iw, with w real. Taking the
real and imaginary parts of the dispersion relation (3.11) leads to the equations:

asw? — asw? + ag =0, w? = ay/as, (3.18)

2

which yield two expressions for w? and R, where w? must be positive at a point of bifurcation.

Eliminating R leads to a quadratic expression for w?, whereas eliminating w? leads to a quadratic

expression for R; both turn out to be useful. The equation for w? is
baw® + baw? + by =0, (3.19)
where
by =4C"ppin, (3.20)
) 2 2 3,4
be =pm (1 +p—2CpB~) +4C7p (8" + Q), (3.21)
bo=p"(1+p)B* +p°(p — pm)Q — 2Cp°(B* + Q). (3.22)
The equation for R is
caR* 4+ ¢c1R + co =0, (3.23)

where
c2 = 4C%p pay (pm + 2CpB?), (3.24)
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8 4 6
c1=- <803p4(1 + pm) (% + Q%) +4C?p’pm ((2ppm +p+ D +pm)% + Qp(1 + 2pm)
2 Bt 3 8?
+2Cppm (1 +p+ppm) 15 +Pm(1+p) 75 | (3.25)
2 4 1,28 2 e
co=(1+pm) (4C7P(Q + F7)" 75 +20Qp™ (ppm +p = 2Pm) 7+
3 20, 2 BY o B! B
20(p" (L +pm) +p"(L+pn)) T + 27 PmQ g +Pm(1+p)(Pm +p)k7> . (3.26)

We denote the smallest value of R given by (3.23), with w? >0, by R (equivalently this can
be calculated from either of the expressions in (3.18) once w? > 0 has been determined). There

are two possibilities: either R(°) (k?) has a true minimum Réo), with the corresponding value
of k? denoted by k2. and the corresponding value of w? by w? > 0; or the smallest value of R(°)
occurs when w = 0 and the oscillatory branch joins the steady branch. The overall critical Rayleigh
number at the onset of instability, which we denote by R, is then given by the minimum value

of RES) and REO) ; we denote the value of k2 at R = R, by kg .

(c) Limiting cases

It is instructive first to recover the special simpler cases of C' =0, @ =0 or pm, =0, all of which
have been studied previously [15,31,32].

HC=0

If C' =0, the coefficient by becomes zero; the system then reduces to classical magnetoconvection;
there is only one possible mode of oscillation, with

2 _ p2 Q(pm — p) 4

Noting that 8% > 1, we see that for w? > 0 we must necessarily have

d+p

pm>p and Q> . (3.28)
Pm — P
In this case, the Rayleigh number for the onset of oscillatory instability is given by
+pm)(1 4+ pm) ﬁﬁ p2(1 + pm) BQ
R—p@o_ @ C c 3.29
P k2 " ph(1+p) U (329

If inequalities (3.28) are satisfied, then oscillatory instability will be preferred if Rﬁ"), the minimum

)

of R(©) over all wavenumbers, is less than Rgs ; this is discussed in more detail in [31].

(i) pm =0

Similarly, if pm = 0, then by again vanishes, and we recover the system studied in detail in [32],
with

o (eraps)

T20 T T aCH@ Y o

It is easy to see from (3.30) that w? is positive for sufficiently large 32, so oscillations are always
possible (for any finite C') — though may not be preferred. Depending on the values of p, Q and
C, w? may be positive for all values of 32, or there may be a range of excluded wavenumbers,
which does not necessarily include % =1. We shall explore further the case of py, =01in §4.

2

2

k2
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(ii)Q =0

For @ = 0, there is a stable root with s = —pBQ /pm (most readily seen from expression (3.10)). The
relation (3.11) then becomes a cubic in s and we recover the hydrodynamic Maxwell-Cattaneo
problem (see, for example, [12,15]). In this case,

L2 20pB° — (1+p)

% , (3.31)
with w? > 0 if
2 1+4p
— 3.32
5> ik (332)
The Rayleigh number for the onset of oscillatory instability is then given by
R(o)ziﬂiﬂlﬂ’)ﬁf (3.33)
20 k2 T 4C?p? K2’ '
which is minimised when
1/2
2_ ;2 (I+p)
k2= k2, = (1 e ) : (3.34)

As noted in [15], there is considerable simplification when this expression for &2 is substituted
into the expression for R, giving

R =L (14 [y @)Y (3.35)
¢ 20 2Cp? ' '
Various limiting values of C' and p can be explored analytically. As C' — oo,
0 2
P2, (3.36)

with k2.=1+ o(C _1). Thus, for large C, oscillatory convection is preferred since, in this
hydrodynamic case, RES) = 27/4, independent of the value of C.

As C — 0, there is no minimum on the oscillatory branch; the smallest value of R(®) comes from
setting w = 0. Rather than (3.35), this gives, in the limit C' — 0,

(1+p)?
4C2p2

R (3.37)
which is the corrected version of expression (4.12a) in [15]. Clearly, steady convection is preferred
in the limit of small C.

Asp— o0, k2. =1+ O(pfl), and hence, from (3.31).

g 4C -1
Thus the R(®) curve has a minimum only for C' > 1/4. In this case,
2
R o (3.39)
Oscillations are therefore preferred only if
R <R —27/4, e, C>8/27. (3.40)

For 1/4 < C < 8/27, the oscillation curve has a minimum but REO) > Rﬁs) ; for C'<1/4 the
oscillation curve has no minimum.
As p — 0, the optimal value of &% — 1/(v/2Cp), which leads to w? > 0 provided that C' > 1/2, and

H
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gives
1
1C2p2°

R (3.41)
For C < 1/2, R(®) is minimised for the smallest k? that allows a positive w?, i.e. k2 ~ 1/(2Cp). At
leading order this again yields the estimate (3.41). Clearly, regardless of the value of C, steady
convection is preferred as p — 0.

In each of these three limiting cases, the dispersion relation (3.11) reduces to a cubic, so there
can be at most one mode of oscillation for any values of the parameters. In the general case,
however, for any given set of parameters, it is not immediately obvious whether there can be
more than one mode of oscillation — in other words, whether equation (3.19) can have two roots
both with w? > 0. This would require satisfaction of the two conditions

bo >0, bo < —+/4bgby. (3.42)

Given the complicated form of the coefficients b, it is not possible to make enormous analytical
progress in determining whether inequalities (3.42) are satisfied. However, we have conducted an
extensive search over the full (C, Q, p, pm, 62) parameter space, and have not found any values
satisfying the criterion (3.42). Thus there can be no more than one mode of oscillation for any
combination of values of the parameters. As long as the parameters remain finite, the oscillatory
branch can end only on the stability branch, where the frequency tends to zero.

4. The role of p,,

We now proceed to identify the dependence of the critical (preferred) mode of convection on the
governing parameters, paying particular attention to the role of non-zero pym, thereby extending
the results of [32]. For any given values of the parameters, the Rayleigh number for the onset of
steady convection, R(S), given by (3.17), exists for all values of ,32, with a well-defined minimum.
The Rayleigh number for the onset of oscillatory convection, R(%), exists for at least some range
of 3%; interestingly, for the magnetoconvection problem (C = 0), this is guaranteed for sufficiently
small f3, provided that conditions (3.28) are satisfied, whereas for any C > 0, oscillations are
guaranteed for sufficiently large 2. Extensive computations have been carried out to identify
the critical mode in the four-dimensional parameter space (p, pm, C, Q).

In general, the stationary mode is preferred when the parameters pp,, C, @ are small.
However, when any of these parameters is sufficiently large, the preferred mode at onset becomes
oscillatory. The salient features of the critical mode are summarised in the regime diagram in
figure 1, which exhibits the regions of preference for stationary and oscillatory modes in the (p, C)
plane for different values of py, and Q (for Q =0, the value of pn, is of course irrelevant). For
@ =0, the stationary mode is preferred in regions with small values of C, while the oscillatory
mode is preferred for larger values of C. The value of C' that marks the transition between
steady and oscillatory modes has C' — 1/(3+/3p) for p — 0 and C — 8/27 for p — oo; both of these
regimes are captured in figure 1a. For small values of @), this picture is essentially unchanged,
for any O(1) values of pm. As can be seen in in figures 16—d, for any fixed @ > 0, the region of
preference for the stationary mode shrinks as py, increases; i.e., increasing the magnetic Prandtl
number promotes oscillatory instability. When py, is kept fixed and @ is increased, the region of
preference of the stationary mode is also diminished; indeed, for sufficiently small p, oscillatory
modes can be preferred for all values of C. The change in the preferred mode from stationary
to oscillatory is typically accompanied by sudden changes in the wavenumber and frequency; by
definition, the critical Rayleigh number curve remains continuous, although its slope may change.

Before exploring the effects of non-zero py, in detail, it is helpful to revisit the case of py =0
[32]. Figure 2 presents examples of the change of critical mode from stationary to oscillatory as @
is increased, for C' = 0.2, for three different values of p. Recall that the onset of the steady mode is
independent of both py, and p. Both k2 (for steady and oscillatory modes) and w? are increasing
functions of Q. The overall critical Rayleigh number R, is also an increasing function of @), with
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Figure 1. Regime diagrams showing the regions of preference of the steady mode (below the curves) and the oscillatory
mode (above the curves) in the (p, C) plane for (a) @ =0, (b) Q =1, (c) Q@ = 10, (d) @ = 50 at various marked values
of pm. In (a), with Q = 0, the value of p,, is irrelevant; in (b), the curves for p,, = 0.1, 0.2 and 0.5 are essentially
coincident.

this being more pronounced for the steady mode. At sufficiently large @, oscillatory convection is
preferred, with the value of ) at the transition decreasing with increasing p. The transition value
does however become independent of p for p sufficiently large. Assuming that k2, R and s are
O(1) as p — oo, as may be verified ex post facto, the fourth order dispersion relation (3.11) reduces
to the quadratic equation

20(8* + Q)s” + ((,64 +Q) - 20Rk2> s+ B%(8* + Q) — RE* =0. (4.1)
The other two roots of (3.11) have large negative real parts. It should also be noted that in this

large p limit, expression (4.1) holds not just for p;, =0, but is in fact valid for any O(1) value of
pm. Bifurcation to oscillatory convection occurs when

4 2
_B+Q ~ 2 B 1
RY = 202 with w’ = 50— 1ce (4.2)
Minimising R() with respect to K2 gives
1/2 1/2
go) — M with k? — (1 + Q)1/2 and UJ? = M 1 (43)

c 20 402

Although these results are derived in the limit of p — oo, they are remarkably accurate even for
values as low as p =5, as can be seen from figure 2.

In many problems of this type, it is very challenging to find any analytical result determining
the transition between two modes with unrelated wavenumbers. In the present case, however, we
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Figure 2. R., k2 and w? as functions of Q for p,, =0 and C' = 0.2, with p = 0.5 (blue), p = 1 (red), p =5 (green).
Bifurcation to oscillatory convection is shown as solid lines; the onset of steady convection, which is independent of p, is
depicted by a dashed black line. The magenta dashed lines show the asymptotic results (4.3) for large p.

have a formula, albeit implicit, for RS;S) [31],

(s) 2/3
Q:RES):%(R;) . (4.4)

For p>> 1 we also have an explicit relation for R, given by (4.3). At the transition between

)

steady and oscillatory modes, Rff = REO), leading to the following implicit expression for @) in

terms of C:

Q=

(4.5)

1+(1+Q)? L 1+ (1+Q)Y/? 2
c 20 '

Note that at Q =0, C' = 8/27, consistent with (3.40). Hence, for C' > 8/27, and sulfficiently large p,
oscillatory convection is preferred for all values of (). We note also from (4.5) that for Q > 1, the
transition value of C' is very small, C' = O(Qfl/ 2) ; we shall discuss this regime in detail in the
following section.

We now turn our attention to the case of finite py,. The important new feature arises that for
P S pm, the transition from steady to oscillatory onset as @ is increased occurs with a decrease
in wavenumber. This is illustrated in figure 3, which shows a typical transition for p/py, small,
unity and large. For small p we can make analytical progress in describing the transition, using
methods similar to those employed above for large p. From equations (3.19) and (3.18), we obtain,
at leading order,

2 6
2 P ! (0 _(1+pm)\ B
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Figure 3. Rayleigh numbers R at the onset of instability as a function of k2, for steady convection (red) and oscillatory
convection (blue) at the value of @ for which the minima of the steady and oscillatory curves are equal: C' = 0.2, p,, = 0.5
in all plots, with (@) p=0.1, Q@ =7.1; (b) p=0.5, Q = 11.9; (c) p=5, Q = 5.9.

Minimising R over k2 gives the values

2
2_ 1 2_ P 9 (0) _ 27 (1+pm
— — _ =z = —=. 4.7

Although the expression for R does not contain Q, it should be noted that oscillations are
possible only if w? >0 for some 8, ie. Q> 1 /pm. Combining expression (4.4) with (4.7) shows

that oscillations are preferred when
1/3
(Hpm) —1} 4.8)
Pm

Q> 27 <1+pm>2/3
4 Pm

It is interesting to note that this is independent of C. From (4.7) it can be seen that for w? to be
positive at the transition we must have @ > 9/(4pm); this is always the case when (4.8) is satisfied.

Figure 4 shows examples of the change of critical mode from stationary to oscillatory as @
is increased, for py, = 0.5, again with C' = 0.2 and with the three values of p shown in figure 3.
We have also shown the asymptotic results (4.7) for small p; these are extremely accurate even
for p=0.1. It is interesting to note that the fact that the wavelength of the preferred oscillatory
mode may be less than or greater than that of the steady mode, as illustrated by figure 3, leads
to complicated dependence of the transition on p. In particular, for the parameter values adopted
in figure 4, the transition value of @ for p = py, is larger than that for both small and large values
of p. As already noted, the large p behaviour is independent of py,, and so the p =5 results in
figure 4 are essentially identical to those in figure 2.

Finally, in this section, we consider the regime with p,, > 1. Oscillatory solutions are favoured
at onset. On defining A = Q/pm, expression (3.19) becomes, at leading order,

4C%pw? + W (14 p — 2pCB%) — p*A=0. 4.9)

It is instructive to consider the case of A < 1; given that we are also considering the regime p, >
1, this is not too restrictive an assumption — the small A regime still encompasses large values of
Q. For small A, the two roots of equation (4.9) are given, at leading order, by
2 —(1+p—2pCp%

2 p A
w C 2 and w C2 ( O)

The smaller (O(A)) root for w? leads to

R(O) — *876

=R which is minimised when k2 = %, giving R = %; (4.11)
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Figure 4. R., k2 and w? as functions of Q for p,, = 0.5 and C' = 0.2, with p = 0.1 (blue), p = 0.5 (red), p = 5 (green).
Bifurcation to oscillatory convection is shown as solid lines; the onset of steady convection, which is independent of p,
is depicted by a dashed black line. The magenta dashed lines show the asymptotic results (4.3) for large p; the orange
dashed lines show the asymptotic results (4.7) for small p.

this can occur only when C < (1 + p)/3p. Note that when @ = A =0, the mode with k=1 /2,
R =27/4is steady, with two of the roots of the dispersion relation being s =0 and s = —pB? /Pm;
as @ is increased, the oscillatory roots arise from the merger and splitting of these two roots.

The larger (O(1)) root, which is that found when Q =0, is given at leading order by

B 5B

2
R = ﬁ ((1 +p)k—2 +2Cp ﬁ) ,  which is minimised when =1+ 1+p

2Cp2’

(4.12)
The condition that w? > 0 at this value of k2 leads to the condition C > (1 + p)/(2 + 4p). Thus
there are two minima of R(®) for values of C' in the range

1+p 1+p
—— << —; 4.13
2(1+ 2p) 3p (4.13)

outside this range there is only one minimum. Figure 5 shows R(®) versus k? for three values
of C in the range (4.13) for Q =107, A=0.1, showing cases where either the small or large k>
mode is preferred, together with the transition value of C' where the two minima are equal. Also
plotted is w? versus k? for one of the cases (all three have very similar frequencies), together with
the small A asymptotic results (4.10); it can be seen that except for a small range of k* (where
B2% ~ (14 p)/2Cp), the asymptotic results produce excellent agreement with the full system.
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Figure 5. (a) R(®) versus k2 for py, =108, Q =107, p=0.1, with C=2.4 (blue), C =2.515 (red), C =2.6
(magenta). (b) w? versus k2 for the case of C' = 2.4 (solid line), together with the asymptotic results (4.10) (dashed
lines).

5. Q> 1

The case of very strong imposed fields (Q > 1) is of particular interest since it highlights how
little Maxwell-Cattaneo effect is needed in order to bring about a qualitative change in the nature
of the stability problem. It is, furthermore, a regime that allows analytical progress, thereby
complementing the numerical approach, which, for general parameter values, is unavoidable.

As already noted, the onset of steady convection is given by expression (3.17), for all values of
C. For the case of Q > 1, R®) is minimised when, at leading order,

1/3
k2:<§> . with R =q. (5.1)

When C =0, the problem reduces to that of classical magnetoconvection [31]. In this case, if

p > pm then the onset of instability can occur only via a steady bifurcation, and hence R. = R((;s).
However, if p < pm, then, for @ > 1, the onset of oscillatory instability occurs with the critical
wavenumber and critical Rayleigh number given, at leading order, by

Q\'® ) P*(1+pm)
(5) o M= P (1 +p) @ 62

2 1/3
2 p
= (<1+p)<pm+p>)
(s)

It follows, from consideration of expressions (5.1) and (5.2), that if p < p;, then REO) < R:7; e,
oscillatory instability is always favoured in the regime of sufficiently large Q.

We might then ask, for @ > 1, how large does C need to be to influence the results at leading
order? As already noted, finite values of C' have no influence on the onset of steady convection;
it is thus only the oscillatory modes that we need to consider. Inspection of the coefficients in the
dispersion relation (3.11) — for example, expression (3.14) for az — suggests that C' will come
into play when CQ ~ 52, i.e. when C' ~ sz/ 3. However, this is misleading; instead, one should
consider expression (3.19) for the frequency at the onset of instability. When k2 ~ 5% ~ Q'/? and
C~ Q_Q/ 3 the leading order terms in (3.19) give rise to the expression:

ACppmw® + pi (1 + p)w? +p*(p — pm)Q = 0. (5.3)

The C = 0 root for w? is unchanged at this order, while the other root has w? < 0; thus with C =
O(Q_Q/ 3) there is no leading-order influence of C on the frequency of the marginal mode. The
higher-order corrections to w? and Re, which are both O(Qz/ 3), can be calculated after some
algebra, but their expressions are not particularly revealing.

The MC effect enters at leading order when C'= oQ~1?), leading to a set of scalings that
differ from those of classical magnetoconvection. In this new regime, k2~ B2~ Ql/ 2 and the
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coefficients in expression (3.19) for the marginal frequency have magnitudes: by = O(Q 1), by =
O(1), bp = O(Q). Hence w? = O(Q) for both roots of (3.19), although only one root is meaningful
with w? > 0. In this regime it becomes possible to scale the growth rate s so as to remove all of the
Q dependence. On writing

s=Q"%s0, 0=Q V200, K =1Q'?, 82 =53Q"%, R= R, (5.4)

the coefficients of the quartic dispersion relation become, at leading order,

ayg = 2Copm, (5.5)

a3 = pm + 2Cop(1 + pm k3, (5.6)

az = (p+ pm + ppm)kg + 2Cop° (ko + 1) — 2Coppm Ro, (5.7)
ar = (p +p° + ppm)ko + p° — ppm Ro — 2Cop” Rok?, (5.8)
ap = p° (k§ + k§ — Rok3). (5.9)

Note that we have almost recovered the full problem, described by (3.11) — (3.16), with Q =1, but
where we have now identified k? and 5. It is thus straightforward, numerically, to explore the
regime of Q@ > 1, C'= CoQ~ Y2, Cp = O(1) through solution of a dispersion relation with O(1)
coefficients.

80 4 4
R | @ (b) ©

° 35 35
60 3 3
25 25
40 ) )
20 15 15
1 1

% 5 £ 10 0 1 g 2 "% 1 K2

Figure 6. Rayleigh numbers Rg at the onset of instability as a function of kg, for steady convection (red) and oscillatory
convection (blue); p =1, pym, = 0.1, with (@) Co = 0.2, (b) Cp = 1.1, (c) Cp = 1.5.

We should first note, from (5.9), that the critical value for a steady state bifurcation is given by
R =1+4k). (5.10)

The minimum value of Ry is Ro =1, obtained when ko = 0; this is entirely consistent with the
unscaled result (5.1), which shows that the minimum value of R is obtained when k2 = O(Ql/ 3),
outside the present scaling.

Figures 6 and 7 display the steady branch, together with possible different manifestations of
the oscillatory branch as the parameters are varied. Figure 6 shows R(()s) and R(()O) as functions of
k% for the fixed values p =1, pm = 0.1, for three values of Cy. For sufficiently small Cy (illustrated
by Cp = 0.2), the oscillatory branch appears at large wavenumber and increases with kZ; here the
overall stability boundary is determined by the steady branch. As Cj is increased (illustrated by
Co = 1.1), the oscillatory branch develops a minimum, but this is still above the critical value for
steady convection. A further increase in Cy (illustrated by Cy = 1.5) leads to the minimum of the
oscillatory branch lying below Ry = 1 and thus convection sets in as oscillations as Ry is increased.
Further structure can be identified by careful choices of pi, and Cp, as shown in figure 7, in which
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Figure 7. Rayleigh numbers Ry at the onset of instability as a function of k%, for steady convection (red) and oscillatory
convection (blue); p = 1 for all plots; (a) pmm = 0.95, Co = 0.51; (b) pm, = 0.95, Co = 0.6; (¢) pm = 1.1, Co = 0.6.

we again fix p=1. In figure 7a, with pn, =0.95 and Cy = 0.51, there is an isolated small region
of wavenumbers where oscillations are possible, distinct from the branch at larger wavenumbers.
For the example shown, the minimum of the oscillatory branch lies below the steady branch, and
so defines the preferred mode, though it is possible to find parameter values for which this is
not the case. On increasing Cj slightly, to Cy = 0.6 (figure 7b), the two oscillatory branches merge;
topologically this is the same as that shown in figure 6¢. On increasing p, to a value greater than p
(figure 7c shows the case of pm = 1.1), the oscillatory branch lies wholly below the steady branch.

Figure 8 shows the critical values of Ro, k% and w? as functions of Co for p=1 and
pm =0.1, 1, 10. When pp, <p, the preferred mode is steady for Cy sufficiently small, but
oscillatory for larger values. As p, increases, the range of Cy for which the preferred mode is
steady diminishes, vanishing when p.,, = p. For p:, > p, the preferred mode is oscillatory for all
Co. It can be seen that on the oscillatory branches, for sufficiently large Cy, Rg. and wgc decrease
with Cy, whereas there is a gradual increase in k%.

The trends shown in figure 8 are consistent with the analysis of the critical curves for large Cy,
i.e. large values of CQl/ 2. For such values of C, the preferred wavenumber continues to scale as
k2 ~ Ql/ 2, with the coefficients of (3.19) given, at leading order, by

by =4Cppr, by =4C%p’ (K +Q), bo=—2Cp° (k" + Q)k’. (5.11)

One root has w? < 0. The other, meaningful, root is given, at leading order, by

k2 1/2
wz:%:%C , (5.12)
with
1/2
Re=Y o (5.13)

It is interesting to note that one can never escape the influence of the magnetic field if Q> 1,
however large the value of C. The horizontal scale of the preferred mode is determined solely by
Q, and hence is small; thus one can never recover the non-magnetic behaviour. This is a new mode
of instability — which may be classified as an MHD MC mode — for which both a strong magnetic
field and the MC effect are vital. It is the dependence of k2 on Q that leads to the dependence of
w? and R. on Q, shown in equations (5.12) and (5.13).

The simplicity of expression (5.12) leads us to ask whether this result could be obtained by
making simplifying assumptions to the governing equations (3.3)—(3.5). Given the absence of the
Prandtl number p in (5.12) and (5.13), we are led to consider the limit of p — co. On making the
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Figure 8. Ro., k3. and w2, governed by the scaling (5.4). Here p = 1, with p, = 0.1 (blue), pm = 1 (red), pm = 10
(green). Bifurcation to oscillatory (steady) convection is shown as a solid (dashed) line.

substitution S = pS and letting p — oo with pyy, finite, equation (3.3) becomes

0=—ro+0Q2 (v25‘) +vip, (5.14)
0z
and equation (3.5) becomes
0=9P L v23, (5.15)
0z

Equation (3.4) is unchanged. We note that in (5.14) the inertial term has been removed, and in
(5.15) the induction term no longer appears, equivalent to the limit of small magnetic Reynolds
number. Elimination of S between (5.14) and (5.15) leads to coupled equations for P and 6, with
time derivatives appearing only in equation (3.4). This yields the dispersion relation (4.1), with,
as already noted,

B+ Q
20k?

4
with o2=FBE QR 5 1 (5.16)

R(O) — = .
20(B4 + Q) 20 4C2

We note that these expressions hold for all values of Q. For @ > 1, R(©) is minimised when k? =
Ql/z, with REO) = Ql/Q/C. The requirement that w2>0 implies that 20k% = 2C’Q1/2 > 1. For
large values of CQl/ 2, expression (5.16) reduces to (5.12). We have thus identified the instability
mechanism at large C' as one in which inertia and magnetic induction are unimportant.

Finally, in this section, we note, from inspection of the coefficients (3.14) - (3.16), that the regime
of large Q implicitly means the regime of large p?Q; if p is sufficiently small such that p>@Q is not
large, then the picture is quite different. As already noted in (4.6), in the limit of p — 0, oscillatory
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modes are preferred for @ sufficiently large, with

Re=pR© =210 +pm), (5.17)
4 Dm
We note that there is no dependence on C, nor any explicit dependence on Q. For the problem
of classical magnetoconvection (C' = 0), as p is increased, R, first increases monotonically while
Rc.= g"), before levelling off to its p-independent value once R. is determined by Rff). For non-
zero C, however, the picture can be quite different. If we suppose that p < 1, but with I"' = p2Q =
O(1), and assuming k? = O(1), R(°) may be approximated from equations (3.23) - (3.26) as

1 2 4 2 6
R = (Z%T") <402F2% - 4cme% +me§—2 +p3n%) . (5.18)
m

Figure 9 plots R. (which here is given by R(°)) as a function of I', computed from the full

@ ‘ T ® ‘ 7

Figure 9. R. as a function of I" = p2Q for p,,, = 0.5, Q@ = 10%, and for (a) C =0.1, (b) C = 1. The blue line is
calculated from the full system; the red dashed line is calculated from the small p result (5.18).

system and also from the asymptotic result (5.18); the latter eventually fails once I" is no longer
O(1). As illustrated in Figure 9q, for small values of C, R, increases monotonically with I, as in
classical magnetoconvection. However, as shown in Figure 9b, for larger values of C, there is a
local minimum in R, at a finite value of I". Pleasingly, and somewhat surprisingly, it is possible
to pin down the transition value of C' analytically.

We first note that on defining I" = py,y, inspection of (5.18) reveals that the transition value of
C'is independent of py,. To simplify the notation, we define r = pm R /(14 pm); equation (5.18)
then takes the form:

k?r=pB%(A% + ), where A=p?—2Cy. (5.19)

We wish to minimise r over both v and k2. First,

or 1
F=0— 4=z, (5.20)
whereas
% —0 = A% 4 y=28%(8% - 1)A. (5.21)

Eliminating A between (5.20) and (5.21) gives
1+16C%y =8CB%(B% —1). (5.22)
Eliminating -y, using the expression in (5.19), together with (5.20), leads to the expression

8054 - 16062 +1=0 or, equivalently, Er=1- % (5.23)
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Thus there is a solution only if C' > 1/8. Finally, eliminating the wavenumber between (5.22) and

(5.23) gives
1 1 1
7_2C’<1—H/1_SC_40>' (5.24)

For v > 0 we must therefore have

1 1 . 1
4/1— 3C > - 1, whichreducesto C > 6 (5.25)

Thus for C' > 1/6, R is minimised at a finite value of I".

6. Discussion

The linear stability of a horizontal layer of viscous fluid permeated by a uniform vertical magnetic
field has been studied in the presence of a uniform adverse temperature gradient. The heat flux-
temperature relation is of non-Fourier type and in the linear regime takes the form discussed
by [1,2]. The onset of instability is studied for the full range of Prandtl number p, magnetic
Prandtl number p,,, Chandrasekhar number ), and Maxwell-Cattaneo number C. While the
onset of steady-state instability is unaffected by the Maxwell-Cattaneo (MC) effect, the new
term in the heat equation makes a significant difference to the onset of oscillatory convection,
particularly when @ > 1. This difference is manifested both in the critical Rayleigh number R, for
the onset of convection and in the preferred wavenumber at which this critical value is attained.
Furthermore, oscillatory convection may be found even when p > py,, which is forbidden in
classical magnetoconvection.

The calculations are most tractable (and informative) when @ > 1. It can be shown that the
influence of the MC effect becomes significant when C ~ Q™ '/2, and indeed a reduced system
of equations may be constructed in this distinguished limit that captures the effects of non-
zero C for its entire range, for the stress-free boundary case considered here. Crucially, the
preferred wavenumber scales as Q'/*, whereas if C =0 the preferred wavenumber is 0(Q%).
This means that the Takens-Bogdanov bifurcation, where the oscillatory branch and the steady
branch coincide, can be accommodated in the same scaling. Increasing C'in this regime at fixed Q
leads to a decrease in the critical value of R, which eventually scales like Ql/ 2 /C, while the critical
wavenumber becomes independent of C. Interestingly, there can be up to three intersections of
the steady and oscillatory branches. All possibilities can be found by varying the values of the
parameters, as shown in figures 6, 7. At large values of pm, R(®) can have two minima in k2 for
the range of C' given by (4.13), with a transition of the preferred mode as C' is varied. For p < 1,
Q> 1, with I' = p2Q = O(1), the critical Rayleigh number has a non-monotonic dependence on
I' — in contrast to classical magnetoconvection — provided that C' > 1/6.

It is important to discuss the astrophysical implications of the balance C' ~ Q_l/ 2 at which
MC and magnetic effects both come into play. In terms of the lengthscale d at which this balance
is achieved, this relation may be expressed as

1/2
d~ TrPm VA

: (6.1)
p

where vy = B/,/fiop is the Alfvén speed. In the solar tachocline, for example, where pm, =
0(1071), p= 0(1076), VA= O(103m2571), estimate (6.1) yields scales of the order of one metre.
It is certainly conceivable that in astrophysical bodies in which convection occurs in the presence
of very strong magnetic fields, as postulated, for example, in the dynamo phase of proto-neutron
stars [36], the MC effect will be of importance over a much wider range of lengthscales.

The results in this paper have been obtained with the simple stress-free mechanical boundary
conditions and fixed boundary temperatures. What is the effect of varying the boundary
conditions? The magnetic field conditions, while complicated in general, become unimportant
in the large @ case, since the reduced equations contain the magnetic field only through the
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quantity V2S, which may thus be eliminated without differentiation. The thermal and mechanical
boundary conditions will yield order unity differences in the critical values of the parameters. A
detailed analysis shows, however, that when @ is large, the dominant terms in the interior give
the same solutions as in the stress-free, fixed temperature case, and the new boundary conditions
have to be accommodated by boundary layers; in the case of small C' (C < Q™ %/%) there are
Hartmann layers, of thickness O(Qfl/ 2), and viscous and thermal layers with thicknesses
O(Q_l/ 4y and O(Q_l/ 6) respectively, the latter reflecting the size of the critical wavelength.
These layers act to adjust the mainstream functions to the boundary conditions, but are passive at
leading order, offering no change to the stress-free critical values. For larger C' (C > Q_l/ 2), the
critical wavenumber increases to O(Ql/ 4) and so there are only two boundary layers, but they
are still passive. Clearly, though, the higher order corrections to the critical values (not calculated
here) will depend on the boundary conditions.

The calculations described in this paper could be developed in a variety of ways. Including
nonlinear effects would enable us to see if the preferred form of oscillations would be stationary
or travelling waves (in one horizontal dimension), or which of the many possible nonlinear
modes could occur in the fully three-dimensional case. Such questions have been extensively
investigated in the C' = 0 case by [31]. The influence of MC effects on other double diffusive type
problems (such as rotating convection or thermosolutal convection) have the potential to uncover
new phenomena; indeed a paper on the latter problem is in preparation [27].
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